Package org.joml

Interface Matrix4x3fc

  • All Known Implementing Classes:
    Matrix4x3f, Matrix4x3fStack

    public interface Matrix4x3fc
    Interface to a read-only view of a 4x3 matrix of single-precision floats.
    Author:
    Kai Burjack
    • Method Summary

      All Methods Instance Methods Abstract Methods 
      Modifier and Type Method Description
      Matrix4x3f add​(Matrix4x3fc other, Matrix4x3f dest)
      Component-wise add this and other and store the result in dest.
      Matrix4x3f arcball​(float radius, float centerX, float centerY, float centerZ, float angleX, float angleY, Matrix4x3f dest)
      Apply an arcball view transformation to this matrix with the given radius and center (centerX, centerY, centerZ) position of the arcball and the specified X and Y rotation angles, and store the result in dest.
      Matrix4x3f arcball​(float radius, Vector3fc center, float angleX, float angleY, Matrix4x3f dest)
      Apply an arcball view transformation to this matrix with the given radius and center position of the arcball and the specified X and Y rotation angles, and store the result in dest.
      float determinant()
      Return the determinant of this matrix.
      boolean equals​(Matrix4x3fc m, float delta)
      Compare the matrix elements of this matrix with the given matrix using the given delta and return whether all of them are equal within a maximum difference of delta.
      Matrix4x3f fma​(Matrix4x3fc other, float otherFactor, Matrix4x3f dest)
      Component-wise add this and other by first multiplying each component of other by otherFactor, adding that to this and storing the final result in dest.
      Planef frustumPlane​(int which, Planef plane)
      Calculate a frustum plane of this matrix, which can be a projection matrix or a combined modelview-projection matrix, and store the result in the given plane.
      float[] get​(float[] arr)
      Store this matrix into the supplied float array in column-major order.
      float[] get​(float[] arr, int offset)
      Store this matrix into the supplied float array in column-major order at the given offset.
      java.nio.ByteBuffer get​(int index, java.nio.ByteBuffer buffer)
      Store this matrix in column-major order into the supplied ByteBuffer starting at the specified absolute buffer position/index.
      java.nio.FloatBuffer get​(int index, java.nio.FloatBuffer buffer)
      Store this matrix in column-major order into the supplied FloatBuffer starting at the specified absolute buffer position/index.
      java.nio.ByteBuffer get​(java.nio.ByteBuffer buffer)
      Store this matrix in column-major order into the supplied ByteBuffer at the current buffer position.
      java.nio.FloatBuffer get​(java.nio.FloatBuffer buffer)
      Store this matrix in column-major order into the supplied FloatBuffer at the current buffer position.
      Matrix4d get​(Matrix4d dest)
      Get the current values of this matrix and store them into the upper 4x3 submatrix of dest.
      Matrix4f get​(Matrix4f dest)
      Get the current values of this matrix and store them into the upper 4x3 submatrix of dest.
      Matrix4x3d get​(Matrix4x3d dest)
      Get the current values of this matrix and store them into dest.
      Matrix4x3f get​(Matrix4x3f dest)
      Get the current values of this matrix and store them into dest.
      float[] get4x4​(float[] arr)
      Store a 4x4 matrix in column-major order into the supplied array, where the upper 4x3 submatrix is this and the last row is (0, 0, 0, 1).
      float[] get4x4​(float[] arr, int offset)
      Store a 4x4 matrix in column-major order into the supplied array at the given offset, where the upper 4x3 submatrix is this and the last row is (0, 0, 0, 1).
      java.nio.ByteBuffer get4x4​(int index, java.nio.ByteBuffer buffer)
      Store a 4x4 matrix in column-major order into the supplied ByteBuffer starting at the specified absolute buffer position/index, where the upper 4x3 submatrix is this and the last row is (0, 0, 0, 1).
      java.nio.FloatBuffer get4x4​(int index, java.nio.FloatBuffer buffer)
      Store a 4x4 matrix in column-major order into the supplied FloatBuffer starting at the specified absolute buffer position/index, where the upper 4x3 submatrix is this and the last row is (0, 0, 0, 1).
      java.nio.ByteBuffer get4x4​(java.nio.ByteBuffer buffer)
      Store a 4x4 matrix in column-major order into the supplied ByteBuffer at the current buffer position, where the upper 4x3 submatrix is this and the last row is (0, 0, 0, 1).
      java.nio.FloatBuffer get4x4​(java.nio.FloatBuffer buffer)
      Store a 4x4 matrix in column-major order into the supplied FloatBuffer at the current buffer position, where the upper 4x3 submatrix is this and the last row is (0, 0, 0, 1).
      Vector3f getColumn​(int column, Vector3f dest)
      Get the column at the given column index, starting with 0.
      Vector3f getEulerAnglesZYX​(Vector3f dest)
      Extract the Euler angles from the rotation represented by the upper left 3x3 submatrix of this and store the extracted Euler angles in dest.
      Quaterniond getNormalizedRotation​(Quaterniond dest)
      Get the current values of this matrix and store the represented rotation into the given Quaterniond.
      Quaternionf getNormalizedRotation​(Quaternionf dest)
      Get the current values of this matrix and store the represented rotation into the given Quaternionf.
      AxisAngle4d getRotation​(AxisAngle4d dest)
      Get the rotational component of this matrix and store the represented rotation into the given AxisAngle4d.
      AxisAngle4f getRotation​(AxisAngle4f dest)
      Get the rotational component of this matrix and store the represented rotation into the given AxisAngle4f.
      Vector4f getRow​(int row, Vector4f dest)
      Get the row at the given row index, starting with 0.
      Vector3f getScale​(Vector3f dest)
      Get the scaling factors of this matrix for the three base axes.
      Matrix4x3fc getToAddress​(long address)
      Store this matrix in column-major order at the given off-heap address.
      Vector3f getTranslation​(Vector3f dest)
      Get only the translation components (m30, m31, m32) of this matrix and store them in the given vector xyz.
      float[] getTransposed​(float[] arr)
      Store this matrix into the supplied float array in row-major order.
      float[] getTransposed​(float[] arr, int offset)
      Store this matrix into the supplied float array in row-major order at the given offset.
      java.nio.ByteBuffer getTransposed​(int index, java.nio.ByteBuffer buffer)
      Store this matrix in row-major order into the supplied ByteBuffer starting at the specified absolute buffer position/index.
      java.nio.FloatBuffer getTransposed​(int index, java.nio.FloatBuffer buffer)
      Store this matrix in row-major order into the supplied FloatBuffer starting at the specified absolute buffer position/index.
      java.nio.ByteBuffer getTransposed​(java.nio.ByteBuffer buffer)
      Store this matrix in row-major order into the supplied ByteBuffer at the current buffer position.
      java.nio.FloatBuffer getTransposed​(java.nio.FloatBuffer buffer)
      Store this matrix in row-major order into the supplied FloatBuffer at the current buffer position.
      Quaterniond getUnnormalizedRotation​(Quaterniond dest)
      Get the current values of this matrix and store the represented rotation into the given Quaterniond.
      Quaternionf getUnnormalizedRotation​(Quaternionf dest)
      Get the current values of this matrix and store the represented rotation into the given Quaternionf.
      Matrix4x3f invert​(Matrix4x3f dest)
      Invert this matrix and write the result into dest.
      Matrix4x3f invertOrtho​(Matrix4x3f dest)
      Invert this orthographic projection matrix and store the result into the given dest.
      Matrix4x3f lerp​(Matrix4x3fc other, float t, Matrix4x3f dest)
      Linearly interpolate this and other using the given interpolation factor t and store the result in dest.
      Matrix4x3f lookAlong​(float dirX, float dirY, float dirZ, float upX, float upY, float upZ, Matrix4x3f dest)
      Apply a rotation transformation to this matrix to make -z point along dir and store the result in dest.
      Matrix4x3f lookAlong​(Vector3fc dir, Vector3fc up, Matrix4x3f dest)
      Apply a rotation transformation to this matrix to make -z point along dir and store the result in dest.
      Matrix4x3f lookAt​(float eyeX, float eyeY, float eyeZ, float centerX, float centerY, float centerZ, float upX, float upY, float upZ, Matrix4x3f dest)
      Apply a "lookat" transformation to this matrix for a right-handed coordinate system, that aligns -z with center - eye and store the result in dest.
      Matrix4x3f lookAt​(Vector3fc eye, Vector3fc center, Vector3fc up, Matrix4x3f dest)
      Apply a "lookat" transformation to this matrix for a right-handed coordinate system, that aligns -z with center - eye and store the result in dest.
      Matrix4x3f lookAtLH​(float eyeX, float eyeY, float eyeZ, float centerX, float centerY, float centerZ, float upX, float upY, float upZ, Matrix4x3f dest)
      Apply a "lookat" transformation to this matrix for a left-handed coordinate system, that aligns +z with center - eye and store the result in dest.
      Matrix4x3f lookAtLH​(Vector3fc eye, Vector3fc center, Vector3fc up, Matrix4x3f dest)
      Apply a "lookat" transformation to this matrix for a left-handed coordinate system, that aligns +z with center - eye and store the result in dest.
      float m00()
      Return the value of the matrix element at column 0 and row 0.
      float m01()
      Return the value of the matrix element at column 0 and row 1.
      float m02()
      Return the value of the matrix element at column 0 and row 2.
      float m10()
      Return the value of the matrix element at column 1 and row 0.
      float m11()
      Return the value of the matrix element at column 1 and row 1.
      float m12()
      Return the value of the matrix element at column 1 and row 2.
      float m20()
      Return the value of the matrix element at column 2 and row 0.
      float m21()
      Return the value of the matrix element at column 2 and row 1.
      float m22()
      Return the value of the matrix element at column 2 and row 2.
      float m30()
      Return the value of the matrix element at column 3 and row 0.
      float m31()
      Return the value of the matrix element at column 3 and row 1.
      float m32()
      Return the value of the matrix element at column 3 and row 2.
      Matrix4x3f mul​(Matrix4x3fc right, Matrix4x3f dest)
      Multiply this matrix by the supplied right matrix and store the result in dest.
      Matrix4x3f mulComponentWise​(Matrix4x3fc other, Matrix4x3f dest)
      Component-wise multiply this by other and store the result in dest.
      Matrix4x3f mulOrtho​(Matrix4x3fc view, Matrix4x3f dest)
      Multiply this orthographic projection matrix by the supplied view matrix and store the result in dest.
      Matrix4x3f mulTranslation​(Matrix4x3fc right, Matrix4x3f dest)
      Multiply this matrix, which is assumed to only contain a translation, by the supplied right matrix and store the result in dest.
      Matrix3f normal​(Matrix3f dest)
      Compute a normal matrix from the left 3x3 submatrix of this and store it into dest.
      Matrix4x3f normal​(Matrix4x3f dest)
      Compute a normal matrix from the left 3x3 submatrix of this and store it into the left 3x3 submatrix of dest.
      Matrix3f normalize3x3​(Matrix3f dest)
      Normalize the left 3x3 submatrix of this matrix and store the result in dest.
      Matrix4x3f normalize3x3​(Matrix4x3f dest)
      Normalize the left 3x3 submatrix of this matrix and store the result in dest.
      Vector3f normalizedPositiveX​(Vector3f dir)
      Obtain the direction of +X before the transformation represented by this orthogonal matrix is applied.
      Vector3f normalizedPositiveY​(Vector3f dir)
      Obtain the direction of +Y before the transformation represented by this orthogonal matrix is applied.
      Vector3f normalizedPositiveZ​(Vector3f dir)
      Obtain the direction of +Z before the transformation represented by this orthogonal matrix is applied.
      Matrix4x3f obliqueZ​(float a, float b, Matrix4x3f dest)
      Apply an oblique projection transformation to this matrix with the given values for a and b and store the result in dest.
      Vector3f origin​(Vector3f origin)
      Obtain the position that gets transformed to the origin by this matrix.
      Matrix4x3f ortho​(float left, float right, float bottom, float top, float zNear, float zFar, boolean zZeroToOne, Matrix4x3f dest)
      Apply an orthographic projection transformation for a right-handed coordinate system using the given NDC z range to this matrix and store the result in dest.
      Matrix4x3f ortho​(float left, float right, float bottom, float top, float zNear, float zFar, Matrix4x3f dest)
      Apply an orthographic projection transformation for a right-handed coordinate system using OpenGL's NDC z range of [-1..+1] to this matrix and store the result in dest.
