Package org.joml

Class Matrix3d

java.lang.Object
org.joml.Matrix3d
All Implemented Interfaces:
Externalizable, Serializable, Cloneable, Matrix3dc
Direct Known Subclasses:
Matrix3dStack

public class Matrix3d extends Object implements Externalizable, Cloneable, Matrix3dc
Contains the definition of a 3x3 matrix of doubles, and associated functions to transform it. The matrix is column-major to match OpenGL's interpretation, and it looks like this:

m00 m10 m20
m01 m11 m21
m02 m12 m22

Author:
Richard Greenlees, Kai Burjack
See Also:
Serialized Form
  • Field Summary

    Fields
    Modifier and Type
    Field
    Description
    double
     
    double
     
    double
     
    double
     
    double
     
    double
     
    double
     
    double
     
    double
     
  • Constructor Summary

    Constructors
    Constructor
    Description
    Create a new Matrix3d and initialize it to identity.
    Matrix3d​(double m00, double m01, double m02, double m10, double m11, double m12, double m20, double m21, double m22)
    Create a new Matrix3d and initialize its elements with the given values.
    Create a new Matrix3d by reading its 9 double components from the given DoubleBuffer at the buffer's current position.
    Create a new Matrix3d by setting its uppper left 2x2 submatrix to the values of the given Matrix2dc and the rest to identity.
    Create a new Matrix3d by setting its uppper left 2x2 submatrix to the values of the given Matrix2fc and the rest to identity.
    Create a new Matrix3d and initialize it with the values from the given matrix.
    Create a new Matrix3d and initialize it with the values from the given matrix.
    Create a new Matrix3d and make it a copy of the upper left 3x3 of the given Matrix4dc.
    Create a new Matrix3d and make it a copy of the upper left 3x3 of the given Matrix4fc.
    Matrix3d​(Vector3dc col0, Vector3dc col1, Vector3dc col2)
    Create a new Matrix3d and initialize its three columns using the supplied vectors.
  • Method Summary

    Modifier and Type
    Method
    Description
    add​(Matrix3dc other)
    Component-wise add this and other.
    add​(Matrix3dc other, Matrix3d dest)
    Component-wise add this and other and store the result in dest.
     
    Compute the cofactor matrix of this.
    cofactor​(Matrix3d dest)
    Compute the cofactor matrix of this and store it into dest.
    double
    Return the determinant of this matrix.
    boolean
    equals​(Object obj)
     
    boolean
    equals​(Matrix3dc m, double delta)
    Compare the matrix elements of this matrix with the given matrix using the given delta and return whether all of them are equal within a maximum difference of delta.
    double[]
    get​(double[] arr)
    Store this matrix into the supplied double array in column-major order.
    double[]
    get​(double[] arr, int offset)
    Store this matrix into the supplied double array in column-major order at the given offset.
    float[]
    get​(float[] arr)
    Store the elements of this matrix as float values in column-major order into the supplied float array.
    float[]
    get​(float[] arr, int offset)
    Store the elements of this matrix as float values in column-major order into the supplied float array at the given offset.
    double
    get​(int column, int row)
    Get the matrix element value at the given column and row.
    get​(int index, ByteBuffer buffer)
    Store this matrix in column-major order into the supplied ByteBuffer starting at the specified absolute buffer position/index.
    get​(int index, DoubleBuffer buffer)
    Store this matrix into the supplied DoubleBuffer starting at the specified absolute buffer position/index using column-major order.
    get​(int index, FloatBuffer buffer)
    Store this matrix in column-major order into the supplied FloatBuffer starting at the specified absolute buffer position/index.
    get​(ByteBuffer buffer)
    Store this matrix in column-major order into the supplied ByteBuffer at the current buffer position.
    get​(DoubleBuffer buffer)
    Store this matrix into the supplied DoubleBuffer at the current buffer position using column-major order.
    get​(FloatBuffer buffer)
    Store this matrix in column-major order into the supplied FloatBuffer at the current buffer position.
    get​(Matrix3d dest)
    Get the current values of this matrix and store them into dest.
    getColumn​(int column, Vector3d dest)
    Get the column at the given column index, starting with 0.
    Extract the Euler angles from the rotation represented by this matrix and store the extracted Euler angles in dest.
    getFloats​(int index, ByteBuffer buffer)
    Store the elements of this matrix as float values in column-major order into the supplied ByteBuffer starting at the specified absolute buffer position/index.
    getFloats​(ByteBuffer buffer)
    Store the elements of this matrix as float values in column-major order into the supplied ByteBuffer at the current buffer position.
    Get the current values of this matrix and store the represented rotation into the given Quaterniond.
    Get the current values of this matrix and store the represented rotation into the given Quaternionf.
    Get the current values of this matrix and store the represented rotation into the given AxisAngle4f.
    getRow​(int row, Vector3d dest)
    Get the row at the given row index, starting with 0.
    double
    getRowColumn​(int row, int column)
    Get the matrix element value at the given row and column.
    getScale​(Vector3d dest)
    Get the scaling factors of this matrix for the three base axes.
    getToAddress​(long address)
    Store this matrix in column-major order at the given off-heap address.
    Get the current values of this matrix and store the represented rotation into the given Quaterniond.
    Get the current values of this matrix and store the represented rotation into the given Quaternionf.
    int
     
    Set this matrix to the identity.
    Invert this matrix.
    invert​(Matrix3d dest)
    Invert this matrix and store the result in dest.
    boolean
    Determine whether all matrix elements are finite floating-point values, that is, they are not NaN and not infinity.
    lerp​(Matrix3dc other, double t)
    Linearly interpolate this and other using the given interpolation factor t and store the result in this.
    lerp​(Matrix3dc other, double t, Matrix3d dest)
    Linearly interpolate this and other using the given interpolation factor t and store the result in dest.
    lookAlong​(double dirX, double dirY, double dirZ, double upX, double upY, double upZ)
    Apply a rotation transformation to this matrix to make -z point along dir.
    lookAlong​(double dirX, double dirY, double dirZ, double upX, double upY, double upZ, Matrix3d dest)
    Apply a rotation transformation to this matrix to make -z point along dir and store the result in dest.
    Apply a rotation transformation to this matrix to make -z point along dir.
    lookAlong​(Vector3dc dir, Vector3dc up, Matrix3d dest)
    Apply a rotation transformation to this matrix to make -z point along dir and store the result in dest.
    double
    m00()
    Return the value of the matrix element at column 0 and row 0.
    m00​(double m00)
    Set the value of the matrix element at column 0 and row 0.
    double
    m01()
    Return the value of the matrix element at column 0 and row 1.
    m01​(double m01)
    Set the value of the matrix element at column 0 and row 1.
    double
    m02()
    Return the value of the matrix element at column 0 and row 2.
    m02​(double m02)
    Set the value of the matrix element at column 0 and row 2.
    double
    m10()
    Return the value of the matrix element at column 1 and row 0.
    m10​(double m10)
    Set the value of the matrix element at column 1 and row 0.
    double
    m11()
    Return the value of the matrix element at column 1 and row 1.
    m11​(double m11)
    Set the value of the matrix element at column 1 and row 1.
    double
    m12()
    Return the value of the matrix element at column 1 and row 2.
    m12​(double m12)
    Set the value of the matrix element at column 1 and row 2.
    double
    m20()
    Return the value of the matrix element at column 2 and row 0.
    m20​(double m20)
    Set the value of the matrix element at column 2 and row 0.
    double
    m21()
    Return the value of the matrix element at column 2 and row 1.
    m21​(double m21)
    Set the value of the matrix element at column 2 and row 1.
    double
    m22()
    Return the value of the matrix element at column 2 and row 2.
    m22​(double m22)
    Set the value of the matrix element at column 2 and row 2.
    mul​(Matrix3dc right)
    Multiply this matrix by the supplied matrix.
    mul​(Matrix3dc right, Matrix3d dest)
    Multiply this matrix by the supplied matrix and store the result in dest.
    mul​(Matrix3fc right)
    Multiply this matrix by the supplied matrix.
    mul​(Matrix3fc right, Matrix3d dest)
    Multiply this matrix by the supplied matrix and store the result in dest.
    Component-wise multiply this by other.
    Component-wise multiply this by other and store the result in dest.
    Pre-multiply this matrix by the supplied left matrix and store the result in this.
    mulLocal​(Matrix3dc left, Matrix3d dest)
    Pre-multiply this matrix by the supplied left matrix and store the result in dest.
    Set this matrix to its own normal matrix.
    normal​(Matrix3d dest)
    Compute a normal matrix from this matrix and store it into dest.
    Obtain the direction of +X before the transformation represented by this orthogonal matrix is applied.
    Obtain the direction of +Y before the transformation represented by this orthogonal matrix is applied.
    Obtain the direction of +Z before the transformation represented by this orthogonal matrix is applied.
    obliqueZ​(double a, double b)
    Apply an oblique projection transformation to this matrix with the given values for a and b.
    obliqueZ​(double a, double b, Matrix3d dest)
    Apply an oblique projection transformation to this matrix with the given values for a and b and store the result in dest.
    Obtain the direction of +X before the transformation represented by this matrix is applied.
    Obtain the direction of +Y before the transformation represented by this matrix is applied.
    Obtain the direction of +Z before the transformation represented by this matrix is applied.
    double
    quadraticFormProduct​(double x, double y, double z)
    Compute (x, y, z)^T * this * (x, y, z).
    double
    Compute v^T * this * v.
    double
    Compute v^T * this * v.
    void
     
