Package org.joml

# Interface Vector2fc

All Known Implementing Classes:
`Vector2f`

public interface Vector2fc
Interface to a read-only view of a 2-dimensional vector of single-precision floats.
Author:
Kai Burjack
• ## Method Summary

Modifier and Type
Method
Description
`Vector2f`
`absolute(Vector2f dest)`
Compute the absolute of each of this vector's components and store the result into `dest`.
`Vector2f`
```add(float x, float y, Vector2f dest)```
Increment the components of this vector by the given values and store the result in `dest`.
`Vector2f`
```add(Vector2fc v, Vector2f dest)```
Add the supplied vector to this one and store the result in `dest`.
`float`
`angle(Vector2fc v)`
Return the angle between this vector and the supplied vector.
`Vector2f`
`ceil(Vector2f dest)`
Compute for each component of this vector the smallest (closest to negative infinity) `float` value that is greater than or equal to that component and is equal to a mathematical integer and store the result in `dest`.
`float`
```distance(float x, float y)```
Return the distance between `this` vector and `(x, y)`.
`float`
`distance(Vector2fc v)`
Return the distance between this and `v`.
`float`
```distanceSquared(float x, float y)```
Return the distance squared between `this` vector and `(x, y)`.
`float`
`distanceSquared(Vector2fc v)`
Return the distance squared between this and `v`.
`Vector2f`
```div(float x, float y, Vector2f dest)```
Divide the components of this Vector2f by the given scalar values and store the result in `dest`.
`Vector2f`
```div(float scalar, Vector2f dest)```
Divide all components of this `Vector2f` by the given scalar value and store the result in `dest`.
`Vector2f`
```div(Vector2fc v, Vector2f dest)```
Divide this Vector2f component-wise by another Vector2fc and store the result in `dest`.
`float`
`dot(Vector2fc v)`
Return the dot product of this vector and `v`.
`boolean`
```equals(float x, float y)```
Compare the vector components of `this` vector with the given `(x, y)` and return whether all of them are equal.
`boolean`
```equals(Vector2fc v, float delta)```
Compare the vector components of `this` vector with the given vector using the given `delta` and return whether all of them are equal within a maximum difference of `delta`.
`Vector2f`
`floor(Vector2f dest)`
Compute for each component of this vector the largest (closest to positive infinity) `float` value that is less than or equal to that component and is equal to a mathematical integer and store the result in `dest`.
`Vector2f`
```fma(float a, Vector2fc b, Vector2f dest)```
Add the component-wise multiplication of `a * b` to this vector and store the result in `dest`.
`Vector2f`
```fma(Vector2fc a, Vector2fc b, Vector2f dest)```
Add the component-wise multiplication of `a * b` to this vector and store the result in `dest`.
`float`
`get(int component)`
Get the value of the specified component of this vector.
`ByteBuffer`
```get(int index, ByteBuffer buffer)```
Store this vector into the supplied `ByteBuffer` starting at the specified absolute buffer position/index.
`FloatBuffer`
```get(int index, FloatBuffer buffer)```
Store this vector into the supplied `FloatBuffer` starting at the specified absolute buffer position/index.
`Vector2i`
```get(int mode, Vector2i dest)```
Set the components of the given vector `dest` to those of `this` vector using the given `RoundingMode`.
`ByteBuffer`
`get(ByteBuffer buffer)`
Store this vector into the supplied `ByteBuffer` at the current buffer `position`.
`FloatBuffer`
`get(FloatBuffer buffer)`
Store this vector into the supplied `FloatBuffer` at the current buffer `position`.
`Vector2d`
`get(Vector2d dest)`
Set the components of the given vector `dest` to those of `this` vector.
`Vector2f`
`get(Vector2f dest)`
Set the components of the given vector `dest` to those of `this` vector.
`Vector2fc`
`getToAddress(long address)`
Store this vector at the given off-heap memory address.
`boolean`
`isFinite()`
Determine whether all components are finite floating-point values, that is, they are not `NaN` and not `infinity`.
`float`
`length()`
Return the length of this vector.
`float`
`lengthSquared()`
Return the length squared of this vector.
`Vector2f`
```lerp(Vector2fc other, float t, Vector2f dest)```
Linearly interpolate `this` and `other` using the given interpolation factor `t` and store the result in `dest`.
`Vector2f`
```max(Vector2fc v, Vector2f dest)```
Set the components of `dest` to be the component-wise maximum of this and the other vector.
`int`
`maxComponent()`
Determine the component with the biggest absolute value.
`Vector2f`
```min(Vector2fc v, Vector2f dest)```
Set the components of `dest` to be the component-wise minimum of this and the other vector.
`int`
`minComponent()`
Determine the component with the smallest (towards zero) absolute value.
`Vector2f`
```mul(float x, float y, Vector2f dest)```
Multiply the components of this Vector2f by the given scalar values and store the result in `dest`.
`Vector2f`
```mul(float scalar, Vector2f dest)```
Multiply the components of this vector by the given scalar and store the result in `dest`.
`Vector2f`
```mul(Matrix2dc mat, Vector2f dest)```
Multiply the given matrix with this Vector2f and store the result in `dest`.
`Vector2f`
```mul(Matrix2fc mat, Vector2f dest)```
Multiply the given matrix with this Vector2f and store the result in `dest`.
`Vector2f`
```mul(Vector2fc v, Vector2f dest)```
Multiply this Vector2f component-wise by another Vector2f and store the result in `dest`.
`Vector2f`
```mulDirection(Matrix3x2fc mat, Vector2f dest)```
Multiply the given 3x2 matrix `mat` with `this` and store the result in `dest`.
`Vector2f`
```mulPosition(Matrix3x2fc mat, Vector2f dest)```
Multiply the given 3x2 matrix `mat` with `this` and store the result in `dest`.
`Vector2f`
```mulTranspose(Matrix2fc mat, Vector2f dest)```
Multiply the transpose of the given matrix with this Vector3f and store the result in `dest`.
`Vector2f`
`negate(Vector2f dest)`
Negate this vector and store the result in `dest`.
`Vector2f`
```normalize(float length, Vector2f dest)```
Scale this vector to have the given length and store the result in `dest`.
`Vector2f`
`normalize(Vector2f dest)`
Normalize this vector and store the result in `dest`.
`Vector2f`
`round(Vector2f dest)`
Compute for each component of this vector the closest float that is equal to a mathematical integer, with ties rounding to positive infinity and store the result in `dest`.
`Vector2f`
```sub(float x, float y, Vector2f dest)```
Subtract `(x, y)` from this vector and store the result in `dest`.
`Vector2f`
```sub(Vector2fc v, Vector2f dest)```
Subtract `v` from `this` vector and store the result in `dest`.
`float`
`x()`