      Matrix4x3f ortho2D​(float left, float right, float bottom, float top, Matrix4x3f dest)
      Apply an orthographic projection transformation for a right-handed coordinate system to this matrix and store the result in dest.
      Matrix4x3f ortho2DLH​(float left, float right, float bottom, float top, Matrix4x3f dest)
      Apply an orthographic projection transformation for a left-handed coordinate system to this matrix and store the result in dest.
      Matrix4x3f orthoLH​(float left, float right, float bottom, float top, float zNear, float zFar, boolean zZeroToOne, Matrix4x3f dest)
      Apply an orthographic projection transformation for a left-handed coordiante system using the given NDC z range to this matrix and store the result in dest.
      Matrix4x3f orthoLH​(float left, float right, float bottom, float top, float zNear, float zFar, Matrix4x3f dest)
      Apply an orthographic projection transformation for a left-handed coordiante system using OpenGL's NDC z range of [-1..+1] to this matrix and store the result in dest.
      Matrix4x3f orthoSymmetric​(float width, float height, float zNear, float zFar, boolean zZeroToOne, Matrix4x3f dest)
      Apply a symmetric orthographic projection transformation for a right-handed coordinate system using the given NDC z range to this matrix and store the result in dest.
      Matrix4x3f orthoSymmetric​(float width, float height, float zNear, float zFar, Matrix4x3f dest)
      Apply a symmetric orthographic projection transformation for a right-handed coordinate system using OpenGL's NDC z range of [-1..+1] to this matrix and store the result in dest.
      Matrix4x3f orthoSymmetricLH​(float width, float height, float zNear, float zFar, boolean zZeroToOne, Matrix4x3f dest)
      Apply a symmetric orthographic projection transformation for a left-handed coordinate system using the given NDC z range to this matrix and store the result in dest.
      Matrix4x3f orthoSymmetricLH​(float width, float height, float zNear, float zFar, Matrix4x3f dest)
      Apply a symmetric orthographic projection transformation for a left-handed coordinate system using OpenGL's NDC z range of [-1..+1] to this matrix and store the result in dest.
      Matrix4x3f pick​(float x, float y, float width, float height, int[] viewport, Matrix4x3f dest)
      Apply a picking transformation to this matrix using the given window coordinates (x, y) as the pick center and the given (width, height) as the size of the picking region in window coordinates, and store the result in dest.
      Vector3f positiveX​(Vector3f dir)
      Obtain the direction of +X before the transformation represented by this matrix is applied.
      Vector3f positiveY​(Vector3f dir)
      Obtain the direction of +Y before the transformation represented by this matrix is applied.
      Vector3f positiveZ​(Vector3f dir)
      Obtain the direction of +Z before the transformation represented by this matrix is applied.
      int properties()  
      Matrix4x3f reflect​(float nx, float ny, float nz, float px, float py, float pz, Matrix4x3f dest)
      Apply a mirror/reflection transformation to this matrix that reflects about the given plane specified via the plane normal and a point on the plane, and store the result in dest.
      Matrix4x3f reflect​(float a, float b, float c, float d, Matrix4x3f dest)
      Apply a mirror/reflection transformation to this matrix that reflects about the given plane specified via the equation x*a + y*b + z*c + d = 0 and store the result in dest.
      Matrix4x3f reflect​(Quaternionfc orientation, Vector3fc point, Matrix4x3f dest)
      Apply a mirror/reflection transformation to this matrix that reflects about a plane specified via the plane orientation and a point on the plane, and store the result in dest.
      Matrix4x3f reflect​(Vector3fc normal, Vector3fc point, Matrix4x3f dest)
      Apply a mirror/reflection transformation to this matrix that reflects about the given plane specified via the plane normal and a point on the plane, and store the result in dest.
      Matrix4x3f rotate​(float ang, float x, float y, float z, Matrix4x3f dest)
      Apply rotation to this matrix by rotating the given amount of radians about the specified (x, y, z) axis and store the result in dest.
      Matrix4x3f rotate​(float angle, Vector3fc axis, Matrix4x3f dest)
      Apply a rotation transformation, rotating the given radians about the specified axis and store the result in dest.
      Matrix4x3f rotate​(AxisAngle4f axisAngle, Matrix4x3f dest)
      Apply a rotation transformation, rotating about the given AxisAngle4f and store the result in dest.
      Matrix4x3f rotate​(Quaternionfc quat, Matrix4x3f dest)
      Apply the rotation - and possibly scaling - transformation of the given Quaternionfc to this matrix and store the result in dest.
      Matrix4x3f rotateAround​(Quaternionfc quat, float ox, float oy, float oz, Matrix4x3f dest)
      Apply the rotation - and possibly scaling - transformation of the given Quaternionfc to this matrix while using (ox, oy, oz) as the rotation origin, and store the result in dest.
      Matrix4x3f rotateLocal​(float ang, float x, float y, float z, Matrix4x3f dest)
      Pre-multiply a rotation to this matrix by rotating the given amount of radians about the specified (x, y, z) axis and store the result in dest.
      Matrix4x3f rotateLocal​(Quaternionfc quat, Matrix4x3f dest)
      Pre-multiply the rotation - and possibly scaling - transformation of the given Quaternionfc to this matrix and store the result in dest.
      Matrix4x3f rotateTowards​(float dirX, float dirY, float dirZ, float upX, float upY, float upZ, Matrix4x3f dest)
      Apply a model transformation to this matrix for a right-handed coordinate system, that aligns the local +Z axis with (dirX, dirY, dirZ) and store the result in dest.
      Matrix4x3f rotateTowards​(Vector3fc dir, Vector3fc up, Matrix4x3f dest)
      Apply a model transformation to this matrix for a right-handed coordinate system, that aligns the local +Z axis with dir and store the result in dest.
      Matrix4x3f rotateTranslation​(float ang, float x, float y, float z, Matrix4x3f dest)
      Apply rotation to this matrix, which is assumed to only contain a translation, by rotating the given amount of radians about the specified (x, y, z) axis and store the result in dest.
      Matrix4x3f rotateTranslation​(Quaternionfc quat, Matrix4x3f dest)
      Apply the rotation - and possibly scaling - transformation of the given Quaternionfc to this matrix, which is assumed to only contain a translation, and store the result in dest.
      Matrix4x3f rotateX​(float ang, Matrix4x3f dest)
      Apply rotation about the X axis to this matrix by rotating the given amount of radians and store the result in dest.
      Matrix4x3f rotateXYZ​(float angleX, float angleY, float angleZ, Matrix4x3f dest)
      Apply rotation of angleX radians about the X axis, followed by a rotation of angleY radians about the Y axis and followed by a rotation of angleZ radians about the Z axis and store the result in dest.
      Matrix4x3f rotateY​(float ang, Matrix4x3f dest)
      Apply rotation about the Y axis to this matrix by rotating the given amount of radians and store the result in dest.
      Matrix4x3f rotateYXZ​(float angleY, float angleX, float angleZ, Matrix4x3f dest)
      Apply rotation of angleY radians about the Y axis, followed by a rotation of angleX radians about the X axis and followed by a rotation of angleZ radians about the Z axis and store the result in dest.
      Matrix4x3f rotateZ​(float ang, Matrix4x3f dest)
      Apply rotation about the Z axis to this matrix by rotating the given amount of radians and store the result in dest.
      Matrix4x3f rotateZYX​(float angleZ, float angleY, float angleX, Matrix4x3f dest)
      Apply rotation of angleZ radians about the Z axis, followed by a rotation of angleY radians about the Y axis and followed by a rotation of angleX radians about the X axis and store the result in dest.
      Matrix4x3f scale​(float x, float y, float z, Matrix4x3f dest)
      Apply scaling to this matrix by scaling the base axes by the given x, y and z factors and store the result in dest.
      Matrix4x3f scale​(float xyz, Matrix4x3f dest)
      Apply scaling to this matrix by uniformly scaling all base axes by the given xyz factor and store the result in dest.
      Matrix4x3f scale​(Vector3fc xyz, Matrix4x3f dest)
      Apply scaling to this matrix by scaling the base axes by the given xyz.x, xyz.y and xyz.z factors, respectively and store the result in dest.
      Matrix4x3f scaleLocal​(float x, float y, float z, Matrix4x3f dest)
      Pre-multiply scaling to this matrix by scaling the base axes by the given x, y and z factors and store the result in dest.
      Matrix4x3f shadow​(float lightX, float lightY, float lightZ, float lightW, float a, float b, float c, float d, Matrix4x3f dest)
      Apply a projection transformation to this matrix that projects onto the plane specified via the general plane equation x*a + y*b + z*c + d = 0 as if casting a shadow from a given light position/direction (lightX, lightY, lightZ, lightW) and store the result in dest.
      Matrix4x3f shadow​(float lightX, float lightY, float lightZ, float lightW, Matrix4x3fc planeTransform, Matrix4x3f dest)
      Apply a projection transformation to this matrix that projects onto the plane with the general plane equation y = 0 as if casting a shadow from a given light position/direction (lightX, lightY, lightZ, lightW) and store the result in dest.
      Matrix4x3f shadow​(Vector4fc light, float a, float b, float c, float d, Matrix4x3f dest)
      Apply a projection transformation to this matrix that projects onto the plane specified via the general plane equation x*a + y*b + z*c + d = 0 as if casting a shadow from a given light position/direction light and store the result in dest.
      Matrix4x3f shadow​(Vector4fc light, Matrix4x3fc planeTransform, Matrix4x3f dest)
      Apply a projection transformation to this matrix that projects onto the plane with the general plane equation y = 0 as if casting a shadow from a given light position/direction light and store the result in dest.
      Matrix4x3f sub​(Matrix4x3fc subtrahend, Matrix4x3f dest)
      Component-wise subtract subtrahend from this and store the result in dest.
      Vector4f transform​(Vector4f v)
      Transform/multiply the given vector by this matrix and store the result in that vector.
      Vector4f transform​(Vector4fc v, Vector4f dest)
      Transform/multiply the given vector by this matrix and store the result in dest.
      Matrix4x3f transformAab​(float minX, float minY, float minZ, float maxX, float maxY, float maxZ, Vector3f outMin, Vector3f outMax)
      Transform the axis-aligned box given as the minimum corner (minX, minY, minZ) and maximum corner (maxX, maxY, maxZ) by this matrix and compute the axis-aligned box of the result whose minimum corner is stored in outMin and maximum corner stored in outMax.
      Matrix4x3f transformAab​(Vector3fc min, Vector3fc max, Vector3f outMin, Vector3f outMax)
      Transform the axis-aligned box given as the minimum corner min and maximum corner max by this matrix and compute the axis-aligned box of the result whose minimum corner is stored in outMin and maximum corner stored in outMax.
      Vector3f transformDirection​(Vector3f v)
      Transform/multiply the given 3D-vector, as if it was a 4D-vector with w=0, by this matrix and store the result in that vector.
      Vector3f transformDirection​(Vector3fc v, Vector3f dest)
      Transform/multiply the given 3D-vector, as if it was a 4D-vector with w=0, by this matrix and store the result in dest.
      Vector3f transformPosition​(Vector3f v)
      Transform/multiply the given 3D-vector, as if it was a 4D-vector with w=1, by this matrix and store the result in that vector.
      Vector3f transformPosition​(Vector3fc v, Vector3f dest)
      Transform/multiply the given 3D-vector, as if it was a 4D-vector with w=1, by this matrix and store the result in dest.
      Matrix4x3f translate​(float x, float y, float z, Matrix4x3f dest)
      Apply a translation to this matrix by translating by the given number of units in x, y and z and store the result in dest.
      Matrix4x3f translate​(Vector3fc offset, Matrix4x3f dest)
      Apply a translation to this matrix by translating by the given number of units in x, y and z and store the result in dest.
      Matrix4x3f translateLocal​(float x, float y, float z, Matrix4x3f dest)
      Pre-multiply a translation to this matrix by translating by the given number of units in x, y and z and store the result in dest.
      Matrix4x3f translateLocal​(Vector3fc offset, Matrix4x3f dest)
      Pre-multiply a translation to this matrix by translating by the given number of units in x, y and z and store the result in dest.
      Matrix3f transpose3x3​(Matrix3f dest)
      Transpose only the left 3x3 submatrix of this matrix and store the result in dest.
      Matrix4x3f transpose3x3​(Matrix4x3f dest)
      Transpose only the left 3x3 submatrix of this matrix and store the result in dest.
    • Method Detail