    reflect​(double nx, double ny, double nz)
    Apply a mirror/reflection transformation to this matrix that reflects through the given plane specified via the plane normal.
    reflect​(double nx, double ny, double nz, Matrix3d dest)
    Apply a mirror/reflection transformation to this matrix that reflects through the given plane specified via the plane normal (nx, ny, nz), and store the result in dest.
    reflect​(Quaterniondc orientation)
    Apply a mirror/reflection transformation to this matrix that reflects about a plane specified via the plane orientation.
    reflect​(Quaterniondc orientation, Matrix3d dest)
    Apply a mirror/reflection transformation to this matrix that reflects through a plane specified via the plane orientation, and store the result in dest.
    reflect​(Vector3dc normal)
    Apply a mirror/reflection transformation to this matrix that reflects through the given plane specified via the plane normal.
    reflect​(Vector3dc normal, Matrix3d dest)
    Apply a mirror/reflection transformation to this matrix that reflects through the given plane specified via the plane normal, and store the result in dest.
    reflection​(double nx, double ny, double nz)
    Set this matrix to a mirror/reflection transformation that reflects through the given plane specified via the plane normal.
    reflection​(Quaterniondc orientation)
    Set this matrix to a mirror/reflection transformation that reflects through a plane specified via the plane orientation.
    reflection​(Vector3dc normal)
    Set this matrix to a mirror/reflection transformation that reflects through the given plane specified via the plane normal.
    rotate​(double ang, double x, double y, double z)
    Apply rotation to this matrix by rotating the given amount of radians about the given axis specified as x, y and z components.
    rotate​(double ang, double x, double y, double z, Matrix3d dest)
    Apply rotation to this matrix by rotating the given amount of radians about the given axis specified as x, y and z components, and store the result in dest.
    rotate​(double angle, Vector3dc axis)
    Apply a rotation transformation, rotating the given radians about the specified axis, to this matrix.
    rotate​(double angle, Vector3dc axis, Matrix3d dest)
    Apply a rotation transformation, rotating the given radians about the specified axis and store the result in dest.
    rotate​(double angle, Vector3fc axis)
    Apply a rotation transformation, rotating the given radians about the specified axis, to this matrix.
    rotate​(double angle, Vector3fc axis, Matrix3d dest)
    Apply a rotation transformation, rotating the given radians about the specified axis and store the result in dest.
    rotate​(AxisAngle4d axisAngle)
    Apply a rotation transformation, rotating about the given AxisAngle4d, to this matrix.
    rotate​(AxisAngle4d axisAngle, Matrix3d dest)
    Apply a rotation transformation, rotating about the given AxisAngle4d and store the result in dest.
    rotate​(AxisAngle4f axisAngle)
    Apply a rotation transformation, rotating about the given AxisAngle4f, to this matrix.
    rotate​(AxisAngle4f axisAngle, Matrix3d dest)
    Apply a rotation transformation, rotating about the given AxisAngle4f and store the result in dest.
    Apply the rotation - and possibly scaling - transformation of the given Quaterniondc to this matrix.
    rotate​(Quaterniondc quat, Matrix3d dest)
    Apply the rotation - and possibly scaling - transformation of the given Quaterniondc to this matrix and store the result in dest.
    Apply the rotation - and possibly scaling - transformation of the given Quaternionfc to this matrix.
    rotate​(Quaternionfc quat, Matrix3d dest)
    Apply the rotation - and possibly scaling - transformation of the given Quaternionfc to this matrix and store the result in dest.
    rotateLocal​(double ang, double x, double y, double z)
    Pre-multiply a rotation to this matrix by rotating the given amount of radians about the specified (x, y, z) axis.
    rotateLocal​(double ang, double x, double y, double z, Matrix3d dest)
    Pre-multiply a rotation to this matrix by rotating the given amount of radians about the specified (x, y, z) axis and store the result in dest.
    Pre-multiply the rotation - and possibly scaling - transformation of the given Quaterniondc to this matrix.
    Pre-multiply the rotation - and possibly scaling - transformation of the given Quaterniondc to this matrix and store the result in dest.
    Pre-multiply the rotation - and possibly scaling - transformation of the given Quaternionfc to this matrix.
    Pre-multiply the rotation - and possibly scaling - transformation of the given Quaternionfc to this matrix and store the result in dest.
    rotateLocalX​(double ang)
    Pre-multiply a rotation to this matrix by rotating the given amount of radians about the X axis.
    rotateLocalX​(double ang, Matrix3d dest)
    Pre-multiply a rotation around the X axis to this matrix by rotating the given amount of radians about the X axis and store the result in dest.
    rotateLocalY​(double ang)
    Pre-multiply a rotation to this matrix by rotating the given amount of radians about the Y axis.
    rotateLocalY​(double ang, Matrix3d dest)
    Pre-multiply a rotation around the Y axis to this matrix by rotating the given amount of radians about the Y axis and store the result in dest.
    rotateLocalZ​(double ang)
    Pre-multiply a rotation to this matrix by rotating the given amount of radians about the Z axis.
    rotateLocalZ​(double ang, Matrix3d dest)
    Pre-multiply a rotation around the Z axis to this matrix by rotating the given amount of radians about the Z axis and store the result in dest.
    rotateTowards​(double dirX, double dirY, double dirZ, double upX, double upY, double upZ)
    Apply a model transformation to this matrix for a right-handed coordinate system, that aligns the local +Z axis with direction.
    rotateTowards​(double dirX, double dirY, double dirZ, double upX, double upY, double upZ, Matrix3d dest)
    Apply a model transformation to this matrix for a right-handed coordinate system, that aligns the local +Z axis with dir and store the result in dest.
    rotateTowards​(Vector3dc direction, Vector3dc up)
    Apply a model transformation to this matrix for a right-handed coordinate system, that aligns the local +Z axis with direction.
    rotateTowards​(Vector3dc direction, Vector3dc up, Matrix3d dest)
    Apply a model transformation to this matrix for a right-handed coordinate system, that aligns the local +Z axis with direction and store the result in dest.
    rotateX​(double ang)
    Apply rotation about the X axis to this matrix by rotating the given amount of radians.
    rotateX​(double ang, Matrix3d dest)
    Apply rotation about the X axis to this matrix by rotating the given amount of radians and store the result in dest.
    rotateXYZ​(double angleX, double angleY, double angleZ)
    Apply rotation of angleX radians about the X axis, followed by a rotation of angleY radians about the Y axis and followed by a rotation of angleZ radians about the Z axis.
    rotateXYZ​(double angleX, double angleY, double angleZ, Matrix3d dest)
    Apply rotation of angleX radians about the X axis, followed by a rotation of angleY radians about the Y axis and followed by a rotation of angleZ radians about the Z axis and store the result in dest.
    rotateY​(double ang)
    Apply rotation about the Y axis to this matrix by rotating the given amount of radians.
    rotateY​(double ang, Matrix3d dest)
    Apply rotation about the Y axis to this matrix by rotating the given amount of radians and store the result in dest.
    rotateYXZ​(double angleY, double angleX, double angleZ)
    Apply rotation of angleY radians about the Y axis, followed by a rotation of angleX radians about the X axis and followed by a rotation of angleZ radians about the Z axis.
    rotateYXZ​(double angleY, double angleX, double angleZ, Matrix3d dest)
    Apply rotation of angleY radians about the Y axis, followed by a rotation of angleX radians about the X axis and followed by a rotation of angleZ radians about the Z axis and store the result in dest.
    rotateYXZ​(Vector3d angles)
    Apply rotation of angles.y radians about the Y axis, followed by a rotation of angles.x radians about the X axis and followed by a rotation of angles.z radians about the Z axis.
    rotateZ​(double ang)
    Apply rotation about the Z axis to this matrix by rotating the given amount of radians.
    rotateZ​(double ang, Matrix3d dest)
    Apply rotation about the Z axis to this matrix by rotating the given amount of radians and store the result in dest.
    rotateZYX​(double angleZ, double angleY, double angleX)
    Apply rotation of angleZ radians about the Z axis, followed by a rotation of angleY radians about the Y axis and followed by a rotation of angleX radians about the X axis.
    rotateZYX​(double angleZ, double angleY, double angleX, Matrix3d dest)
    Apply rotation of angleZ radians about the Z axis, followed by a rotation of angleY radians about the Y axis and followed by a rotation of angleX radians about the X axis and store the result in dest.
    rotation​(double angle, double x, double y, double z)
    Set this matrix to a rotation matrix which rotates the given radians about a given axis.
    rotation​(double angle, Vector3dc axis)