`float`
`y()`

• ## Method Details

• ### x

float x()
Returns:
the value of the x component
• ### y

float y()
Returns:
the value of the y component
• ### get

ByteBuffer get(ByteBuffer buffer)
Store this vector into the supplied `ByteBuffer` at the current buffer `position`.

This method will not increment the position of the given ByteBuffer.

In order to specify the offset into the ByteBuffer at which the vector is stored, use `get(int, ByteBuffer)`, taking the absolute position as parameter.

Parameters:
`buffer` - will receive the values of this vector in `x, y` order
Returns:
the passed in buffer
• ### get

ByteBuffer get(int index, ByteBuffer buffer)
Store this vector into the supplied `ByteBuffer` starting at the specified absolute buffer position/index.

This method will not increment the position of the given ByteBuffer.

Parameters:
`index` - the absolute position into the ByteBuffer
`buffer` - will receive the values of this vector in `x, y` order
Returns:
the passed in buffer
• ### get

FloatBuffer get(FloatBuffer buffer)
Store this vector into the supplied `FloatBuffer` at the current buffer `position`.

This method will not increment the position of the given FloatBuffer.

In order to specify the offset into the FloatBuffer at which the vector is stored, use `get(int, FloatBuffer)`, taking the absolute position as parameter.

Parameters:
`buffer` - will receive the values of this vector in `x, y` order
Returns:
the passed in buffer
• ### get

FloatBuffer get(int index, FloatBuffer buffer)
Store this vector into the supplied `FloatBuffer` starting at the specified absolute buffer position/index.

This method will not increment the position of the given FloatBuffer.

Parameters:
`index` - the absolute position into the FloatBuffer
`buffer` - will receive the values of this vector in `x, y` order
Returns:
the passed in buffer

Store this vector at the given off-heap memory address.

This method will throw an `UnsupportedOperationException` when JOML is used with `-Djoml.nounsafe`.

This method is unsafe as it can result in a crash of the JVM process when the specified address range does not belong to this process.

Parameters:
`address` - the off-heap address where to store this vector
Returns:
this
• ### sub

Vector2f sub(Vector2fc v, Vector2f dest)
Subtract `v` from `this` vector and store the result in `dest`.
Parameters:
`v` - the vector to subtract
`dest` - will hold the result
Returns:
dest
• ### sub