      • properties

        int properties()
        Returns:
        the properties of the matrix
      • m00

        float m00()
        Return the value of the matrix element at column 0 and row 0.
        Returns:
        the value of the matrix element
      • m01

        float m01()
        Return the value of the matrix element at column 0 and row 1.
        Returns:
        the value of the matrix element
      • m02

        float m02()
        Return the value of the matrix element at column 0 and row 2.
        Returns:
        the value of the matrix element
      • m10

        float m10()
        Return the value of the matrix element at column 1 and row 0.
        Returns:
        the value of the matrix element
      • m11

        float m11()
        Return the value of the matrix element at column 1 and row 1.
        Returns:
        the value of the matrix element
      • m12

        float m12()
        Return the value of the matrix element at column 1 and row 2.
        Returns:
        the value of the matrix element
      • m20

        float m20()
        Return the value of the matrix element at column 2 and row 0.
        Returns:
        the value of the matrix element
      • m21

        float m21()
        Return the value of the matrix element at column 2 and row 1.
        Returns:
        the value of the matrix element
      • m22

        float m22()
        Return the value of the matrix element at column 2 and row 2.
        Returns:
        the value of the matrix element
      • m30

        float m30()
        Return the value of the matrix element at column 3 and row 0.
        Returns:
        the value of the matrix element
      • m31

        float m31()
        Return the value of the matrix element at column 3 and row 1.
        Returns:
        the value of the matrix element
      • m32

        float m32()
        Return the value of the matrix element at column 3 and row 2.
        Returns:
        the value of the matrix element
      • get

        Matrix4f get​(Matrix4f dest)
        Get the current values of this matrix and store them into the upper 4x3 submatrix of dest.

        The other elements of dest will not be modified.

        Parameters:
        dest - the destination matrix
        Returns:
        dest
        See Also:
        Matrix4f.set4x3(Matrix4x3fc)
      • get

        Matrix4d get​(Matrix4d dest)
        Get the current values of this matrix and store them into the upper 4x3 submatrix of dest.

        The other elements of dest will not be modified.

        Parameters:
        dest - the destination matrix
        Returns:
        dest
        See Also:
        Matrix4d.set4x3(Matrix4x3fc)
      • mul

        Matrix4x3f mul​(Matrix4x3fc right,
                       Matrix4x3f dest)
        Multiply this matrix by the supplied right matrix and store the result in dest.

        If M is this matrix and R the right matrix, then the new matrix will be M * R. So when transforming a vector v with the new matrix by using M * R * v, the transformation of the right matrix will be applied first!

        Parameters:
        right - the right operand of the matrix multiplication
        dest - the destination matrix, which will hold the result
        Returns:
        dest
      • mulTranslation

        Matrix4x3f mulTranslation​(Matrix4x3fc right,
                                  Matrix4x3f dest)
        Multiply this matrix, which is assumed to only contain a translation, by the supplied right matrix and store the result in dest.

        This method assumes that this matrix only contains a translation.

        This method will not modify either the last row of this or the last row of right.

        If M is this matrix and R the right matrix, then the new matrix will be M * R. So when transforming a vector v with the new matrix by using M * R * v, the transformation of the right matrix will be applied first!

        Parameters:
        right - the right operand of the matrix multiplication
        dest - the destination matrix, which will hold the result
        Returns:
        dest
      • mulOrtho

        Matrix4x3f mulOrtho​(Matrix4x3fc view,
                            Matrix4x3f dest)
        Multiply this orthographic projection matrix by the supplied view matrix and store the result in dest.

        If M is this matrix and V the view matrix, then the new matrix will be M * V. So when transforming a vector v with the new matrix by using M * V * v, the transformation of the view matrix will be applied first!

        Parameters:
        view - the matrix which to multiply this with
        dest - the destination matrix, which will hold the result
        Returns:
        dest
      • fma

        Matrix4x3f fma​(Matrix4x3fc other,
                       float otherFactor,
                       Matrix4x3f dest)
        Component-wise add this and other by first multiplying each component of other by otherFactor, adding that to this and storing the final result in dest.

        The other components of dest will be set to the ones of this.

        The matrices this and other will not be changed.

        Parameters:
        other - the other matrix
        otherFactor - the factor to multiply each of the other matrix's components
        dest - will hold the result
        Returns:
        dest
      • add

        Matrix4x3f add​(Matrix4x3fc other,
                       Matrix4x3f dest)
        Component-wise add this and other and store the result in dest.
        Parameters:
        other - the other addend
        dest - will hold the result
        Returns:
        dest
      • sub

        Matrix4x3f sub​(Matrix4x3fc subtrahend,
                       Matrix4x3f dest)
        Component-wise subtract subtrahend from this and store the result in dest.
        Parameters:
        subtrahend - the subtrahend
        dest - will hold the result
        Returns:
        dest
      • mulComponentWise

        Matrix4x3f mulComponentWise​(Matrix4x3fc other,
                                    Matrix4x3f dest)
        Component-wise multiply this by other and store the result in dest.
        Parameters:
        other - the other matrix
        dest - will hold the result
        Returns:
        dest
      • determinant

        float determinant()
        Return the determinant of this matrix.
        Returns:
        the determinant
      • invert

        Matrix4x3f invert​(Matrix4x3f dest)
        Invert this matrix and write the result into dest.
        Parameters:
        dest - will hold the result
        Returns:
        dest
      • invertOrtho

        Matrix4x3f invertOrtho​(Matrix4x3f dest)
        Invert this orthographic projection matrix and store the result into the given dest.

        This method can be used to quickly obtain the inverse of an orthographic projection matrix.

        Parameters:
        dest - will hold the inverse of this
        Returns:
        dest
      • transpose3x3

        Matrix4x3f transpose3x3​(Matrix4x3f dest)
        Transpose only the left 3x3 submatrix of this matrix and store the result in dest.

        All other matrix elements are left unchanged.

        Parameters:
        dest - will hold the result
        Returns:
        dest
      • transpose3x3

        Matrix3f transpose3x3​(Matrix3f dest)
        Transpose only the left 3x3 submatrix of this matrix and store the result in dest.
        Parameters:
        dest - will hold the result
        Returns:
        dest
      • getTranslation

        Vector3f getTranslation​(Vector3f dest)
        Get only the translation components (m30, m31, m32) of this matrix and store them in the given vector xyz.
        Parameters:
        dest - will hold the translation components of this matrix
        Returns:
        dest
      • getScale

        Vector3f getScale​(Vector3f dest)
        Get the scaling factors of this matrix for the three base axes.
        Parameters:
        dest - will hold the scaling factors for x, y and z
        Returns:
        dest
      • get

        Matrix4x3f get​(Matrix4x3f dest)
        Get the current values of this matrix and store them into dest.
        Parameters:
        dest - the destination matrix
        Returns:
        the passed in destination
      • get

        Matrix4x3d get​(Matrix4x3d dest)
        Get the current values of this matrix and store them into dest.
        Parameters:
        dest - the destination matrix
        Returns:
        the passed in destination
      • getUnnormalizedRotation

        Quaternionf getUnnormalizedRotation​(Quaternionf dest)
        Get the current values of this matrix and store the represented rotation into the given Quaternionf.

        This method assumes that the first three column vectors of the left 3x3 submatrix are not normalized and thus allows to ignore any additional scaling factor that is applied to the matrix.

        Parameters:
        dest - the destination Quaternionf
        Returns:
        the passed in destination
        See Also:
        Quaternionf.setFromUnnormalized(Matrix4x3fc)
      • getUnnormalizedRotation

        Quaterniond getUnnormalizedRotation​(Quaterniond dest)
        Get the current values of this matrix and store the represented rotation into the given Quaterniond.

        This method assumes that the first three column vectors of the left 3x3 submatrix are not normalized and thus allows to ignore any additional scaling factor that is applied to the matrix.

        Parameters:
        dest - the destination Quaterniond
        Returns:
        the passed in destination
        See Also:
        Quaterniond.setFromUnnormalized(Matrix4x3fc)
      • get

        java.nio.FloatBuffer get​(java.nio.FloatBuffer buffer)
        Store this matrix in column-major order into the supplied FloatBuffer at the current buffer position.

        This method will not increment the position of the given FloatBuffer.

        In order to specify the offset into the FloatBuffer at which the matrix is stored, use get(int, FloatBuffer), taking the absolute position as parameter.

        Parameters:
        buffer - will receive the values of this matrix in column-major order at its current position
        Returns:
        the passed in buffer
        See Also:
        get(int, FloatBuffer)
      • get

        java.nio.FloatBuffer get​(int index,
                                 java.nio.FloatBuffer buffer)
        Store this matrix in column-major order into the supplied FloatBuffer starting at the specified absolute buffer position/index.

        This method will not increment the position of the given FloatBuffer.

        Parameters:
        index - the absolute position into the FloatBuffer
        buffer - will receive the values of this matrix in column-major order
        Returns:
        the passed in buffer
      • get

        java.nio.ByteBuffer get​(java.nio.ByteBuffer buffer)
        Store this matrix in column-major order into the supplied ByteBuffer at the current buffer position.

        This method will not increment the position of the given ByteBuffer.

        In order to specify the offset into the ByteBuffer at which the matrix is stored, use get(int, ByteBuffer), taking the absolute position as parameter.

        Parameters:
        buffer - will receive the values of this matrix in column-major order at its current position
        Returns:
        the passed in buffer
        See Also:
        get(int, ByteBuffer)
      • get

        java.nio.ByteBuffer get​(int index,
                                java.nio.ByteBuffer buffer)
        Store this matrix in column-major order into the supplied ByteBuffer starting at the specified absolute buffer position/index.

        This method will not increment the position of the given ByteBuffer.

        Parameters:
        index - the absolute position into the ByteBuffer
        buffer - will receive the values of this matrix in column-major order
        Returns:
        the passed in buffer
      • getToAddress

        Matrix4x3fc getToAddress​(long address)
        Store this matrix in column-major order at the given off-heap address.

        This method will throw an UnsupportedOperationException when JOML is used with `-Djoml.nounsafe`.

        This method is unsafe as it can result in a crash of the JVM process when the specified address range does not belong to this process.

        Parameters:
        address - the off-heap address where to store this matrix
        Returns:
        this
      • get

        float[] get​(float[] arr,
                    int offset)
        Store this matrix into the supplied float array in column-major order at the given offset.
        Parameters:
        arr - the array to write the matrix values into
        offset - the offset into the array
        Returns:
        the passed in array
      • get

        float[] get​(float[] arr)
        Store this matrix into the supplied float array in column-major order.

        In order to specify an explicit offset into the array, use the method get(float[], int).

        Parameters:
        arr - the array to write the matrix values into
        Returns:
        the passed in array
        See Also:
        get(float[], int)
      • get4x4

        float[] get4x4​(float[] arr,
                       int offset)
        Store a 4x4 matrix in column-major order into the supplied array at the given offset, where the upper 4x3 submatrix is this and the last row is (0, 0, 0, 1).
        Parameters:
        arr - the array to write the matrix values into
        offset - the offset into the array
        Returns:
        the passed in array
      • get4x4

        float[] get4x4​(float[] arr)
        Store a 4x4 matrix in column-major order into the supplied array, where the upper 4x3 submatrix is this and the last row is (0, 0, 0, 1).

        In order to specify an explicit offset into the array, use the method get4x4(float[], int).

        Parameters:
        arr - the array to write the matrix values into
        Returns:
        the passed in array
        See Also:
        get4x4(float[], int)
      • get4x4

        java.nio.FloatBuffer get4x4​(java.nio.FloatBuffer buffer)
        Store a 4x4 matrix in column-major order into the supplied FloatBuffer at the current buffer position, where the upper 4x3 submatrix is this and the last row is (0, 0, 0, 1).

        This method will not increment the position of the given FloatBuffer.

        In order to specify the offset into the FloatBuffer at which the matrix is stored, use get4x4(int, FloatBuffer), taking the absolute position as parameter.