    Set this matrix to a rotation matrix which rotates the given radians about a given axis.
    rotation​(double angle, Vector3fc axis)
    Set this matrix to a rotation matrix which rotates the given radians about a given axis.
    rotation​(AxisAngle4d axisAngle)
    Set this matrix to a rotation transformation using the given AxisAngle4d.
    rotation​(AxisAngle4f axisAngle)
    Set this matrix to a rotation transformation using the given AxisAngle4f.
    Set this matrix to the rotation - and possibly scaling - transformation of the given Quaterniondc.
    Set this matrix to the rotation - and possibly scaling - transformation of the given Quaternionfc.
    rotationTowards​(double dirX, double dirY, double dirZ, double upX, double upY, double upZ)
    Set this matrix to a model transformation for a right-handed coordinate system, that aligns the local -z axis with center - eye.
    Set this matrix to a model transformation for a right-handed coordinate system, that aligns the local -z axis with center - eye.
    rotationX​(double ang)
    Set this matrix to a rotation transformation about the X axis.
    rotationXYZ​(double angleX, double angleY, double angleZ)
    Set this matrix to a rotation of angleX radians about the X axis, followed by a rotation of angleY radians about the Y axis and followed by a rotation of angleZ radians about the Z axis.
    rotationY​(double ang)
    Set this matrix to a rotation transformation about the Y axis.
    rotationYXZ​(double angleY, double angleX, double angleZ)
    Set this matrix to a rotation of angleY radians about the Y axis, followed by a rotation of angleX radians about the X axis and followed by a rotation of angleZ radians about the Z axis.
    rotationZ​(double ang)
    Set this matrix to a rotation transformation about the Z axis.
    rotationZYX​(double angleZ, double angleY, double angleX)
    Set this matrix to a rotation of angleZ radians about the Z axis, followed by a rotation of angleY radians about the Y axis and followed by a rotation of angleX radians about the X axis.
    scale​(double xyz)
    Apply scaling to this matrix by uniformly scaling all base axes by the given xyz factor.
    scale​(double x, double y, double z)
    Apply scaling to this matrix by scaling the base axes by the given x, y and z factors.
    scale​(double x, double y, double z, Matrix3d dest)
    Apply scaling to this matrix by scaling the base axes by the given x, y and z factors and store the result in dest.
    scale​(double xyz, Matrix3d dest)
    Apply scaling to this matrix by uniformly scaling all base axes by the given xyz factor and store the result in dest.
    scale​(Vector3dc xyz)
    Apply scaling to this matrix by scaling the base axes by the given xyz.x, xyz.y and xyz.z factors, respectively.
    scale​(Vector3dc xyz, Matrix3d dest)
    Apply scaling to this matrix by scaling the base axes by the given xyz.x, xyz.y and xyz.z factors, respectively and store the result in dest.
    scaleLocal​(double x, double y, double z)
    Pre-multiply scaling to this matrix by scaling the base axes by the given x, y and z factors.
    scaleLocal​(double x, double y, double z, Matrix3d dest)
    Pre-multiply scaling to this matrix by scaling the base axes by the given x, y and z factors and store the result in dest.
    scaling​(double factor)
    Set this matrix to be a simple scale matrix, which scales all axes uniformly by the given factor.
    scaling​(double x, double y, double z)
    Set this matrix to be a simple scale matrix.
    Set this matrix to be a simple scale matrix which scales the base axes by xyz.x, xyz.y and xyz.z respectively.
    set​(double[] m)
    Set the values in this matrix based on the supplied double array.
    set​(double m00, double m01, double m02, double m10, double m11, double m12, double m20, double m21, double m22)
    Set the values within this matrix to the supplied double values.
    set​(float[] m)
    Set the values in this matrix based on the supplied double array.
    set​(int column, int row, double value)
    Set the matrix element at the given column and row to the specified value.
    set​(int index, ByteBuffer buffer)
    Set the values of this matrix by reading 9 double values from the given ByteBuffer in column-major order, starting at the specified absolute buffer position/index.
    set​(int index, DoubleBuffer buffer)
    Set the values of this matrix by reading 9 double values from the given DoubleBuffer in column-major order, starting at the specified absolute buffer position/index.
    set​(int index, FloatBuffer buffer)
    Set the values of this matrix by reading 9 float values from the given FloatBuffer in column-major order, starting at the specified absolute buffer position/index.
    set​(ByteBuffer buffer)
    Set the values of this matrix by reading 9 double values from the given ByteBuffer in column-major order, starting at its current position.
    set​(DoubleBuffer buffer)
    Set the values of this matrix by reading 9 double values from the given DoubleBuffer in column-major order, starting at its current position.
    set​(FloatBuffer buffer)
    Set the values of this matrix by reading 9 float values from the given FloatBuffer in column-major order, starting at its current position.
    set​(AxisAngle4d axisAngle)
    Set this matrix to be equivalent to the rotation specified by the given AxisAngle4d.
    set​(AxisAngle4f axisAngle)
    Set this matrix to be equivalent to the rotation specified by the given AxisAngle4f.
    set​(Matrix2dc mat)
    Set the upper left 2x2 submatrix of this Matrix3d to the given Matrix2dc and the rest to identity.
    set​(Matrix2fc mat)
    Set the upper left 2x2 submatrix of this Matrix3d to the given Matrix2fc and the rest to identity.
    set​(Matrix3dc m)
    Set the values in this matrix to the ones in m.
    set​(Matrix3fc m)
    Set the values in this matrix to the ones in m.
    set​(Matrix4dc mat)
    Set the elements of this matrix to the upper left 3x3 of the given Matrix4dc.
    set​(Matrix4fc mat)
    Set the elements of this matrix to the upper left 3x3 of the given Matrix4fc.
    Set the elements of this matrix to the left 3x3 submatrix of m.
    Set this matrix to a rotation - and possibly scaling - equivalent to the given quaternion.
    Set this matrix to a rotation - and possibly scaling - equivalent to the given quaternion.
    set​(Vector3dc col0, Vector3dc col1, Vector3dc col2)
    Set the three columns of this matrix to the supplied vectors, respectively.
    setColumn​(int column, double x, double y, double z)
    Set the column at the given column index, starting with 0.
    setColumn​(int column, Vector3dc src)
    Set the column at the given column index, starting with 0.
    setFloats​(int index, ByteBuffer buffer)
    Set the values of this matrix by reading 9 float values from the given ByteBuffer in column-major order, starting at the specified absolute buffer position/index.
    setFloats​(ByteBuffer buffer)
    Set the values of this matrix by reading 9 float values from the given ByteBuffer in column-major order, starting at its current position.
    setFromAddress​(long address)
    Set the values of this matrix by reading 9 double values from off-heap memory in column-major order, starting at the given address.
    setLookAlong​(double dirX, double dirY, double dirZ, double upX, double upY, double upZ)
    Set this matrix to a rotation transformation to make -z point along dir.
    Set this matrix to a rotation transformation to make -z point along dir.
    setRow​(int row, double x, double y, double z)
    Set the row at the given row index, starting with 0.
    setRow​(int row, Vector3dc src)
    Set the row at the given row index, starting with 0.
    setRowColumn​(int row, int column, double value)
    Set the matrix element at the given row and column to the specified value.
    setSkewSymmetric​(double a, double b, double c)
    Set this matrix to a skew-symmetric matrix using the following layout:
    Store the values of the transpose of the given matrix m into this matrix.
    Store the values of the transpose of the given matrix m into this matrix.
    sub​(Matrix3dc subtrahend)
    Component-wise subtract subtrahend from this.
    sub​(Matrix3dc subtrahend, Matrix3d dest)
    Component-wise subtract subtrahend from this and store the result in dest.
    swap​(Matrix3d other)
    Exchange the values of this matrix with the given other matrix.
    Return a string representation of this matrix.
    toString​(NumberFormat formatter)
    Return a string representation of this matrix by formatting the matrix elements with the given NumberFormat.
    transform​(double x, double y, double z, Vector3d dest)
    Transform the vector (x, y, z) by this matrix and store the result in dest.
    Transform the given vector by this matrix.
    Transform the given vector by this matrix and store the result in dest.
    Transform the given vector by this matrix.
    Transform the given vector by this matrix and store the result in dest.
    transformTranspose​(double x, double y, double z, Vector3d dest)
    Transform the vector (x, y, z) by the transpose of this matrix and store the result in dest.
    Transform the given vector by the transpose of this matrix.
    Transform the given vector by the transpose of this matrix and store the result in dest.
    Transpose this matrix.
    Transpose this matrix and store the result in dest.
    void
     