Vector2f sub(float x, float y, Vector2f dest)
Subtract `(x, y)` from this vector and store the result in `dest`.
Parameters:
`x` - the x component to subtract
`y` - the y component to subtract
`dest` - will hold the result
Returns:
dest
• ### dot

float dot(Vector2fc v)
Return the dot product of this vector and `v`.
Parameters:
`v` - the other vector
Returns:
the dot product
• ### angle

float angle(Vector2fc v)
Return the angle between this vector and the supplied vector.
Parameters:
`v` - the other vector
Returns:
• ### lengthSquared

float lengthSquared()
Return the length squared of this vector.
Returns:
the length squared
• ### length

float length()
Return the length of this vector.
Returns:
the length
• ### distance

float distance(Vector2fc v)
Return the distance between this and `v`.
Parameters:
`v` - the other vector
Returns:
the distance
• ### distanceSquared

float distanceSquared(Vector2fc v)
Return the distance squared between this and `v`.
Parameters:
`v` - the other vector
Returns:
the distance squared
• ### distance

float distance(float x, float y)
Return the distance between `this` vector and `(x, y)`.
Parameters:
`x` - the x component of the other vector
`y` - the y component of the other vector
Returns:
the euclidean distance
• ### distanceSquared

float distanceSquared(float x, float y)
Return the distance squared between `this` vector and `(x, y)`.
Parameters:
`x` - the x component of the other vector
`y` - the y component of the other vector
Returns:
the euclidean distance squared
• ### normalize

Vector2f normalize(Vector2f dest)
Normalize this vector and store the result in `dest`.
Parameters:
`dest` - will hold the result
Returns:
dest
• ### normalize

Vector2f normalize(float length, Vector2f dest)
Scale this vector to have the given length and store the result in `dest`.
Parameters:
`length` - the desired length
`dest` - will hold the result
Returns:
dest

Add the supplied vector to this one and store the result in `dest`.
Parameters:
`v` - the vector to add
`dest` - will hold the result
Returns:
dest

Vector2f add(float x, float y, Vector2f dest)
Increment the components of this vector by the given values and store the result in `dest`.
Parameters:
`x` - the x component to add
`y` - the y component to add
`dest` - will hold the result
Returns:
dest
• ### negate

Vector2f negate(Vector2f dest)
Negate this vector and store the result in `dest`.
Parameters:
`dest` - will hold the result
Returns:
dest
• ### mul

Vector2f mul(float scalar, Vector2f dest)
Multiply the components of this vector by the given scalar and store the result in `dest`.
Parameters:
`scalar` - the value to multiply this vector's components by
`dest` - will hold the result
Returns:
dest
• ### mul

Vector2f mul(float x, float y, Vector2f dest)
Multiply the components of this Vector2f by the given scalar values and store the result in `dest`.
Parameters:
`x` - the x component to multiply this vector by
`y` - the y component to multiply this vector by
`dest` - will hold the result
Returns:
dest
• ### mul

Vector2f mul(Vector2fc v, Vector2f dest)
Multiply this Vector2f component-wise by another Vector2f and store the result in `dest`.
Parameters:
`v` - the vector to multiply by
`dest` - will hold the result
Returns:
dest
• ### div

Vector2f div(float scalar, Vector2f dest)
Divide all components of this `Vector2f` by the given scalar value and store the result in `dest`.
Parameters:
`scalar` - the scalar to divide by
`dest` - will hold the result
Returns:
dest
• ### div

Vector2f div(Vector2fc v, Vector2f dest)
Divide this Vector2f component-wise by another Vector2fc and store the result in `dest`.
Parameters:
`v` - the vector to divide by
`dest` - will hold the result
Returns:
dest
• ### div

Vector2f div(float x, float y, Vector2f dest)
Divide the components of this Vector2f by the given scalar values and store the result in `dest`.
Parameters:
`x` - the x component to divide this vector by
`y` - the y component to divide this vector by
`dest` - will hold the result
Returns:
dest
• ### mul

Vector2f mul(Matrix2fc mat, Vector2f dest)
Multiply the given matrix with this Vector2f and store the result in `dest`.
Parameters:
`mat` - the matrix
`dest` - will hold the result
Returns:
dest
• ### mul

Vector2f mul(Matrix2dc mat, Vector2f dest)
Multiply the given matrix with this Vector2f and store the result in `dest`.
Parameters:
`mat` - the matrix
`dest` - will hold the result
Returns:
dest
• ### mulTranspose

Vector2f mulTranspose(Matrix2fc mat, Vector2f dest)
Multiply the transpose of the given matrix with this Vector3f and store the result in `dest`.
Parameters:
`mat` - the matrix
`dest` - will hold the result
Returns:
dest
• ### mulPosition

Vector2f mulPosition(Matrix3x2fc mat, Vector2f dest)
Multiply the given 3x2 matrix `mat` with `this` and store the result in `dest`.

This method assumes the `z` component of `this` to be `1.0`.

Parameters:
`mat` - the matrix to multiply this vector by
`dest` - will hold the result
Returns:
dest
• ### mulDirection

Vector2f mulDirection(Matrix3x2fc mat, Vector2f dest)
Multiply the given 3x2 matrix `mat` with `this` and store the result in `dest`.