        Parameters:
        buffer - will receive the values of this matrix in column-major order at its current position
        Returns:
        the passed in buffer
        See Also:
        get4x4(int, FloatBuffer)
      • get4x4

        java.nio.FloatBuffer get4x4​(int index,
                                    java.nio.FloatBuffer buffer)
        Store a 4x4 matrix in column-major order into the supplied FloatBuffer starting at the specified absolute buffer position/index, where the upper 4x3 submatrix is this and the last row is (0, 0, 0, 1).

        This method will not increment the position of the given FloatBuffer.

        Parameters:
        index - the absolute position into the FloatBuffer
        buffer - will receive the values of this matrix in column-major order
        Returns:
        the passed in buffer
      • get4x4

        java.nio.ByteBuffer get4x4​(java.nio.ByteBuffer buffer)
        Store a 4x4 matrix in column-major order into the supplied ByteBuffer at the current buffer position, where the upper 4x3 submatrix is this and the last row is (0, 0, 0, 1).

        This method will not increment the position of the given ByteBuffer.

        In order to specify the offset into the ByteBuffer at which the matrix is stored, use get4x4(int, ByteBuffer), taking the absolute position as parameter.

        Parameters:
        buffer - will receive the values of this matrix in column-major order at its current position
        Returns:
        the passed in buffer
        See Also:
        get4x4(int, ByteBuffer)
      • get4x4

        java.nio.ByteBuffer get4x4​(int index,
                                   java.nio.ByteBuffer buffer)
        Store a 4x4 matrix in column-major order into the supplied ByteBuffer starting at the specified absolute buffer position/index, where the upper 4x3 submatrix is this and the last row is (0, 0, 0, 1).

        This method will not increment the position of the given ByteBuffer.

        Parameters:
        index - the absolute position into the ByteBuffer
        buffer - will receive the values of this matrix in column-major order
        Returns:
        the passed in buffer
      • getTransposed

        java.nio.FloatBuffer getTransposed​(java.nio.FloatBuffer buffer)
        Store this matrix in row-major order into the supplied FloatBuffer at the current buffer position.

        This method will not increment the position of the given FloatBuffer.

        In order to specify the offset into the FloatBuffer at which the matrix is stored, use getTransposed(int, FloatBuffer), taking the absolute position as parameter.

        Parameters:
        buffer - will receive the values of this matrix in row-major order at its current position
        Returns:
        the passed in buffer
        See Also:
        getTransposed(int, FloatBuffer)
      • getTransposed

        java.nio.FloatBuffer getTransposed​(int index,
                                           java.nio.FloatBuffer buffer)
        Store this matrix in row-major order into the supplied FloatBuffer starting at the specified absolute buffer position/index.

        This method will not increment the position of the given FloatBuffer.

        Parameters:
        index - the absolute position into the FloatBuffer
        buffer - will receive the values of this matrix in row-major order
        Returns:
        the passed in buffer
      • getTransposed

        java.nio.ByteBuffer getTransposed​(java.nio.ByteBuffer buffer)
        Store this matrix in row-major order into the supplied ByteBuffer at the current buffer position.

        This method will not increment the position of the given ByteBuffer.

        In order to specify the offset into the ByteBuffer at which the matrix is stored, use getTransposed(int, ByteBuffer), taking the absolute position as parameter.

        Parameters:
        buffer - will receive the values of this matrix in row-major order at its current position
        Returns:
        the passed in buffer
        See Also:
        getTransposed(int, ByteBuffer)
      • getTransposed

        java.nio.ByteBuffer getTransposed​(int index,
                                          java.nio.ByteBuffer buffer)
        Store this matrix in row-major order into the supplied ByteBuffer starting at the specified absolute buffer position/index.

        This method will not increment the position of the given ByteBuffer.

        Parameters:
        index - the absolute position into the ByteBuffer
        buffer - will receive the values of this matrix in row-major order
        Returns:
        the passed in buffer
      • getTransposed

        float[] getTransposed​(float[] arr,
                              int offset)
        Store this matrix into the supplied float array in row-major order at the given offset.
        Parameters:
        arr - the array to write the matrix values into
        offset - the offset into the array
        Returns:
        the passed in array
      • getTransposed

        float[] getTransposed​(float[] arr)
        Store this matrix into the supplied float array in row-major order.

        In order to specify an explicit offset into the array, use the method getTransposed(float[], int).

        Parameters:
        arr - the array to write the matrix values into
        Returns:
        the passed in array
        See Also:
        getTransposed(float[], int)
      • transform

        Vector4f transform​(Vector4f v)
        Transform/multiply the given vector by this matrix and store the result in that vector.
        Parameters:
        v - the vector to transform and to hold the final result
        Returns:
        v
        See Also:
        Vector4f.mul(Matrix4x3fc)
      • transformPosition

        Vector3f transformPosition​(Vector3f v)
        Transform/multiply the given 3D-vector, as if it was a 4D-vector with w=1, by this matrix and store the result in that vector.

        The given 3D-vector is treated as a 4D-vector with its w-component being 1.0, so it will represent a position/location in 3D-space rather than a direction.

        In order to store the result in another vector, use transformPosition(Vector3fc, Vector3f).

        Parameters:
        v - the vector to transform and to hold the final result
        Returns:
        v
        See Also:
        transformPosition(Vector3fc, Vector3f), transform(Vector4f)
      • transformPosition

        Vector3f transformPosition​(Vector3fc v,
                                   Vector3f dest)
        Transform/multiply the given 3D-vector, as if it was a 4D-vector with w=1, by this matrix and store the result in dest.

        The given 3D-vector is treated as a 4D-vector with its w-component being 1.0, so it will represent a position/location in 3D-space rather than a direction.

        In order to store the result in the same vector, use transformPosition(Vector3f).

        Parameters:
        v - the vector to transform
        dest - will hold the result
        Returns:
        dest
        See Also:
        transformPosition(Vector3f), transform(Vector4fc, Vector4f)
      • transformDirection

        Vector3f transformDirection​(Vector3f v)
        Transform/multiply the given 3D-vector, as if it was a 4D-vector with w=0, by this matrix and store the result in that vector.

        The given 3D-vector is treated as a 4D-vector with its w-component being 0.0, so it will represent a direction in 3D-space rather than a position. This method will therefore not take the translation part of the matrix into account.

        In order to store the result in another vector, use transformDirection(Vector3fc, Vector3f).

        Parameters:
        v - the vector to transform and to hold the final result
        Returns:
        v
        See Also:
        transformDirection(Vector3fc, Vector3f)
      • transformDirection

        Vector3f transformDirection​(Vector3fc v,
                                    Vector3f dest)
        Transform/multiply the given 3D-vector, as if it was a 4D-vector with w=0, by this matrix and store the result in dest.

        The given 3D-vector is treated as a 4D-vector with its w-component being 0.0, so it will represent a direction in 3D-space rather than a position. This method will therefore not take the translation part of the matrix into account.

        In order to store the result in the same vector, use transformDirection(Vector3f).

        Parameters:
        v - the vector to transform and to hold the final result
        dest - will hold the result
        Returns:
        dest
        See Also:
        transformDirection(Vector3f)
      • scale

        Matrix4x3f scale​(Vector3fc xyz,
                         Matrix4x3f dest)
        Apply scaling to this matrix by scaling the base axes by the given xyz.x, xyz.y and xyz.z factors, respectively and store the result in dest.

        If M is this matrix and S the scaling matrix, then the new matrix will be M * S. So when transforming a vector v with the new matrix by using M * S * v , the scaling will be applied first!

        Parameters:
        xyz - the factors of the x, y and z component, respectively
        dest - will hold the result
        Returns:
        dest
      • scale

        Matrix4x3f scale​(float xyz,
                         Matrix4x3f dest)
        Apply scaling to this matrix by uniformly scaling all base axes by the given xyz factor and store the result in dest.

        If M is this matrix and S the scaling matrix, then the new matrix will be M * S. So when transforming a vector v with the new matrix by using M * S * v, the scaling will be applied first!

        Individual scaling of all three axes can be applied using scale(float, float, float, Matrix4x3f).

        Parameters:
        xyz - the factor for all components
        dest - will hold the result
        Returns:
        dest
        See Also:
        scale(float, float, float, Matrix4x3f)
      • scale

        Matrix4x3f scale​(float x,
                         float y,
                         float z,
                         Matrix4x3f dest)
        Apply scaling to this matrix by scaling the base axes by the given x, y and z factors and store the result in dest.

        If M is this matrix and S the scaling matrix, then the new matrix will be M * S. So when transforming a vector v with the new matrix by using M * S * v , the scaling will be applied first!

        Parameters:
        x - the factor of the x component
        y - the factor of the y component
        z - the factor of the z component
        dest - will hold the result
        Returns:
        dest
      • scaleLocal

        Matrix4x3f scaleLocal​(float x,
                              float y,
                              float z,
                              Matrix4x3f dest)
        Pre-multiply scaling to this matrix by scaling the base axes by the given x, y and z factors and store the result in dest.

        If M is this matrix and S the scaling matrix, then the new matrix will be S * M. So when transforming a vector v with the new matrix by using S * M * v , the scaling will be applied last!

        Parameters:
        x - the factor of the x component
        y - the factor of the y component
        z - the factor of the z component
        dest - will hold the result
        Returns:
        dest
      • rotateX

        Matrix4x3f rotateX​(float ang,
                           Matrix4x3f dest)
        Apply rotation about the X axis to this matrix by rotating the given amount of radians and store the result in dest.

        When used with a right-handed coordinate system, the produced rotation will rotate a vector counter-clockwise around the rotation axis, when viewing along the negative axis direction towards the origin. When used with a left-handed coordinate system, the rotation is clockwise.

        If M is this matrix and R the rotation matrix, then the new matrix will be M * R. So when transforming a vector v with the new matrix by using M * R * v, the rotation will be applied first!

        Reference: http://en.wikipedia.org

        Parameters:
        ang - the angle in radians
        dest - will hold the result
        Returns:
        dest
      • rotateY

        Matrix4x3f rotateY​(float ang,
                           Matrix4x3f dest)
        Apply rotation about the Y axis to this matrix by rotating the given amount of radians and store the result in dest.

        When used with a right-handed coordinate system, the produced rotation will rotate a vector counter-clockwise around the rotation axis, when viewing along the negative axis direction towards the origin. When used with a left-handed coordinate system, the rotation is clockwise.

        If M is this matrix and R the rotation matrix, then the new matrix will be M * R. So when transforming a vector v with the new matrix by using M * R * v, the rotation will be applied first!

        Reference: http://en.wikipedia.org

        Parameters:
        ang - the angle in radians
        dest - will hold the result
        Returns:
        dest
      • rotateZ

        Matrix4x3f rotateZ​(float ang,
                           Matrix4x3f dest)
        Apply rotation about the Z axis to this matrix by rotating the given amount of radians and store the result in dest.

        When used with a right-handed coordinate system, the produced rotation will rotate a vector counter-clockwise around the rotation axis, when viewing along the negative axis direction towards the origin. When used with a left-handed coordinate system, the rotation is clockwise.

        If M is this matrix and R the rotation matrix, then the new matrix will be M * R. So when transforming a vector v with the new matrix by using M * R * v, the rotation will be applied first!

        Reference: http://en.wikipedia.org

        Parameters:
        ang - the angle in radians
        dest - will hold the result
        Returns:
        dest
      • rotateXYZ

        Matrix4x3f rotateXYZ​(float angleX,
                             float angleY,
                             float angleZ,
                             Matrix4x3f dest)
        Apply rotation of angleX radians about the X axis, followed by a rotation of angleY radians about the Y axis and followed by a rotation of angleZ radians about the Z axis and store the result in dest.

        When used with a right-handed coordinate system, the produced rotation will rotate a vector counter-clockwise around the rotation axis, when viewing along the negative axis direction towards the origin. When used with a left-handed coordinate system, the rotation is clockwise.

        If M is this matrix and R the rotation matrix, then the new matrix will be M * R. So when transforming a vector v with the new matrix by using M * R * v, the rotation will be applied first!

        This method is equivalent to calling: rotateX(angleX, dest).rotateY(angleY).rotateZ(angleZ)

        Parameters:
        angleX - the angle to rotate about X
        angleY - the angle to rotate about Y
        angleZ - the angle to rotate about Z
        dest - will hold the result
        Returns:
        dest
      • rotateZYX

        Matrix4x3f rotateZYX​(float angleZ,
                             float angleY,
                             float angleX,
                             Matrix4x3f dest)
        Apply rotation of angleZ radians about the Z axis, followed by a rotation of angleY radians about the Y axis and followed by a rotation of angleX radians about the X axis and store the result in dest.