    Set all the values within this matrix to 0.

    Methods inherited from class java.lang.Object

    finalize, getClass, notify, notifyAll, wait, wait, wait
  • Field Details

    • m00

      public double m00
    • m01

      public double m01
    • m02

      public double m02
    • m10

      public double m10
    • m11

      public double m11
    • m12

      public double m12
    • m20

      public double m20
    • m21

      public double m21
    • m22

      public double m22
  • Constructor Details

    • Matrix3d

      public Matrix3d()
      Create a new Matrix3d and initialize it to identity.
    • Matrix3d

      public Matrix3d(Matrix2dc mat)
      Create a new Matrix3d by setting its uppper left 2x2 submatrix to the values of the given Matrix2dc and the rest to identity.
      Parameters:
      mat - the Matrix2dc
    • Matrix3d

      public Matrix3d(Matrix2fc mat)
      Create a new Matrix3d by setting its uppper left 2x2 submatrix to the values of the given Matrix2fc and the rest to identity.
      Parameters:
      mat - the Matrix2fc
    • Matrix3d

      public Matrix3d(Matrix3dc mat)
      Create a new Matrix3d and initialize it with the values from the given matrix.
      Parameters:
      mat - the matrix to initialize this matrix with
    • Matrix3d

      public Matrix3d(Matrix3fc mat)
      Create a new Matrix3d and initialize it with the values from the given matrix.
      Parameters:
      mat - the matrix to initialize this matrix with
    • Matrix3d

      public Matrix3d(Matrix4fc mat)
      Create a new Matrix3d and make it a copy of the upper left 3x3 of the given Matrix4fc.
      Parameters:
      mat - the Matrix4fc to copy the values from
    • Matrix3d

      public Matrix3d(Matrix4dc mat)
      Create a new Matrix3d and make it a copy of the upper left 3x3 of the given Matrix4dc.
      Parameters:
      mat - the Matrix4dc to copy the values from
    • Matrix3d

      public Matrix3d(double m00, double m01, double m02, double m10, double m11, double m12, double m20, double m21, double m22)
      Create a new Matrix3d and initialize its elements with the given values.
      Parameters:
      m00 - the value of m00
      m01 - the value of m01
      m02 - the value of m02
      m10 - the value of m10
      m11 - the value of m11
      m12 - the value of m12
      m20 - the value of m20
      m21 - the value of m21
      m22 - the value of m22
    • Matrix3d

      public Matrix3d(DoubleBuffer buffer)
      Create a new Matrix3d by reading its 9 double components from the given DoubleBuffer at the buffer's current position.

      That DoubleBuffer is expected to hold the values in column-major order.

      The buffer's position will not be changed by this method.

      Parameters:
      buffer - the DoubleBuffer to read the matrix values from
    • Matrix3d

      public Matrix3d(Vector3dc col0, Vector3dc col1, Vector3dc col2)
      Create a new Matrix3d and initialize its three columns using the supplied vectors.
      Parameters:
      col0 - the first column
      col1 - the second column
      col2 - the third column
  • Method Details

    • m00

      public double m00()
      Description copied from interface: Matrix3dc
      Return the value of the matrix element at column 0 and row 0.
      Specified by:
      m00 in interface Matrix3dc
      Returns:
      the value of the matrix element
    • m01

      public double m01()
      Description copied from interface: Matrix3dc
      Return the value of the matrix element at column 0 and row 1.
      Specified by:
      m01 in interface Matrix3dc
      Returns:
      the value of the matrix element
    • m02

      public double m02()
      Description copied from interface: Matrix3dc
      Return the value of the matrix element at column 0 and row 2.
      Specified by:
      m02 in interface Matrix3dc
      Returns:
      the value of the matrix element
    • m10

      public double m10()
      Description copied from interface: Matrix3dc
      Return the value of the matrix element at column 1 and row 0.
      Specified by:
      m10 in interface Matrix3dc
      Returns:
      the value of the matrix element
    • m11

      public double m11()
      Description copied from interface: Matrix3dc
      Return the value of the matrix element at column 1 and row 1.
      Specified by:
      m11 in interface Matrix3dc
      Returns:
      the value of the matrix element
    • m12

      public double m12()
      Description copied from interface: Matrix3dc
      Return the value of the matrix element at column 1 and row 2.
      Specified by:
      m12 in interface Matrix3dc
      Returns:
      the value of the matrix element
    • m20

      public double m20()
      Description copied from interface: Matrix3dc
      Return the value of the matrix element at column 2 and row 0.
      Specified by:
      m20 in interface Matrix3dc
      Returns:
      the value of the matrix element
    • m21

      public double m21()
      Description copied from interface: Matrix3dc
      Return the value of the matrix element at column 2 and row 1.
      Specified by:
      m21 in interface Matrix3dc
      Returns:
      the value of the matrix element
    • m22

      public double m22()
      Description copied from interface: Matrix3dc
      Return the value of the matrix element at column 2 and row 2.
      Specified by:
      m22 in interface Matrix3dc
      Returns:
      the value of the matrix element
    • m00

      public Matrix3d m00(double m00)
      Set the value of the matrix element at column 0 and row 0.
      Parameters:
      m00 - the new value
      Returns:
      this
    • m01

      public Matrix3d m01(double m01)
      Set the value of the matrix element at column 0 and row 1.
      Parameters:
      m01 - the new value
      Returns:
      this
    • m02

      public Matrix3d m02(double m02)
      Set the value of the matrix element at column 0 and row 2.
      Parameters:
      m02 - the new value
      Returns:
      this
    • m10

      public Matrix3d m10(double m10)
      Set the value of the matrix element at column 1 and row 0.
      Parameters:
      m10 - the new value
      Returns:
      this
    • m11

      public Matrix3d m11(double m11)
      Set the value of the matrix element at column 1 and row 1.
      Parameters:
      m11 - the new value
      Returns:
      this
    • m12

      public Matrix3d m12(double m12)
      Set the value of the matrix element at column 1 and row 2.
      Parameters:
      m12 - the new value
      Returns:
      this
    • m20

      public Matrix3d m20(double m20)
      Set the value of the matrix element at column 2 and row 0.
      Parameters:
      m20 - the new value
      Returns:
      this
    • m21

      public Matrix3d m21(double m21)
      Set the value of the matrix element at column 2 and row 1.
      Parameters:
      m21 - the new value
      Returns:
      this
    • m22

      public Matrix3d m22(double m22)
      Set the value of the matrix element at column 2 and row 2.
      Parameters:
      m22 - the new value
      Returns:
      this
    • set