This method assumes the `z` component of `this` to be `0.0`.

Parameters:
`mat` - the matrix to multiply this vector by
`dest` - will hold the result
Returns:
dest
• ### lerp

Vector2f lerp(Vector2fc other, float t, Vector2f dest)
Linearly interpolate `this` and `other` using the given interpolation factor `t` and store the result in `dest`.

If `t` is `0.0` then the result is `this`. If the interpolation factor is `1.0` then the result is `other`.

Parameters:
`other` - the other vector
`t` - the interpolation factor between 0.0 and 1.0
`dest` - will hold the result
Returns:
dest
• ### fma

Vector2f fma(Vector2fc a, Vector2fc b, Vector2f dest)
Add the component-wise multiplication of `a * b` to this vector and store the result in `dest`.
Parameters:
`a` - the first multiplicand
`b` - the second multiplicand
`dest` - will hold the result
Returns:
dest
• ### fma

Vector2f fma(float a, Vector2fc b, Vector2f dest)
Add the component-wise multiplication of `a * b` to this vector and store the result in `dest`.
Parameters:
`a` - the first multiplicand
`b` - the second multiplicand
`dest` - will hold the result
Returns:
dest
• ### min

Vector2f min(Vector2fc v, Vector2f dest)
Set the components of `dest` to be the component-wise minimum of this and the other vector.
Parameters:
`v` - the other vector
`dest` - will hold the result
Returns:
dest
• ### max

Vector2f max(Vector2fc v, Vector2f dest)
Set the components of `dest` to be the component-wise maximum of this and the other vector.
Parameters:
`v` - the other vector
`dest` - will hold the result
Returns:
dest
• ### maxComponent

int maxComponent()
Determine the component with the biggest absolute value.
Returns:
the component index, within `[0..1]`
• ### minComponent

int minComponent()
Determine the component with the smallest (towards zero) absolute value.
Returns:
the component index, within `[0..1]`
• ### get

float get(int component) throws IllegalArgumentException
Get the value of the specified component of this vector.
Parameters:
`component` - the component, within `[0..1]`
Returns:
the value
Throws:
`IllegalArgumentException` - if `component` is not within `[0..1]`
• ### get

Vector2i get(int mode, Vector2i dest)
Set the components of the given vector `dest` to those of `this` vector using the given `RoundingMode`.
Parameters:
`mode` - the `RoundingMode` to use
`dest` - will hold the result
Returns:
dest
• ### get

Vector2f get(Vector2f dest)
Set the components of the given vector `dest` to those of `this` vector.
Parameters:
`dest` - will hold the result
Returns:
dest
• ### get

Vector2d get(Vector2d dest)
Set the components of the given vector `dest` to those of `this` vector.
Parameters:
`dest` - will hold the result
Returns:
dest
• ### floor

Vector2f floor(Vector2f dest)
Compute for each component of this vector the largest (closest to positive infinity) `float` value that is less than or equal to that component and is equal to a mathematical integer and store the result in `dest`.
Parameters:
`dest` - will hold the result
Returns:
dest
• ### ceil

Vector2f ceil(Vector2f dest)
Compute for each component of this vector the smallest (closest to negative infinity) `float` value that is greater than or equal to that component and is equal to a mathematical integer and store the result in `dest`.
Parameters:
`dest` - will hold the result
Returns:
dest
• ### round

Vector2f round(Vector2f dest)
Compute for each component of this vector the closest float that is equal to a mathematical integer, with ties rounding to positive infinity and store the result in `dest`.
Parameters:
`dest` - will hold the result
Returns:
dest
• ### isFinite

boolean isFinite()
Determine whether all components are finite floating-point values, that is, they are not `NaN` and not `infinity`.
Returns:
`true` if all components are finite floating-point values; `false` otherwise
• ### absolute

Vector2f absolute(Vector2f dest)
Compute the absolute of each of this vector's components and store the result into `dest`.
Parameters:
`dest` - will hold the result
Returns:
dest
• ### equals

boolean equals(Vector2fc v, float delta)
Compare the vector components of `this` vector with the given vector using the given `delta` and return whether all of them are equal within a maximum difference of `delta`.

Please note that this method is not used by any data structure such as `ArrayList` `HashSet` or `HashMap` and their operations, such as `ArrayList.contains(Object)` or `HashSet.remove(Object)`, since those data structures only use the `Object.equals(Object)` and `Object.hashCode()` methods.

Parameters:
`v` - the other vector
`delta` - the allowed maximum difference
Returns:
`true` whether all of the vector components are equal; `false` otherwise
• ### equals

boolean equals(float x, float y)
Compare the vector components of `this` vector with the given `(x, y)` and return whether all of them are equal.
Parameters:
`x` - the x component to compare to
`y` - the y component to compare to
Returns:
`true` if all the vector components are equal