        When used with a right-handed coordinate system, the produced rotation will rotate a vector counter-clockwise around the rotation axis, when viewing along the negative axis direction towards the origin. When used with a left-handed coordinate system, the rotation is clockwise.

        If M is this matrix and R the rotation matrix, then the new matrix will be M * R. So when transforming a vector v with the new matrix by using M * R * v, the rotation will be applied first!

        This method is equivalent to calling: rotateZ(angleZ, dest).rotateY(angleY).rotateX(angleX)

        Parameters:
        angleZ - the angle to rotate about Z
        angleY - the angle to rotate about Y
        angleX - the angle to rotate about X
        dest - will hold the result
        Returns:
        dest
      • rotateYXZ

        Matrix4x3f rotateYXZ​(float angleY,
                             float angleX,
                             float angleZ,
                             Matrix4x3f dest)
        Apply rotation of angleY radians about the Y axis, followed by a rotation of angleX radians about the X axis and followed by a rotation of angleZ radians about the Z axis and store the result in dest.

        When used with a right-handed coordinate system, the produced rotation will rotate a vector counter-clockwise around the rotation axis, when viewing along the negative axis direction towards the origin. When used with a left-handed coordinate system, the rotation is clockwise.

        If M is this matrix and R the rotation matrix, then the new matrix will be M * R. So when transforming a vector v with the new matrix by using M * R * v, the rotation will be applied first!

        This method is equivalent to calling: rotateY(angleY, dest).rotateX(angleX).rotateZ(angleZ)

        Parameters:
        angleY - the angle to rotate about Y
        angleX - the angle to rotate about X
        angleZ - the angle to rotate about Z
        dest - will hold the result
        Returns:
        dest
      • rotate

        Matrix4x3f rotate​(float ang,
                          float x,
                          float y,
                          float z,
                          Matrix4x3f dest)
        Apply rotation to this matrix by rotating the given amount of radians about the specified (x, y, z) axis and store the result in dest.

        The axis described by the three components needs to be a unit vector.

        When used with a right-handed coordinate system, the produced rotation will rotate a vector counter-clockwise around the rotation axis, when viewing along the negative axis direction towards the origin. When used with a left-handed coordinate system, the rotation is clockwise.

        If M is this matrix and R the rotation matrix, then the new matrix will be M * R. So when transforming a vector v with the new matrix by using M * R * v, the rotation will be applied first!

        Reference: http://en.wikipedia.org

        Parameters:
        ang - the angle in radians
        x - the x component of the axis
        y - the y component of the axis
        z - the z component of the axis
        dest - will hold the result
        Returns:
        dest
      • rotateTranslation

        Matrix4x3f rotateTranslation​(float ang,
                                     float x,
                                     float y,
                                     float z,
                                     Matrix4x3f dest)
        Apply rotation to this matrix, which is assumed to only contain a translation, by rotating the given amount of radians about the specified (x, y, z) axis and store the result in dest.

        This method assumes this to only contain a translation.

        The axis described by the three components needs to be a unit vector.

        When used with a right-handed coordinate system, the produced rotation will rotate a vector counter-clockwise around the rotation axis, when viewing along the negative axis direction towards the origin. When used with a left-handed coordinate system, the rotation is clockwise.

        If M is this matrix and R the rotation matrix, then the new matrix will be M * R. So when transforming a vector v with the new matrix by using M * R * v, the rotation will be applied first!

        Reference: http://en.wikipedia.org

        Parameters:
        ang - the angle in radians
        x - the x component of the axis
        y - the y component of the axis
        z - the z component of the axis
        dest - will hold the result
        Returns:
        dest
      • rotateAround

        Matrix4x3f rotateAround​(Quaternionfc quat,
                                float ox,
                                float oy,
                                float oz,
                                Matrix4x3f dest)
        Apply the rotation - and possibly scaling - transformation of the given Quaternionfc to this matrix while using (ox, oy, oz) as the rotation origin, and store the result in dest.

        When used with a right-handed coordinate system, the produced rotation will rotate a vector counter-clockwise around the rotation axis, when viewing along the negative axis direction towards the origin. When used with a left-handed coordinate system, the rotation is clockwise.

        If M is this matrix and Q the rotation matrix obtained from the given quaternion, then the new matrix will be M * Q. So when transforming a vector v with the new matrix by using M * Q * v, the quaternion rotation will be applied first!

        This method is equivalent to calling: translate(ox, oy, oz, dest).rotate(quat).translate(-ox, -oy, -oz)

        Reference: http://en.wikipedia.org

        Parameters:
        quat - the Quaternionfc
        ox - the x coordinate of the rotation origin
        oy - the y coordinate of the rotation origin
        oz - the z coordinate of the rotation origin
        dest - will hold the result
        Returns:
        dest
      • rotateLocal

        Matrix4x3f rotateLocal​(float ang,
                               float x,
                               float y,
                               float z,
                               Matrix4x3f dest)
        Pre-multiply a rotation to this matrix by rotating the given amount of radians about the specified (x, y, z) axis and store the result in dest.

        The axis described by the three components needs to be a unit vector.

        When used with a right-handed coordinate system, the produced rotation will rotate a vector counter-clockwise around the rotation axis, when viewing along the negative axis direction towards the origin. When used with a left-handed coordinate system, the rotation is clockwise.

        If M is this matrix and R the rotation matrix, then the new matrix will be R * M. So when transforming a vector v with the new matrix by using R * M * v, the rotation will be applied last!

        Reference: http://en.wikipedia.org

        Parameters:
        ang - the angle in radians
        x - the x component of the axis
        y - the y component of the axis
        z - the z component of the axis
        dest - will hold the result
        Returns:
        dest
      • translate

        Matrix4x3f translate​(Vector3fc offset,
                             Matrix4x3f dest)
        Apply a translation to this matrix by translating by the given number of units in x, y and z and store the result in dest.

        If M is this matrix and T the translation matrix, then the new matrix will be M * T. So when transforming a vector v with the new matrix by using M * T * v, the translation will be applied first!

        Parameters:
        offset - the number of units in x, y and z by which to translate
        dest - will hold the result
        Returns:
        dest
      • translate

        Matrix4x3f translate​(float x,
                             float y,
                             float z,
                             Matrix4x3f dest)
        Apply a translation to this matrix by translating by the given number of units in x, y and z and store the result in dest.

        If M is this matrix and T the translation matrix, then the new matrix will be M * T. So when transforming a vector v with the new matrix by using M * T * v, the translation will be applied first!

        Parameters:
        x - the offset to translate in x
        y - the offset to translate in y
        z - the offset to translate in z
        dest - will hold the result
        Returns:
        dest
      • translateLocal

        Matrix4x3f translateLocal​(Vector3fc offset,
                                  Matrix4x3f dest)
        Pre-multiply a translation to this matrix by translating by the given number of units in x, y and z and store the result in dest.

        If M is this matrix and T the translation matrix, then the new matrix will be T * M. So when transforming a vector v with the new matrix by using T * M * v, the translation will be applied last!

        Parameters:
        offset - the number of units in x, y and z by which to translate
        dest - will hold the result
        Returns:
        dest
      • translateLocal

        Matrix4x3f translateLocal​(float x,
                                  float y,
                                  float z,
                                  Matrix4x3f dest)
        Pre-multiply a translation to this matrix by translating by the given number of units in x, y and z and store the result in dest.

        If M is this matrix and T the translation matrix, then the new matrix will be T * M. So when transforming a vector v with the new matrix by using T * M * v, the translation will be applied last!

        Parameters:
        x - the offset to translate in x
        y - the offset to translate in y
        z - the offset to translate in z
        dest - will hold the result
        Returns:
        dest
      • ortho

        Matrix4x3f ortho​(float left,
                         float right,
                         float bottom,
                         float top,
                         float zNear,
                         float zFar,
                         boolean zZeroToOne,
                         Matrix4x3f dest)
        Apply an orthographic projection transformation for a right-handed coordinate system using the given NDC z range to this matrix and store the result in dest.

        If M is this matrix and O the orthographic projection matrix, then the new matrix will be M * O. So when transforming a vector v with the new matrix by using M * O * v, the orthographic projection transformation will be applied first!

        Reference: http://www.songho.ca

        Parameters:
        left - the distance from the center to the left frustum edge
        right - the distance from the center to the right frustum edge
        bottom - the distance from the center to the bottom frustum edge
        top - the distance from the center to the top frustum edge
        zNear - near clipping plane distance
        zFar - far clipping plane distance
        zZeroToOne - whether to use Vulkan's and Direct3D's NDC z range of [0..+1] when true or whether to use OpenGL's NDC z range of [-1..+1] when false
        dest - will hold the result
        Returns:
        dest
      • ortho

        Matrix4x3f ortho​(float left,
                         float right,
                         float bottom,
                         float top,
                         float zNear,
                         float zFar,
                         Matrix4x3f dest)
        Apply an orthographic projection transformation for a right-handed coordinate system using OpenGL's NDC z range of [-1..+1] to this matrix and store the result in dest.

        If M is this matrix and O the orthographic projection matrix, then the new matrix will be M * O. So when transforming a vector v with the new matrix by using M * O * v, the orthographic projection transformation will be applied first!

        Reference: http://www.songho.ca

        Parameters:
        left - the distance from the center to the left frustum edge
        right - the distance from the center to the right frustum edge
        bottom - the distance from the center to the bottom frustum edge
        top - the distance from the center to the top frustum edge
        zNear - near clipping plane distance
        zFar - far clipping plane distance
        dest - will hold the result
        Returns:
        dest
      • orthoLH

        Matrix4x3f orthoLH​(float left,
                           float right,
                           float bottom,
                           float top,
                           float zNear,
                           float zFar,
                           boolean zZeroToOne,
                           Matrix4x3f dest)
        Apply an orthographic projection transformation for a left-handed coordiante system using the given NDC z range to this matrix and store the result in dest.

        If M is this matrix and O the orthographic projection matrix, then the new matrix will be M * O. So when transforming a vector v with the new matrix by using M * O * v, the orthographic projection transformation will be applied first!

        Reference: http://www.songho.ca

        Parameters:
        left - the distance from the center to the left frustum edge
        right - the distance from the center to the right frustum edge
        bottom - the distance from the center to the bottom frustum edge
        top - the distance from the center to the top frustum edge
        zNear - near clipping plane distance
        zFar - far clipping plane distance
        zZeroToOne - whether to use Vulkan's and Direct3D's NDC z range of [0..+1] when true or whether to use OpenGL's NDC z range of [-1..+1] when false
        dest - will hold the result
        Returns:
        dest
      • orthoLH

        Matrix4x3f orthoLH​(float left,
                           float right,
                           float bottom,
                           float top,
                           float zNear,
                           float zFar,
                           Matrix4x3f dest)
        Apply an orthographic projection transformation for a left-handed coordiante system using OpenGL's NDC z range of [-1..+1] to this matrix and store the result in dest.

        If M is this matrix and O the orthographic projection matrix, then the new matrix will be M * O. So when transforming a vector v with the new matrix by using M * O * v, the orthographic projection transformation will be applied first!

        Reference: http://www.songho.ca

        Parameters:
        left - the distance from the center to the left frustum edge
        right - the distance from the center to the right frustum edge
        bottom - the distance from the center to the bottom frustum edge
        top - the distance from the center to the top frustum edge
        zNear - near clipping plane distance
        zFar - far clipping plane distance
        dest - will hold the result
        Returns:
        dest
      • orthoSymmetric

        Matrix4x3f orthoSymmetric​(float width,
                                  float height,
                                  float zNear,
                                  float zFar,
                                  boolean zZeroToOne,
                                  Matrix4x3f dest)
        Apply a symmetric orthographic projection transformation for a right-handed coordinate system using the given NDC z range to this matrix and store the result in dest.

        This method is equivalent to calling ortho() with left=-width/2, right=+width/2, bottom=-height/2 and top=+height/2.

        If M is this matrix and O the orthographic projection matrix, then the new matrix will be M * O. So when transforming a vector v with the new matrix by using M * O * v, the orthographic projection transformation will be applied first!