      public Matrix3d set(Matrix3dc m)
      Set the values in this matrix to the ones in m.
      Parameters:
      m - the matrix whose values will be copied
      Returns:
      this
    • setTransposed

      public Matrix3d setTransposed(Matrix3dc m)
      Store the values of the transpose of the given matrix m into this matrix.
      Parameters:
      m - the matrix to copy the transposed values from
      Returns:
      this
    • set

      public Matrix3d set(Matrix3fc m)
      Set the values in this matrix to the ones in m.
      Parameters:
      m - the matrix whose values will be copied
      Returns:
      this
    • setTransposed

      public Matrix3d setTransposed(Matrix3fc m)
      Store the values of the transpose of the given matrix m into this matrix.
      Parameters:
      m - the matrix to copy the transposed values from
      Returns:
      this
    • set

      public Matrix3d set(Matrix4x3dc m)
      Set the elements of this matrix to the left 3x3 submatrix of m.
      Parameters:
      m - the matrix to copy the elements from
      Returns:
      this
    • set

      public Matrix3d set(Matrix4fc mat)
      Set the elements of this matrix to the upper left 3x3 of the given Matrix4fc.
      Parameters:
      mat - the Matrix4fc to copy the values from
      Returns:
      this
    • set

      public Matrix3d set(Matrix4dc mat)
      Set the elements of this matrix to the upper left 3x3 of the given Matrix4dc.
      Parameters:
      mat - the Matrix4dc to copy the values from
      Returns:
      this
    • set

      public Matrix3d set(Matrix2fc mat)
      Set the upper left 2x2 submatrix of this Matrix3d to the given Matrix2fc and the rest to identity.
      Parameters:
      mat - the Matrix2fc
      Returns:
      this
      See Also:
      Matrix3d(Matrix2fc)
    • set

      public Matrix3d set(Matrix2dc mat)
      Set the upper left 2x2 submatrix of this Matrix3d to the given Matrix2dc and the rest to identity.
      Parameters:
      mat - the Matrix2dc
      Returns:
      this
      See Also:
      Matrix3d(Matrix2dc)
    • set

      public Matrix3d set(AxisAngle4f axisAngle)
      Set this matrix to be equivalent to the rotation specified by the given AxisAngle4f.
      Parameters:
      axisAngle - the AxisAngle4f
      Returns:
      this
    • set

      public Matrix3d set(AxisAngle4d axisAngle)
      Set this matrix to be equivalent to the rotation specified by the given AxisAngle4d.
      Parameters:
      axisAngle - the AxisAngle4d
      Returns:
      this
    • set

      public Matrix3d set(Quaternionfc q)
      Set this matrix to a rotation - and possibly scaling - equivalent to the given quaternion.

      This method is equivalent to calling: rotation(q)

      Reference: http://www.euclideanspace.com/

      Parameters:
      q - the quaternion
      Returns:
      this
      See Also:
      rotation(Quaternionfc)
    • set

      public Matrix3d set(Quaterniondc q)
      Set this matrix to a rotation - and possibly scaling - equivalent to the given quaternion.

      This method is equivalent to calling: rotation(q)

      Reference: http://www.euclideanspace.com/

      Parameters:
      q - the quaternion
      Returns:
      this
      See Also:
      rotation(Quaterniondc)
    • mul

      public Matrix3d mul(Matrix3dc right)
      Multiply this matrix by the supplied matrix. This matrix will be the left one.

      If M is this matrix and R the right matrix, then the new matrix will be M * R. So when transforming a vector v with the new matrix by using M * R * v, the transformation of the right matrix will be applied first!

      Parameters:
      right - the right operand
      Returns:
      this
    • mul

      public Matrix3d mul(Matrix3dc right, Matrix3d dest)
      Description copied from interface: Matrix3dc
      Multiply this matrix by the supplied matrix and store the result in dest. This matrix will be the left one.

      If M is this matrix and R the right matrix, then the new matrix will be M * R. So when transforming a vector v with the new matrix by using M * R * v, the transformation of the right matrix will be applied first!

      Specified by:
      mul in interface Matrix3dc
      Parameters:
      right - the right operand
      dest - will hold the result
      Returns:
      dest
    • mulLocal

      public Matrix3d mulLocal(Matrix3dc left)
      Pre-multiply this matrix by the supplied left matrix and store the result in this.

      If M is this matrix and L the left matrix, then the new matrix will be L * M. So when transforming a vector v with the new matrix by using L * M * v, the transformation of this matrix will be applied first!

      Parameters:
      left - the left operand of the matrix multiplication
      Returns:
      this
    • mulLocal

      public Matrix3d mulLocal(Matrix3dc left, Matrix3d dest)
      Description copied from interface: Matrix3dc
      Pre-multiply this matrix by the supplied left matrix and store the result in dest.

      If M is this matrix and L the left matrix, then the new matrix will be L * M. So when transforming a vector v with the new matrix by using L * M * v, the transformation of this matrix will be applied first!

      Specified by:
      mulLocal in interface Matrix3dc
      Parameters:
      left - the left operand of the matrix multiplication
      dest - the destination matrix, which will hold the result
      Returns:
      dest
    • mul

      public Matrix3d mul(Matrix3fc right)
      Multiply this matrix by the supplied matrix. This matrix will be the left one.

      If M is this matrix and R the right matrix, then the new matrix will be M * R. So when transforming a vector v with the new matrix by using M * R * v, the transformation of the right matrix will be applied first!

      Parameters:
      right - the right operand
      Returns:
      this
    • mul

      public Matrix3d mul(Matrix3fc right, Matrix3d dest)
      Description copied from interface: Matrix3dc
      Multiply this matrix by the supplied matrix and store the result in dest. This matrix will be the left one.

      If M is this matrix and R the right matrix, then the new matrix will be M * R. So when transforming a vector v with the new matrix by using M * R * v, the transformation of the right matrix will be applied first!

      Specified by:
      mul in interface Matrix3dc
      Parameters:
      right - the right operand
      dest - will hold the result
      Returns:
      dest
    • set

      public Matrix3d set(double m00, double m01, double m02, double m10, double m11, double m12, double m20, double m21, double m22)
      Set the values within this matrix to the supplied double values. The result looks like this:

      m00, m10, m20
      m01, m11, m21
      m02, m12, m22

      Parameters:
      m00 - the new value of m00
      m01 - the new value of m01
      m02 - the new value of m02
      m10 - the new value of m10
      m11 - the new value of m11
      m12 - the new value of m12
      m20 - the new value of m20
      m21 - the new value of m21
      m22 - the new value of m22
      Returns:
      this
    • set

      public Matrix3d set(double[] m)
      Set the values in this matrix based on the supplied double array. The result looks like this:

      0, 3, 6
      1, 4, 7
      2, 5, 8

      Only uses the first 9 values, all others are ignored.

      Parameters:
      m - the array to read the matrix values from
      Returns:
      this
    • set

      public Matrix3d set(float[] m)
      Set the values in this matrix based on the supplied double array. The result looks like this:

      0, 3, 6
      1, 4, 7
      2, 5, 8

      Only uses the first 9 values, all others are ignored

      Parameters:
      m - the array to read the matrix values from
      Returns:
      this
    • determinant

      public double determinant()
      Description copied from interface: Matrix3dc
      Return the determinant of this matrix.
      Specified by:
      determinant in interface Matrix3dc
      Returns:
      the determinant
    • invert

      public Matrix3d invert()
      Invert this matrix.
      Returns:
      this
    • invert

      public Matrix3d invert(Matrix3d dest)
      Description copied from interface: Matrix3dc
      Invert this matrix and store the result in dest.
      Specified by:
      invert in interface Matrix3dc
      Parameters:
      dest - will hold the result
      Returns:
      dest
    • transpose

      public Matrix3d transpose()
      Transpose this matrix.
      Returns:
      this
    • transpose

      public Matrix3d transpose(Matrix3d dest)
      Description copied from interface: Matrix3dc
      Transpose this matrix and store the result in dest.
      Specified by:
      transpose in interface Matrix3dc
      Parameters:
      dest - will hold the result
      Returns:
      dest
    • toString

      public String toString()
      Return a string representation of this matrix.

      This method creates a new DecimalFormat on every invocation with the format string "0.000E0;-".

      Overrides:
      toString in class Object
      Returns:
      the string representation
    • toString

      public String toString(NumberFormat formatter)
      Return a string representation of this matrix by formatting the matrix elements with the given NumberFormat.
      Parameters:
      formatter - the NumberFormat used to format the matrix values with
      Returns:
      the string representation
    • get

      public Matrix3d get(Matrix3d dest)
      Get the current values of this matrix and store them into dest.

      This is the reverse method of set(Matrix3dc) and allows to obtain intermediate calculation results when chaining multiple transformations.

      Specified by:
      get in interface Matrix3dc
      Parameters:
      dest - the destination matrix
      Returns:
      the passed in destination
      See Also:
      set(Matrix3dc)
    • getRotation

      public AxisAngle4f getRotation(AxisAngle4f dest)
      Description copied from interface: Matrix3dc
      Get the current values of this matrix and store the represented rotation into the given AxisAngle4f.
      Specified by:
      getRotation in interface Matrix3dc
      Parameters:
      dest - the destination AxisAngle4f
      Returns:
      the passed in destination
      See Also:
      AxisAngle4f.set(Matrix3dc)
    • getUnnormalizedRotation

      public Quaternionf getUnnormalizedRotation(Quaternionf dest)
      Description copied from interface: Matrix3dc
      Get the current values of this matrix and store the represented rotation into the given Quaternionf.

      This method assumes that the three column vectors of this matrix are not normalized and thus allows to ignore any additional scaling factor that is applied to the matrix.

      Specified by:
      getUnnormalizedRotation in interface Matrix3dc
      Parameters:
      dest - the destination Quaternionf
      Returns:
      the passed in destination
      See Also:
      Quaternionf.setFromUnnormalized(Matrix3dc)
    • getNormalizedRotation

      public Quaternionf getNormalizedRotation(Quaternionf dest)
      Description copied from interface: Matrix3dc
      Get the current values of this matrix and store the represented rotation into the given Quaternionf.

      This method assumes that the three column vectors of this matrix are normalized.

      Specified by:
      getNormalizedRotation in interface Matrix3dc
      Parameters:
      dest - the destination Quaternionf
      Returns:
      the passed in destination
      See Also:
      Quaternionf.setFromNormalized(Matrix3dc)
    • getUnnormalizedRotation

      public Quaterniond getUnnormalizedRotation(Quaterniond dest)
      Description copied from interface: Matrix3dc
      Get the current values of this matrix and store the represented rotation into the given Quaterniond.

      This method assumes that the three column vectors of this matrix are not normalized and thus allows to ignore any additional scaling factor that is applied to the matrix.

      Specified by:
      getUnnormalizedRotation in interface Matrix3dc
      Parameters:
      dest - the destination Quaterniond
      Returns:
      the passed in destination
      See Also:
      Quaterniond.setFromUnnormalized(Matrix3dc)
    • getNormalizedRotation

      public Quaterniond getNormalizedRotation(Quaterniond dest)
      Description copied from interface: Matrix3dc
      Get the current values of this matrix and store the represented rotation into the given Quaterniond.

      This method assumes that the three column vectors of this matrix are normalized.

      Specified by:
      getNormalizedRotation in interface Matrix3dc
      Parameters:
      dest - the destination Quaterniond
      Returns:
      the passed in destination
      See Also:
      Quaterniond.setFromNormalized(Matrix3dc)
    • get

      public DoubleBuffer get(DoubleBuffer buffer)
      Description copied from interface: Matrix3dc
      Store this matrix into the supplied DoubleBuffer at the current buffer position using column-major order.

      This method will not increment the position of the given DoubleBuffer.

      In order to specify the offset into the DoubleBuffer} at which the matrix is stored, use Matrix3dc.get(int, DoubleBuffer), taking the absolute position as parameter.

      Specified by:
      get in interface Matrix3dc
      Parameters:
      buffer - will receive the values of this matrix in column-major order at its current position
      Returns:
      the passed in buffer
      See Also:
      Matrix3dc.get(int, DoubleBuffer)
    • get

      public DoubleBuffer get(int index, DoubleBuffer buffer)
      Description copied from interface: Matrix3dc
      Store this matrix into the supplied DoubleBuffer starting at the specified absolute buffer position/index using column-major order.

      This method will not increment the position of the given DoubleBuffer.

      Specified by:
      get in interface Matrix3dc
      Parameters:
      index - the absolute position into the DoubleBuffer
      buffer - will receive the values of this matrix in column-major order
      Returns:
      the passed in buffer
    • get

      public FloatBuffer get(FloatBuffer buffer)
      Description copied from interface: Matrix3dc
      Store this matrix in column-major order into the supplied FloatBuffer at the current buffer position.

      This method will not increment the position of the given FloatBuffer.

      In order to specify the offset into the FloatBuffer at which the matrix is stored, use Matrix3dc.get(int, FloatBuffer), taking the absolute position as parameter.

      Please note that due to this matrix storing double values those values will potentially lose precision when they are converted to float values before being put into the given FloatBuffer.

      Specified by:
      get in interface Matrix3dc
      Parameters:
      buffer - will receive the values of this matrix in column-major order at its current position
      Returns:
      the passed in buffer
      See Also:
      Matrix3dc.get(int, FloatBuffer)
    • get

      public FloatBuffer get(int index, FloatBuffer buffer)
      Description copied from interface: Matrix3dc
      Store this matrix in column-major order into the supplied FloatBuffer starting at the specified absolute buffer position/index.

      This method will not increment the position of the given FloatBuffer.

      Please note that due to this matrix storing double values those values will potentially lose precision when they are converted to float values before being put into the given FloatBuffer.

      Specified by:
      get in interface Matrix3dc
      Parameters:
      index - the absolute position into the FloatBuffer
      buffer - will receive the values of this matrix in column-major order
      Returns:
      the passed in buffer
    • get

      public ByteBuffer get(ByteBuffer buffer)
      Description copied from interface: Matrix3dc
      Store this matrix in column-major order into the supplied ByteBuffer at the current buffer position.

      This method will not increment the position of the given ByteBuffer.

      In order to specify the offset into the ByteBuffer at which the matrix is stored, use Matrix3dc.get(int, ByteBuffer), taking the absolute position as parameter.

      Specified by:
      get in interface Matrix3dc
      Parameters:
      buffer - will receive the values of this matrix in column-major order at its current position
      Returns:
      the passed in buffer
      See Also:
      Matrix3dc.get(int, ByteBuffer)
    • get

      public ByteBuffer get(int index, ByteBuffer buffer)
      Description copied from interface: Matrix3dc
      Store this matrix in column-major order into the supplied ByteBuffer starting at the specified absolute buffer position/index.

      This method will not increment the position of the given ByteBuffer.

      Specified by:
      get in interface Matrix3dc
      Parameters:
      index - the absolute position into the ByteBuffer
      buffer - will receive the values of this matrix in column-major order
      Returns:
      the passed in buffer
    • getFloats

      public ByteBuffer getFloats(ByteBuffer buffer)
      Description copied from interface: Matrix3dc
      Store the elements of this matrix as float values in column-major order into the supplied ByteBuffer at the current buffer position.

      This method will not increment the position of the given ByteBuffer.

      Please note that due to this matrix storing double values those values will potentially lose precision when they are converted to float values before being put into the given ByteBuffer.

      In order to specify the offset into the ByteBuffer at which the matrix is stored, use Matrix3dc.getFloats(int, ByteBuffer), taking the absolute position as parameter.

      Specified by:
      getFloats in interface Matrix3dc
      Parameters:
      buffer - will receive the elements of this matrix as float values in column-major order at its current position
      Returns:
      the passed in buffer
      See Also:
      Matrix3dc.getFloats(int, ByteBuffer)
    • getFloats

      public ByteBuffer getFloats(int index, ByteBuffer buffer)
      Description copied from interface: Matrix3dc
      Store the elements of this matrix as float values in column-major order into the supplied ByteBuffer starting at the specified absolute buffer position/index.

      This method will not increment the position of the given ByteBuffer.

      Please note that due to this matrix storing double values those values will potentially lose precision when they are converted to float values before being put into the given ByteBuffer.

      Specified by:
      getFloats in interface Matrix3dc
      Parameters:
      index - the absolute position into the ByteBuffer
      buffer - will receive the elements of this matrix as float values in column-major order
      Returns:
      the passed in buffer
    • getToAddress

      public Matrix3dc getToAddress(long address)
      Description copied from interface: Matrix3dc
      Store this matrix in column-major order at the given off-heap address.