        Reference: http://www.songho.ca

        Parameters:
        width - the distance between the right and left frustum edges
        height - the distance between the top and bottom frustum edges
        zNear - near clipping plane distance
        zFar - far clipping plane distance
        dest - will hold the result
        zZeroToOne - whether to use Vulkan's and Direct3D's NDC z range of [0..+1] when true or whether to use OpenGL's NDC z range of [-1..+1] when false
        Returns:
        dest
      • orthoSymmetric

        Matrix4x3f orthoSymmetric​(float width,
                                  float height,
                                  float zNear,
                                  float zFar,
                                  Matrix4x3f dest)
        Apply a symmetric orthographic projection transformation for a right-handed coordinate system using OpenGL's NDC z range of [-1..+1] to this matrix and store the result in dest.

        This method is equivalent to calling ortho() with left=-width/2, right=+width/2, bottom=-height/2 and top=+height/2.

        If M is this matrix and O the orthographic projection matrix, then the new matrix will be M * O. So when transforming a vector v with the new matrix by using M * O * v, the orthographic projection transformation will be applied first!

        Reference: http://www.songho.ca

        Parameters:
        width - the distance between the right and left frustum edges
        height - the distance between the top and bottom frustum edges
        zNear - near clipping plane distance
        zFar - far clipping plane distance
        dest - will hold the result
        Returns:
        dest
      • orthoSymmetricLH

        Matrix4x3f orthoSymmetricLH​(float width,
                                    float height,
                                    float zNear,
                                    float zFar,
                                    boolean zZeroToOne,
                                    Matrix4x3f dest)
        Apply a symmetric orthographic projection transformation for a left-handed coordinate system using the given NDC z range to this matrix and store the result in dest.

        This method is equivalent to calling orthoLH() with left=-width/2, right=+width/2, bottom=-height/2 and top=+height/2.

        If M is this matrix and O the orthographic projection matrix, then the new matrix will be M * O. So when transforming a vector v with the new matrix by using M * O * v, the orthographic projection transformation will be applied first!

        Reference: http://www.songho.ca

        Parameters:
        width - the distance between the right and left frustum edges
        height - the distance between the top and bottom frustum edges
        zNear - near clipping plane distance
        zFar - far clipping plane distance
        dest - will hold the result
        zZeroToOne - whether to use Vulkan's and Direct3D's NDC z range of [0..+1] when true or whether to use OpenGL's NDC z range of [-1..+1] when false
        Returns:
        dest
      • orthoSymmetricLH

        Matrix4x3f orthoSymmetricLH​(float width,
                                    float height,
                                    float zNear,
                                    float zFar,
                                    Matrix4x3f dest)
        Apply a symmetric orthographic projection transformation for a left-handed coordinate system using OpenGL's NDC z range of [-1..+1] to this matrix and store the result in dest.

        This method is equivalent to calling orthoLH() with left=-width/2, right=+width/2, bottom=-height/2 and top=+height/2.

        If M is this matrix and O the orthographic projection matrix, then the new matrix will be M * O. So when transforming a vector v with the new matrix by using M * O * v, the orthographic projection transformation will be applied first!

        Reference: http://www.songho.ca

        Parameters:
        width - the distance between the right and left frustum edges
        height - the distance between the top and bottom frustum edges
        zNear - near clipping plane distance
        zFar - far clipping plane distance
        dest - will hold the result
        Returns:
        dest
      • ortho2D

        Matrix4x3f ortho2D​(float left,
                           float right,
                           float bottom,
                           float top,
                           Matrix4x3f dest)
        Apply an orthographic projection transformation for a right-handed coordinate system to this matrix and store the result in dest.

        This method is equivalent to calling ortho() with zNear=-1 and zFar=+1.

        If M is this matrix and O the orthographic projection matrix, then the new matrix will be M * O. So when transforming a vector v with the new matrix by using M * O * v, the orthographic projection transformation will be applied first!

        Reference: http://www.songho.ca

        Parameters:
        left - the distance from the center to the left frustum edge
        right - the distance from the center to the right frustum edge
        bottom - the distance from the center to the bottom frustum edge
        top - the distance from the center to the top frustum edge
        dest - will hold the result
        Returns:
        dest
        See Also:
        ortho(float, float, float, float, float, float, Matrix4x3f)
      • ortho2DLH

        Matrix4x3f ortho2DLH​(float left,
                             float right,
                             float bottom,
                             float top,
                             Matrix4x3f dest)
        Apply an orthographic projection transformation for a left-handed coordinate system to this matrix and store the result in dest.

        This method is equivalent to calling orthoLH() with zNear=-1 and zFar=+1.

        If M is this matrix and O the orthographic projection matrix, then the new matrix will be M * O. So when transforming a vector v with the new matrix by using M * O * v, the orthographic projection transformation will be applied first!

        Reference: http://www.songho.ca

        Parameters:
        left - the distance from the center to the left frustum edge
        right - the distance from the center to the right frustum edge
        bottom - the distance from the center to the bottom frustum edge
        top - the distance from the center to the top frustum edge
        dest - will hold the result
        Returns:
        dest
        See Also:
        orthoLH(float, float, float, float, float, float, Matrix4x3f)
      • lookAlong

        Matrix4x3f lookAlong​(float dirX,
                             float dirY,
                             float dirZ,
                             float upX,
                             float upY,
                             float upZ,
                             Matrix4x3f dest)
        Apply a rotation transformation to this matrix to make -z point along dir and store the result in dest.

        If M is this matrix and L the lookalong rotation matrix, then the new matrix will be M * L. So when transforming a vector v with the new matrix by using M * L * v, the lookalong rotation transformation will be applied first!

        This is equivalent to calling lookAt() with eye = (0, 0, 0) and center = dir.

        Parameters:
        dirX - the x-coordinate of the direction to look along
        dirY - the y-coordinate of the direction to look along
        dirZ - the z-coordinate of the direction to look along
        upX - the x-coordinate of the up vector
        upY - the y-coordinate of the up vector
        upZ - the z-coordinate of the up vector
        dest - will hold the result
        Returns:
        dest
        See Also:
        lookAt(float, float, float, float, float, float, float, float, float, Matrix4x3f)
      • lookAt

        Matrix4x3f lookAt​(Vector3fc eye,
                          Vector3fc center,
                          Vector3fc up,
                          Matrix4x3f dest)
        Apply a "lookat" transformation to this matrix for a right-handed coordinate system, that aligns -z with center - eye and store the result in dest.

        If M is this matrix and L the lookat matrix, then the new matrix will be M * L. So when transforming a vector v with the new matrix by using M * L * v, the lookat transformation will be applied first!

        Parameters:
        eye - the position of the camera
        center - the point in space to look at
        up - the direction of 'up'
        dest - will hold the result
        Returns:
        dest
        See Also:
        lookAt(float, float, float, float, float, float, float, float, float, Matrix4x3f)
      • lookAt

        Matrix4x3f lookAt​(float eyeX,
                          float eyeY,
                          float eyeZ,
                          float centerX,
                          float centerY,
                          float centerZ,
                          float upX,
                          float upY,
                          float upZ,
                          Matrix4x3f dest)
        Apply a "lookat" transformation to this matrix for a right-handed coordinate system, that aligns -z with center - eye and store the result in dest.

        If M is this matrix and L the lookat matrix, then the new matrix will be M * L. So when transforming a vector v with the new matrix by using M * L * v, the lookat transformation will be applied first!

        Parameters:
        eyeX - the x-coordinate of the eye/camera location
        eyeY - the y-coordinate of the eye/camera location
        eyeZ - the z-coordinate of the eye/camera location
        centerX - the x-coordinate of the point to look at
        centerY - the y-coordinate of the point to look at
        centerZ - the z-coordinate of the point to look at
        upX - the x-coordinate of the up vector
        upY - the y-coordinate of the up vector
        upZ - the z-coordinate of the up vector
        dest - will hold the result
        Returns:
        dest
        See Also:
        lookAt(Vector3fc, Vector3fc, Vector3fc, Matrix4x3f)
      • lookAtLH

        Matrix4x3f lookAtLH​(Vector3fc eye,
                            Vector3fc center,
                            Vector3fc up,
                            Matrix4x3f dest)
        Apply a "lookat" transformation to this matrix for a left-handed coordinate system, that aligns +z with center - eye and store the result in dest.

        If M is this matrix and L the lookat matrix, then the new matrix will be M * L. So when transforming a vector v with the new matrix by using M * L * v, the lookat transformation will be applied first!

        Parameters:
        eye - the position of the camera
        center - the point in space to look at
        up - the direction of 'up'
        dest - will hold the result
        Returns:
        dest
        See Also:
        lookAtLH(float, float, float, float, float, float, float, float, float, Matrix4x3f)
      • lookAtLH

        Matrix4x3f lookAtLH​(float eyeX,
                            float eyeY,
                            float eyeZ,
                            float centerX,
                            float centerY,
                            float centerZ,
                            float upX,
                            float upY,
                            float upZ,
                            Matrix4x3f dest)
        Apply a "lookat" transformation to this matrix for a left-handed coordinate system, that aligns +z with center - eye and store the result in dest.

        If M is this matrix and L the lookat matrix, then the new matrix will be M * L. So when transforming a vector v with the new matrix by using M * L * v, the lookat transformation will be applied first!

        Parameters:
        eyeX - the x-coordinate of the eye/camera location
        eyeY - the y-coordinate of the eye/camera location
        eyeZ - the z-coordinate of the eye/camera location
        centerX - the x-coordinate of the point to look at
        centerY - the y-coordinate of the point to look at
        centerZ - the z-coordinate of the point to look at
        upX - the x-coordinate of the up vector
        upY - the y-coordinate of the up vector
        upZ - the z-coordinate of the up vector
        dest - will hold the result
        Returns:
        dest
        See Also:
        lookAtLH(Vector3fc, Vector3fc, Vector3fc, Matrix4x3f)
      • rotate

        Matrix4x3f rotate​(Quaternionfc quat,
                          Matrix4x3f dest)
        Apply the rotation - and possibly scaling - transformation of the given Quaternionfc to this matrix and store the result in dest.

        When used with a right-handed coordinate system, the produced rotation will rotate a vector counter-clockwise around the rotation axis, when viewing along the negative axis direction towards the origin. When used with a left-handed coordinate system, the rotation is clockwise.

        If M is this matrix and Q the rotation matrix obtained from the given quaternion, then the new matrix will be M * Q. So when transforming a vector v with the new matrix by using M * Q * v, the quaternion rotation will be applied first!

        Reference: http://en.wikipedia.org

        Parameters:
        quat - the Quaternionfc
        dest - will hold the result
        Returns:
        dest
      • rotateTranslation

        Matrix4x3f rotateTranslation​(Quaternionfc quat,
                                     Matrix4x3f dest)
        Apply the rotation - and possibly scaling - transformation of the given Quaternionfc to this matrix, which is assumed to only contain a translation, and store the result in dest.

        This method assumes this to only contain a translation.

        When used with a right-handed coordinate system, the produced rotation will rotate a vector counter-clockwise around the rotation axis, when viewing along the negative axis direction towards the origin. When used with a left-handed coordinate system, the rotation is clockwise.

        If M is this matrix and Q the rotation matrix obtained from the given quaternion, then the new matrix will be M * Q. So when transforming a vector v with the new matrix by using M * Q * v, the quaternion rotation will be applied first!

        Reference: http://en.wikipedia.org

        Parameters:
        quat - the Quaternionfc
        dest - will hold the result
        Returns:
        dest
      • rotateLocal

        Matrix4x3f rotateLocal​(Quaternionfc quat,
                               Matrix4x3f dest)
        Pre-multiply the rotation - and possibly scaling - transformation of the given Quaternionfc to this matrix and store the result in dest.

        When used with a right-handed coordinate system, the produced rotation will rotate a vector counter-clockwise around the rotation axis, when viewing along the negative axis direction towards the origin. When used with a left-handed coordinate system, the rotation is clockwise.

        If M is this matrix and Q the rotation matrix obtained from the given quaternion, then the new matrix will be Q * M. So when transforming a vector v with the new matrix by using Q * M * v, the quaternion rotation will be applied last!

        Reference: http://en.wikipedia.org

        Parameters:
        quat - the Quaternionfc
        dest - will hold the result
        Returns:
        dest
      • rotate

        Matrix4x3f rotate​(AxisAngle4f axisAngle,
                          Matrix4x3f dest)
        Apply a rotation transformation, rotating about the given AxisAngle4f and store the result in dest.

        When used with a right-handed coordinate system, the produced rotation will rotate a vector counter-clockwise around the rotation axis, when viewing along the negative axis direction towards the origin. When used with a left-handed coordinate system, the rotation is clockwise.

        If M is this matrix and A the rotation matrix obtained from the given AxisAngle4f, then the new matrix will be M * A. So when transforming a vector v with the new matrix by using M * A * v, the AxisAngle4f rotation will be applied first!

        Reference: http://en.wikipedia.org

        Parameters:
        axisAngle - the AxisAngle4f (needs to be normalized)
        dest - will hold the result
        Returns:
        dest
        See Also:
        rotate(float, float, float, float, Matrix4x3f)
      • rotate

        Matrix4x3f rotate​(float angle,
                          Vector3fc axis,
                          Matrix4x3f dest)
        Apply a rotation transformation, rotating the given radians about the specified axis and store the result in dest.

        The axis described by the axis vector needs to be a unit vector.

        When used with a right-handed coordinate system, the produced rotation will rotate a vector counter-clockwise around the rotation axis, when viewing along the negative axis direction towards the origin. When used with a left-handed coordinate system, the rotation is clockwise.

        If M is this matrix and A the rotation matrix obtained from the given axis-angle, then the new matrix will be M * A. So when transforming a vector v with the new matrix by using M * A * v, the axis-angle rotation will be applied first!

        Reference: http://en.wikipedia.org

        Parameters:
        angle - the angle in radians
        axis - the rotation axis (needs to be normalized)
        dest - will hold the result
        Returns:
        dest
        See Also:
        rotate(float, float, float, float, Matrix4x3f)
      • reflect

        Matrix4x3f reflect​(float a,
                           float b,
                           float c,
                           float d,
                           Matrix4x3f dest)
        Apply a mirror/reflection transformation to this matrix that reflects about the given plane specified via the equation x*a + y*b + z*c + d = 0 and store the result in dest.

        The vector (a, b, c) must be a unit vector.

        If M is this matrix and R the reflection matrix, then the new matrix will be M * R. So when transforming a vector v with the new matrix by using M * R * v, the reflection will be applied first!

        Reference: msdn.microsoft.com

        Parameters:
        a - the x factor in the plane equation
        b - the y factor in the plane equation
        c - the z factor in the plane equation
        d - the constant in the plane equation
        dest - will hold the result
        Returns:
        dest
      • reflect

        Matrix4x3f reflect​(float nx,
                           float ny,
                           float nz,
                           float px,
                           float py,
                           float pz,
                           Matrix4x3f dest)
        Apply a mirror/reflection transformation to this matrix that reflects about the given plane specified via the plane normal and a point on the plane, and store the result in dest.

        If M is this matrix and R the reflection matrix, then the new matrix will be M * R. So when transforming a vector v with the new matrix by using M * R * v, the reflection will be applied first!

        Parameters:
        nx - the x-coordinate of the plane normal
        ny - the y-coordinate of the plane normal
        nz - the z-coordinate of the plane normal
        px - the x-coordinate of a point on the plane
        py - the y-coordinate of a point on the plane
        pz - the z-coordinate of a point on the plane
        dest - will hold the result
        Returns:
        dest
      • reflect

        Matrix4x3f reflect​(Quaternionfc orientation,
                           Vector3fc point,
                           Matrix4x3f dest)
        Apply a mirror/reflection transformation to this matrix that reflects about a plane specified via the plane orientation and a point on the plane, and store the result in dest.

        This method can be used to build a reflection transformation based on the orientation of a mirror object in the scene. It is assumed that the default mirror plane's normal is (0, 0, 1). So, if the given Quaternionfc is the identity (does not apply any additional rotation), the reflection plane will be z=0, offset by the given point.

        If M is this matrix and R the reflection matrix, then the new matrix will be M * R. So when transforming a vector v with the new matrix by using M * R * v, the reflection will be applied first!

        Parameters:
        orientation - the plane orientation relative to an implied normal vector of (0, 0, 1)
        point - a point on the plane
        dest - will hold the result
        Returns:
        dest
      • reflect

        Matrix4x3f reflect​(Vector3fc normal,
                           Vector3fc point,
                           Matrix4x3f dest)
        Apply a mirror/reflection transformation to this matrix that reflects about the given plane specified via the plane normal and a point on the plane, and store the result in dest.

        If M is this matrix and R the reflection matrix, then the new matrix will be M * R. So when transforming a vector v with the new matrix by using M * R * v, the reflection will be applied first!

        Parameters:
        normal - the plane normal
        point - a point on the plane
        dest - will hold the result
        Returns:
        dest
      • getRow

        Vector4f getRow​(int row,
                        Vector4f dest)
                 throws java.lang.IndexOutOfBoundsException
        Get the row at the given row index, starting with 0.
        Parameters:
        row - the row index in [0..2]
        dest - will hold the row components
        Returns:
        the passed in destination
        Throws:
        java.lang.IndexOutOfBoundsException - if row is not in [0..2]
      • getColumn

        Vector3f getColumn​(int column,
                           Vector3f dest)
                    throws java.lang.IndexOutOfBoundsException
        Get the column at the given column index, starting with 0.
        Parameters:
        column - the column index in [0..2]
        dest - will hold the column components
        Returns:
        the passed in destination
        Throws:
        java.lang.IndexOutOfBoundsException - if column is not in [0..2]
      • normal

        Matrix4x3f normal​(Matrix4x3f dest)
        Compute a normal matrix from the left 3x3 submatrix of this and store it into the left 3x3 submatrix of dest. All other values of dest will be set to identity.

        The normal matrix of m is the transpose of the inverse of m.

        Parameters:
        dest - will hold the result
        Returns:
        dest
      • normal

        Matrix3f normal​(Matrix3f dest)
        Compute a normal matrix from the left 3x3 submatrix of this and store it into dest.

        The normal matrix of m is the transpose of the inverse of m.

        Parameters:
        dest - will hold the result
        Returns:
        dest
      • normalize3x3

        Matrix4x3f normalize3x3​(Matrix4x3f dest)
        Normalize the left 3x3 submatrix of this matrix and store the result in dest.

        The resulting matrix will map unit vectors to unit vectors, though a pair of orthogonal input unit vectors need not be mapped to a pair of orthogonal output vectors if the original matrix was not orthogonal itself (i.e. had skewing).

        Parameters:
        dest - will hold the result
        Returns:
        dest
      • normalize3x3

        Matrix3f normalize3x3​(Matrix3f dest)
        Normalize the left 3x3 submatrix of this matrix and store the result in dest.

        The resulting matrix will map unit vectors to unit vectors, though a pair of orthogonal input unit vectors need not be mapped to a pair of orthogonal output vectors if the original matrix was not orthogonal itself (i.e. had skewing).

        Parameters:
        dest - will hold the result
        Returns:
        dest
      • frustumPlane

        Planef frustumPlane​(int which,
                            Planef plane)
        Calculate a frustum plane of this matrix, which can be a projection matrix or a combined modelview-projection matrix, and store the result in the given plane.

        Generally, this method computes the frustum plane in the local frame of any coordinate system that existed before this transformation was applied to it in order to yield homogeneous clipping space.

        The plane normal, which is (a, b, c), is directed "inwards" of the frustum. Any plane/point test using a*x + b*y + c*z + d therefore will yield a result greater than zero if the point is within the frustum (i.e. at the positive side of the frustum plane).

        Reference: Fast Extraction of Viewing Frustum Planes from the World-View-Projection Matrix

        Parameters:
        which - one of the six possible planes, given as numeric constants PLANE_NX, PLANE_PX, PLANE_NY, PLANE_PY, PLANE_NZ and PLANE_PZ
        plane - will hold the computed plane equation. The plane equation will be normalized, meaning that (a, b, c) will be a unit vector
        Returns:
        planeEquation
      • positiveZ

        Vector3f positiveZ​(Vector3f dir)
        Obtain the direction of +Z before the transformation represented by this matrix is applied.

        This method uses the rotation component of the left 3x3 submatrix to obtain the direction that is transformed to +Z by this matrix.

        This method is equivalent to the following code:

         Matrix4x3f inv = new Matrix4x3f(this).invert();
         inv.transformDirection(dir.set(0, 0, 1)).normalize();
         
        If this is already an orthogonal matrix, then consider using normalizedPositiveZ(Vector3f) instead.

        Reference: http://www.euclideanspace.com

        Parameters:
        dir - will hold the direction of +Z
        Returns:
        dir
      • normalizedPositiveZ

        Vector3f normalizedPositiveZ​(Vector3f dir)
        Obtain the direction of +Z before the transformation represented by this orthogonal matrix is applied. This method only produces correct results if this is an orthogonal matrix.

        This method uses the rotation component of the left 3x3 submatrix to obtain the direction that is transformed to +Z by this matrix.

        This method is equivalent to the following code:

         Matrix4x3f inv = new Matrix4x3f(this).transpose();
         inv.transformDirection(dir.set(0, 0, 1)).normalize();
         

        Reference: http://www.euclideanspace.com

        Parameters:
        dir - will hold the direction of +Z
        Returns:
        dir
      • positiveX

        Vector3f positiveX​(Vector3f dir)
        Obtain the direction of +X before the transformation represented by this matrix is applied.

        This method uses the rotation component of the left 3x3 submatrix to obtain the direction that is transformed to +X by this matrix.

        This method is equivalent to the following code:

         Matrix4x3f inv = new Matrix4x3f(this).invert();
         inv.transformDirection(dir.set(1, 0, 0)).normalize();
         
        If this is already an orthogonal matrix, then consider using normalizedPositiveX(Vector3f) instead.

        Reference: http://www.euclideanspace.com

        Parameters:
        dir - will hold the direction of +X
        Returns:
        dir
      • normalizedPositiveX

        Vector3f normalizedPositiveX​(Vector3f dir)
        Obtain the direction of +X before the transformation represented by this orthogonal matrix is applied. This method only produces correct results if this is an orthogonal matrix.

        This method uses the rotation component of the left 3x3 submatrix to obtain the direction that is transformed to +X by this matrix.

        This method is equivalent to the following code:

         Matrix4x3f inv = new Matrix4x3f(this).transpose();
         inv.transformDirection(dir.set(1, 0, 0)).normalize();
         

        Reference: http://www.euclideanspace.com

        Parameters:
        dir - will hold the direction of +X
        Returns:
        dir
      • positiveY

        Vector3f positiveY​(Vector3f dir)
        Obtain the direction of +Y before the transformation represented by this matrix is applied.

        This method uses the rotation component of the left 3x3 submatrix to obtain the direction that is transformed to +Y by this matrix.

        This method is equivalent to the following code:

         Matrix4x3f inv = new Matrix4x3f(this).invert();
         inv.transformDirection(dir.set(0, 1, 0)).normalize();
         
        If this is already an orthogonal matrix, then consider using normalizedPositiveY(Vector3f) instead.

        Reference: http://www.euclideanspace.com

        Parameters:
        dir - will hold the direction of +Y
        Returns:
        dir
      • normalizedPositiveY

        Vector3f normalizedPositiveY​(Vector3f dir)
        Obtain the direction of +Y before the transformation represented by this orthogonal matrix is applied. This method only produces correct results if this is an orthogonal matrix.

        This method uses the rotation component of the left 3x3 submatrix to obtain the direction that is transformed to +Y by this matrix.

        This method is equivalent to the following code:

         Matrix4x3f inv = new Matrix4x3f(this).transpose();
         inv.transformDirection(dir.set(0, 1, 0)).normalize();
         

        Reference: http://www.euclideanspace.com

        Parameters:
        dir - will hold the direction of +Y
        Returns:
        dir
      • origin

        Vector3f origin​(Vector3f origin)
        Obtain the position that gets transformed to the origin by this matrix. This can be used to get the position of the "camera" from a given view transformation matrix.