      This method will throw an UnsupportedOperationException when JOML is used with `-Djoml.nounsafe`.

      This method is unsafe as it can result in a crash of the JVM process when the specified address range does not belong to this process.

      Specified by:
      getToAddress in interface Matrix3dc
      Parameters:
      address - the off-heap address where to store this matrix
      Returns:
      this
    • get

      public double[] get(double[] arr, int offset)
      Description copied from interface: Matrix3dc
      Store this matrix into the supplied double array in column-major order at the given offset.
      Specified by:
      get in interface Matrix3dc
      Parameters:
      arr - the array to write the matrix values into
      offset - the offset into the array
      Returns:
      the passed in array
    • get

      public double[] get(double[] arr)
      Description copied from interface: Matrix3dc
      Store this matrix into the supplied double array in column-major order.

      In order to specify an explicit offset into the array, use the method Matrix3dc.get(double[], int).

      Specified by:
      get in interface Matrix3dc
      Parameters:
      arr - the array to write the matrix values into
      Returns:
      the passed in array
      See Also:
      Matrix3dc.get(double[], int)
    • get

      public float[] get(float[] arr, int offset)
      Description copied from interface: Matrix3dc
      Store the elements of this matrix as float values in column-major order into the supplied float array at the given offset.

      Please note that due to this matrix storing double values those values will potentially lose precision when they are converted to float values before being put into the given float array.

      Specified by:
      get in interface Matrix3dc
      Parameters:
      arr - the array to write the matrix values into
      offset - the offset into the array
      Returns:
      the passed in array
    • get

      public float[] get(float[] arr)
      Description copied from interface: Matrix3dc
      Store the elements of this matrix as float values in column-major order into the supplied float array.

      Please note that due to this matrix storing double values those values will potentially lose precision when they are converted to float values before being put into the given float array.

      In order to specify an explicit offset into the array, use the method Matrix3dc.get(float[], int).

      Specified by:
      get in interface Matrix3dc
      Parameters:
      arr - the array to write the matrix values into
      Returns:
      the passed in array
      See Also:
      Matrix3dc.get(float[], int)
    • set

      public Matrix3d set(DoubleBuffer buffer)
      Set the values of this matrix by reading 9 double values from the given DoubleBuffer in column-major order, starting at its current position.

      The DoubleBuffer is expected to contain the values in column-major order.

      The position of the DoubleBuffer will not be changed by this method.

      Parameters:
      buffer - the DoubleBuffer to read the matrix values from in column-major order
      Returns:
      this
    • set

      public Matrix3d set(FloatBuffer buffer)
      Set the values of this matrix by reading 9 float values from the given FloatBuffer in column-major order, starting at its current position.

      The FloatBuffer is expected to contain the values in column-major order.

      The position of the FloatBuffer will not be changed by this method.

      Parameters:
      buffer - the FloatBuffer to read the matrix values from in column-major order
      Returns:
      this
    • set

      public Matrix3d set(ByteBuffer buffer)
      Set the values of this matrix by reading 9 double values from the given ByteBuffer in column-major order, starting at its current position.

      The ByteBuffer is expected to contain the values in column-major order.

      The position of the ByteBuffer will not be changed by this method.

      Parameters:
      buffer - the ByteBuffer to read the matrix values from in column-major order
      Returns:
      this
    • setFloats

      public Matrix3d setFloats(ByteBuffer buffer)
      Set the values of this matrix by reading 9 float values from the given ByteBuffer in column-major order, starting at its current position.

      The ByteBuffer is expected to contain the values in column-major order.

      The position of the ByteBuffer will not be changed by this method.

      Parameters:
      buffer - the ByteBuffer to read the matrix values from in column-major order
      Returns:
      this
    • set

      public Matrix3d set(int index, DoubleBuffer buffer)
      Set the values of this matrix by reading 9 double values from the given DoubleBuffer in column-major order, starting at the specified absolute buffer position/index.

      The DoubleBuffer is expected to contain the values in column-major order.

      The position of the DoubleBuffer will not be changed by this method.

      Parameters:
      index - the absolute position into the DoubleBuffer
      buffer - the DoubleBuffer to read the matrix values from in column-major order
      Returns:
      this
    • set

      public Matrix3d set(int index, FloatBuffer buffer)
      Set the values of this matrix by reading 9 float values from the given FloatBuffer in column-major order, starting at the specified absolute buffer position/index.

      The FloatBuffer is expected to contain the values in column-major order.

      The position of the FloatBuffer will not be changed by this method.

      Parameters:
      index - the absolute position into the FloatBuffer
      buffer - the FloatBuffer to read the matrix values from in column-major order
      Returns:
      this
    • set

      public Matrix3d set(int index, ByteBuffer buffer)
      Set the values of this matrix by reading 9 double values from the given ByteBuffer in column-major order, starting at the specified absolute buffer position/index.

      The ByteBuffer is expected to contain the values in column-major order.

      The position of the ByteBuffer will not be changed by this method.

      Parameters:
      index - the absolute position into the ByteBuffer
      buffer - the ByteBuffer to read the matrix values from in column-major order
      Returns:
      this
    • setFloats

      public Matrix3d setFloats(int index, ByteBuffer buffer)
      Set the values of this matrix by reading 9 float values from the given ByteBuffer in column-major order, starting at the specified absolute buffer position/index.

      The ByteBuffer is expected to contain the values in column-major order.

      The position of the ByteBuffer will not be changed by this method.

      Parameters:
      buffer - the ByteBuffer to read the matrix values from in column-major order
      Returns:
      this
    • setFromAddress

      public Matrix3d setFromAddress(long address)
      Set the values of this matrix by reading 9 double values from off-heap memory in column-major order, starting at the given address.

      This method will throw an UnsupportedOperationException when JOML is used with `-Djoml.nounsafe`.

      This method is unsafe as it can result in a crash of the JVM process when the specified address range does not belong to this process.

      Parameters:
      address - the off-heap memory address to read the matrix values from in column-major order
      Returns:
      this
    • set

      public Matrix3d set(Vector3dc col0, Vector3dc col1, Vector3dc col2)
      Set the three columns of this matrix to the supplied vectors, respectively.
      Parameters:
      col0 - the first column
      col1 - the second column
      col2 - the third column
      Returns:
      this
    • zero

      public Matrix3d zero()
      Set all the values within this matrix to 0.
      Returns:
      this
    • identity

      public Matrix3d identity()
      Set this matrix to the identity.
      Returns:
      this
    • scaling

      public Matrix3d scaling(double factor)
      Set this matrix to be a simple scale matrix, which scales all axes uniformly by the given factor.

      The resulting matrix can be multiplied against another transformation matrix to obtain an additional scaling.

      In order to post-multiply a scaling transformation directly to a matrix, use scale() instead.

      Parameters:
      factor - the scale factor in x, y and z
      Returns:
      this
      See Also:
      scale(double)
    • scaling

      public Matrix3d scaling(double x, double y, double z)
      Set this matrix to be a simple scale matrix.
      Parameters:
      x - the scale in x
      y - the scale in y
      z - the scale in z
      Returns:
      this
    • scaling

      public Matrix3d scaling(Vector3dc xyz)
      Set this matrix to be a simple scale matrix which scales the base axes by xyz.x, xyz.y and xyz.z respectively.

      The resulting matrix can be multiplied against another transformation matrix to obtain an additional scaling.

      In order to post-multiply a scaling transformation directly to a matrix use scale() instead.

      Parameters:
      xyz - the scale in x, y and z respectively
      Returns:
      this
      See Also:
      scale(Vector3dc)
    • scale

      public Matrix3d scale(Vector3dc xyz, Matrix3d dest)
      Description copied from interface: Matrix3dc
      Apply scaling to this matrix by scaling the base axes by the given xyz.x, xyz.y and xyz.z factors, respectively and store the result in dest.

      If M is this matrix and S the scaling matrix, then the new matrix will be M * S. So when transforming a vector v with the new matrix by using M * S * v , the scaling will be applied first!

      Specified by:
      scale in interface Matrix3dc
      Parameters:
      xyz - the factors of the x, y and z component, respectively
      dest - will hold the result
      Returns:
      dest
    • scale

      public Matrix3d scale(Vector3dc xyz)
      Apply scaling to this matrix by scaling the base axes by the given xyz.x, xyz.y and xyz.z factors, respectively.