        This method is equivalent to the following code:

         Matrix4x3f inv = new Matrix4x3f(this).invert();
         inv.transformPosition(origin.set(0, 0, 0));
         
        Parameters:
        origin - will hold the position transformed to the origin
        Returns:
        origin
      • shadow

        Matrix4x3f shadow​(Vector4fc light,
                          float a,
                          float b,
                          float c,
                          float d,
                          Matrix4x3f dest)
        Apply a projection transformation to this matrix that projects onto the plane specified via the general plane equation x*a + y*b + z*c + d = 0 as if casting a shadow from a given light position/direction light and store the result in dest.

        If light.w is 0.0 the light is being treated as a directional light; if it is 1.0 it is a point light.

        If M is this matrix and S the shadow matrix, then the new matrix will be M * S. So when transforming a vector v with the new matrix by using M * S * v, the reflection will be applied first!

        Reference: ftp.sgi.com

        Parameters:
        light - the light's vector
        a - the x factor in the plane equation
        b - the y factor in the plane equation
        c - the z factor in the plane equation
        d - the constant in the plane equation
        dest - will hold the result
        Returns:
        dest
      • shadow

        Matrix4x3f shadow​(float lightX,
                          float lightY,
                          float lightZ,
                          float lightW,
                          float a,
                          float b,
                          float c,
                          float d,
                          Matrix4x3f dest)
        Apply a projection transformation to this matrix that projects onto the plane specified via the general plane equation x*a + y*b + z*c + d = 0 as if casting a shadow from a given light position/direction (lightX, lightY, lightZ, lightW) and store the result in dest.

        If lightW is 0.0 the light is being treated as a directional light; if it is 1.0 it is a point light.

        If M is this matrix and S the shadow matrix, then the new matrix will be M * S. So when transforming a vector v with the new matrix by using M * S * v, the reflection will be applied first!

        Reference: ftp.sgi.com

        Parameters:
        lightX - the x-component of the light's vector
        lightY - the y-component of the light's vector
        lightZ - the z-component of the light's vector
        lightW - the w-component of the light's vector
        a - the x factor in the plane equation
        b - the y factor in the plane equation
        c - the z factor in the plane equation
        d - the constant in the plane equation
        dest - will hold the result
        Returns:
        dest
      • shadow

        Matrix4x3f shadow​(Vector4fc light,
                          Matrix4x3fc planeTransform,
                          Matrix4x3f dest)
        Apply a projection transformation to this matrix that projects onto the plane with the general plane equation y = 0 as if casting a shadow from a given light position/direction light and store the result in dest.

        Before the shadow projection is applied, the plane is transformed via the specified planeTransformation.

        If light.w is 0.0 the light is being treated as a directional light; if it is 1.0 it is a point light.

        If M is this matrix and S the shadow matrix, then the new matrix will be M * S. So when transforming a vector v with the new matrix by using M * S * v, the reflection will be applied first!

        Parameters:
        light - the light's vector
        planeTransform - the transformation to transform the implied plane y = 0 before applying the projection
        dest - will hold the result
        Returns:
        dest
      • shadow

        Matrix4x3f shadow​(float lightX,
                          float lightY,
                          float lightZ,
                          float lightW,
                          Matrix4x3fc planeTransform,
                          Matrix4x3f dest)
        Apply a projection transformation to this matrix that projects onto the plane with the general plane equation y = 0 as if casting a shadow from a given light position/direction (lightX, lightY, lightZ, lightW) and store the result in dest.

        Before the shadow projection is applied, the plane is transformed via the specified planeTransformation.

        If lightW is 0.0 the light is being treated as a directional light; if it is 1.0 it is a point light.

        If M is this matrix and S the shadow matrix, then the new matrix will be M * S. So when transforming a vector v with the new matrix by using M * S * v, the reflection will be applied first!

        Parameters:
        lightX - the x-component of the light vector
        lightY - the y-component of the light vector
        lightZ - the z-component of the light vector
        lightW - the w-component of the light vector
        planeTransform - the transformation to transform the implied plane y = 0 before applying the projection
        dest - will hold the result
        Returns:
        dest
      • pick

        Matrix4x3f pick​(float x,
                        float y,
                        float width,
                        float height,
                        int[] viewport,
                        Matrix4x3f dest)
        Apply a picking transformation to this matrix using the given window coordinates (x, y) as the pick center and the given (width, height) as the size of the picking region in window coordinates, and store the result in dest.
        Parameters:
        x - the x coordinate of the picking region center in window coordinates
        y - the y coordinate of the picking region center in window coordinates
        width - the width of the picking region in window coordinates
        height - the height of the picking region in window coordinates
        viewport - the viewport described by [x, y, width, height]
        dest - the destination matrix, which will hold the result
        Returns:
        dest
      • arcball

        Matrix4x3f arcball​(float radius,
                           float centerX,
                           float centerY,
                           float centerZ,
                           float angleX,
                           float angleY,
                           Matrix4x3f dest)
        Apply an arcball view transformation to this matrix with the given radius and center (centerX, centerY, centerZ) position of the arcball and the specified X and Y rotation angles, and store the result in dest.

        This method is equivalent to calling: translate(0, 0, -radius).rotateX(angleX).rotateY(angleY).translate(-centerX, -centerY, -centerZ)

        Parameters:
        radius - the arcball radius
        centerX - the x coordinate of the center position of the arcball
        centerY - the y coordinate of the center position of the arcball
        centerZ - the z coordinate of the center position of the arcball
        angleX - the rotation angle around the X axis in radians
        angleY - the rotation angle around the Y axis in radians
        dest - will hold the result
        Returns:
        dest
      • arcball

        Matrix4x3f arcball​(float radius,
                           Vector3fc center,
                           float angleX,
                           float angleY,
                           Matrix4x3f dest)
        Apply an arcball view transformation to this matrix with the given radius and center position of the arcball and the specified X and Y rotation angles, and store the result in dest.

        This method is equivalent to calling: translate(0, 0, -radius).rotateX(angleX).rotateY(angleY).translate(-center.x, -center.y, -center.z)

        Parameters:
        radius - the arcball radius
        center - the center position of the arcball
        angleX - the rotation angle around the X axis in radians
        angleY - the rotation angle around the Y axis in radians
        dest - will hold the result
        Returns:
        dest
      • transformAab

        Matrix4x3f transformAab​(float minX,
                                float minY,
                                float minZ,
                                float maxX,
                                float maxY,
                                float maxZ,
                                Vector3f outMin,
                                Vector3f outMax)
        Transform the axis-aligned box given as the minimum corner (minX, minY, minZ) and maximum corner (maxX, maxY, maxZ) by this matrix and compute the axis-aligned box of the result whose minimum corner is stored in outMin and maximum corner stored in outMax.

        Reference: http://dev.theomader.com

        Parameters:
        minX - the x coordinate of the minimum corner of the axis-aligned box
        minY - the y coordinate of the minimum corner of the axis-aligned box
        minZ - the z coordinate of the minimum corner of the axis-aligned box
        maxX - the x coordinate of the maximum corner of the axis-aligned box
        maxY - the y coordinate of the maximum corner of the axis-aligned box
        maxZ - the y coordinate of the maximum corner of the axis-aligned box
        outMin - will hold the minimum corner of the resulting axis-aligned box
        outMax - will hold the maximum corner of the resulting axis-aligned box
        Returns:
        this
      • transformAab

        Matrix4x3f transformAab​(Vector3fc min,
                                Vector3fc max,
                                Vector3f outMin,
                                Vector3f outMax)
        Transform the axis-aligned box given as the minimum corner min and maximum corner max by this matrix and compute the axis-aligned box of the result whose minimum corner is stored in outMin and maximum corner stored in outMax.
        Parameters:
        min - the minimum corner of the axis-aligned box
        max - the maximum corner of the axis-aligned box
        outMin - will hold the minimum corner of the resulting axis-aligned box
        outMax - will hold the maximum corner of the resulting axis-aligned box
        Returns:
        this
      • lerp

        Matrix4x3f lerp​(Matrix4x3fc other,
                        float t,
                        Matrix4x3f dest)
        Linearly interpolate this and other using the given interpolation factor t and store the result in dest.

        If t is 0.0 then the result is this. If the interpolation factor is 1.0 then the result is other.

        Parameters:
        other - the other matrix
        t - the interpolation factor between 0.0 and 1.0
        dest - will hold the result
        Returns:
        dest
      • rotateTowards

        Matrix4x3f rotateTowards​(Vector3fc dir,
                                 Vector3fc up,
                                 Matrix4x3f dest)
        Apply a model transformation to this matrix for a right-handed coordinate system, that aligns the local +Z axis with dir and store the result in dest.

        If M is this matrix and L the lookat matrix, then the new matrix will be M * L. So when transforming a vector v with the new matrix by using M * L * v, the lookat transformation will be applied first!

        This method is equivalent to calling: mul(new Matrix4x3f().lookAt(new Vector3f(), new Vector3f(dir).negate(), up).invert(), dest)

        Parameters:
        dir - the direction to rotate towards
        up - the up vector
        dest - will hold the result
        Returns:
        dest
        See Also:
        rotateTowards(float, float, float, float, float, float, Matrix4x3f)
      • rotateTowards

        Matrix4x3f rotateTowards​(float dirX,
                                 float dirY,
                                 float dirZ,
                                 float upX,
                                 float upY,
                                 float upZ,
                                 Matrix4x3f dest)
        Apply a model transformation to this matrix for a right-handed coordinate system, that aligns the local +Z axis with (dirX, dirY, dirZ) and store the result in dest.

        If M is this matrix and L the lookat matrix, then the new matrix will be M * L. So when transforming a vector v with the new matrix by using M * L * v, the lookat transformation will be applied first!

        This method is equivalent to calling: mul(new Matrix4x3f().lookAt(0, 0, 0, -dirX, -dirY, -dirZ, upX, upY, upZ).invert(), dest)

        Parameters:
        dirX - the x-coordinate of the direction to rotate towards
        dirY - the y-coordinate of the direction to rotate towards
        dirZ - the z-coordinate of the direction to rotate towards
        upX - the x-coordinate of the up vector
        upY - the y-coordinate of the up vector
        upZ - the z-coordinate of the up vector
        dest - will hold the result
        Returns:
        dest
        See Also:
        rotateTowards(Vector3fc, Vector3fc, Matrix4x3f)
      • getEulerAnglesZYX

        Vector3f getEulerAnglesZYX​(Vector3f dest)
        Extract the Euler angles from the rotation represented by the upper left 3x3 submatrix of this and store the extracted Euler angles in dest.

        This method assumes that the upper left of this only represents a rotation without scaling.

        Note that the returned Euler angles must be applied in the order Z * Y * X to obtain the identical matrix. This means that calling rotateZYX(float, float, float, Matrix4x3f) using the obtained Euler angles will yield the same rotation as the original matrix from which the Euler angles were obtained, so in the below code the matrix m2 should be identical to m (disregarding possible floating-point inaccuracies).

         Matrix4x3f m = ...; // <- matrix only representing rotation
         Matrix4x3f n = new Matrix4x3f();
         n.rotateZYX(m.getEulerAnglesZYX(new Vector3f()));
         

        Reference: http://nghiaho.com/

        Parameters:
        dest - will hold the extracted Euler angles
        Returns:
        dest
      • obliqueZ

        Matrix4x3f obliqueZ​(float a,
                            float b,
                            Matrix4x3f dest)
        Apply an oblique projection transformation to this matrix with the given values for a and b and store the result in dest.

        If M is this matrix and O the oblique transformation matrix, then the new matrix will be M * O. So when transforming a vector v with the new matrix by using M * O * v, the oblique transformation will be applied first!

        The oblique transformation is defined as:

         x' = x + a*z
         y' = y + a*z
         z' = z
         
        or in matrix form:
         1 0 a 0
         0 1 b 0
         0 0 1 0
         
        Parameters:
        a - the value for the z factor that applies to x
        b - the value for the z factor that applies to y
        dest - will hold the result
        Returns:
        dest
      • equals

        boolean equals​(Matrix4x3fc m,
                       float delta)
        Compare the matrix elements of this matrix with the given matrix using the given delta and return whether all of them are equal within a maximum difference of delta.

        Please note that this method is not used by any data structure such as ArrayList HashSet or HashMap and their operations, such as ArrayList.contains(Object) or HashSet.remove(Object), since those data structures only use the Object.equals(Object) and Object.hashCode() methods.

        Parameters:
        m - the other matrix
        delta - the allowed maximum difference
        Returns:
        true whether all of the matrix elements are equal; false otherwise