      If M is this matrix and S the scaling matrix, then the new matrix will be M * S. So when transforming a vector v with the new matrix by using M * S * v, the scaling will be applied first!

      Parameters:
      xyz - the factors of the x, y and z component, respectively
      Returns:
      this
    • scale

      public Matrix3d scale(double x, double y, double z, Matrix3d dest)
      Description copied from interface: Matrix3dc
      Apply scaling to this matrix by scaling the base axes by the given x, y and z factors and store the result in dest.

      If M is this matrix and S the scaling matrix, then the new matrix will be M * S. So when transforming a vector v with the new matrix by using M * S * v , the scaling will be applied first!

      Specified by:
      scale in interface Matrix3dc
      Parameters:
      x - the factor of the x component
      y - the factor of the y component
      z - the factor of the z component
      dest - will hold the result
      Returns:
      dest
    • scale

      public Matrix3d scale(double x, double y, double z)
      Apply scaling to this matrix by scaling the base axes by the given x, y and z factors.

      If M is this matrix and S the scaling matrix, then the new matrix will be M * S. So when transforming a vector v with the new matrix by using M * S * v , the scaling will be applied first!

      Parameters:
      x - the factor of the x component
      y - the factor of the y component
      z - the factor of the z component
      Returns:
      this
    • scale

      public Matrix3d scale(double xyz, Matrix3d dest)
      Description copied from interface: Matrix3dc
      Apply scaling to this matrix by uniformly scaling all base axes by the given xyz factor and store the result in dest.

      If M is this matrix and S the scaling matrix, then the new matrix will be M * S. So when transforming a vector v with the new matrix by using M * S * v , the scaling will be applied first!

      Specified by:
      scale in interface Matrix3dc
      Parameters:
      xyz - the factor for all components
      dest - will hold the result
      Returns:
      dest
      See Also:
      Matrix3dc.scale(double, double, double, Matrix3d)
    • scale

      public Matrix3d scale(double xyz)
      Apply scaling to this matrix by uniformly scaling all base axes by the given xyz factor.

      If M is this matrix and S the scaling matrix, then the new matrix will be M * S. So when transforming a vector v with the new matrix by using M * S * v , the scaling will be applied first!

      Parameters:
      xyz - the factor for all components
      Returns:
      this
      See Also:
      scale(double, double, double)
    • scaleLocal

      public Matrix3d scaleLocal(double x, double y, double z, Matrix3d dest)
      Description copied from interface: Matrix3dc
      Pre-multiply scaling to this matrix by scaling the base axes by the given x, y and z factors and store the result in dest.

      If M is this matrix and S the scaling matrix, then the new matrix will be S * M. So when transforming a vector v with the new matrix by using S * M * v , the scaling will be applied last!

      Specified by:
      scaleLocal in interface Matrix3dc
      Parameters:
      x - the factor of the x component
      y - the factor of the y component
      z - the factor of the z component
      dest - will hold the result
      Returns:
      dest
    • scaleLocal

      public Matrix3d scaleLocal(double x, double y, double z)
      Pre-multiply scaling to this matrix by scaling the base axes by the given x, y and z factors.

      If M is this matrix and S the scaling matrix, then the new matrix will be S * M. So when transforming a vector v with the new matrix by using S * M * v, the scaling will be applied last!

      Parameters:
      x - the factor of the x component
      y - the factor of the y component
      z - the factor of the z component
      Returns:
      this
    • rotation

      public Matrix3d rotation(double angle, Vector3dc axis)
      Set this matrix to a rotation matrix which rotates the given radians about a given axis.

      When used with a right-handed coordinate system, the produced rotation will rotate a vector counter-clockwise around the rotation axis, when viewing along the negative axis direction towards the origin. When used with a left-handed coordinate system, the rotation is clockwise.

      The resulting matrix can be multiplied against another transformation matrix to obtain an additional rotation.

      In order to post-multiply a rotation transformation directly to a matrix, use rotate() instead.

      Parameters:
      angle - the angle in radians
      axis - the axis to rotate about (needs to be normalized)
      Returns:
      this
      See Also:
      rotate(double, Vector3dc)
    • rotation

      public Matrix3d rotation(double angle, Vector3fc axis)
      Set this matrix to a rotation matrix which rotates the given radians about a given axis.

      When used with a right-handed coordinate system, the produced rotation will rotate a vector counter-clockwise around the rotation axis, when viewing along the negative axis direction towards the origin. When used with a left-handed coordinate system, the rotation is clockwise.

      The resulting matrix can be multiplied against another transformation matrix to obtain an additional rotation.

      In order to post-multiply a rotation transformation directly to a matrix, use rotate() instead.

      Parameters:
      angle - the angle in radians
      axis - the axis to rotate about (needs to be normalized)
      Returns:
      this
      See Also:
      rotate(double, Vector3fc)
    • rotation

      public Matrix3d rotation(AxisAngle4f axisAngle)
      Set this matrix to a rotation transformation using the given AxisAngle4f.

      When used with a right-handed coordinate system, the produced rotation will rotate a vector counter-clockwise around the rotation axis, when viewing along the negative axis direction towards the origin. When used with a left-handed coordinate system, the rotation is clockwise.

      The resulting matrix can be multiplied against another transformation matrix to obtain an additional rotation.

      In order to apply the rotation transformation to an existing transformation, use rotate() instead.

      Reference: http://en.wikipedia.org

      Parameters:
      axisAngle - the AxisAngle4f (needs to be normalized)
      Returns:
      this
      See Also:
      rotate(AxisAngle4f)
    • rotation

      public Matrix3d rotation(AxisAngle4d axisAngle)
      Set this matrix to a rotation transformation using the given AxisAngle4d.

      When used with a right-handed coordinate system, the produced rotation will rotate a vector counter-clockwise around the rotation axis, when viewing along the negative axis direction towards the origin. When used with a left-handed coordinate system, the rotation is clockwise.

      The resulting matrix can be multiplied against another transformation matrix to obtain an additional rotation.

      In order to apply the rotation transformation to an existing transformation, use rotate() instead.

      Reference: http://en.wikipedia.org

      Parameters:
      axisAngle - the AxisAngle4d (needs to be normalized)
      Returns:
      this
      See Also:
      rotate(AxisAngle4d)
    • rotation

      public Matrix3d rotation(double angle, double x, double y, double z)
      Set this matrix to a rotation matrix which rotates the given radians about a given axis.

      The axis described by the three components needs to be a unit vector.

      When used with a right-handed coordinate system, the produced rotation will rotate a vector counter-clockwise around the rotation axis, when viewing along the negative axis direction towards the origin. When used with a left-handed coordinate system, the rotation is clockwise.

      The resulting matrix can be multiplied against another transformation matrix to obtain an additional rotation.

      In order to apply the rotation transformation to an existing transformation, use rotate() instead.

      Reference: http://en.wikipedia.org

      Parameters:
      angle - the angle in radians
      x - the x-component of the rotation axis
      y - the y-component of the rotation axis
      z - the z-component of the rotation axis
      Returns:
      this
      See Also:
      rotate(double, double, double, double)
    • rotationX

      public Matrix3d rotationX(double ang)
      Set this matrix to a rotation transformation about the X axis.

      When used with a right-handed coordinate system, the produced rotation will rotate a vector counter-clockwise around the rotation axis, when viewing along the negative axis direction towards the origin. When used with a left-handed coordinate system, the rotation is clockwise.

      Reference: http://en.wikipedia.org

      Parameters:
      ang - the angle in radians
      Returns:
      this
    • rotationY

      public Matrix3d rotationY(double ang)
      Set this matrix to a rotation transformation about the Y axis.

      When used with a right-handed coordinate system, the produced rotation will rotate a vector counter-clockwise around the rotation axis, when viewing along the negative axis direction towards the origin. When used with a left-handed coordinate system, the rotation is clockwise.

      Reference: http://en.wikipedia.org

      Parameters:
      ang - the angle in radians
      Returns:
      this
    • rotationZ

      public Matrix3d rotationZ(double ang)
      Set this matrix to a rotation transformation about the Z axis.

      When used with a right-handed coordinate system, the produced rotation will rotate a vector counter-clockwise around the rotation axis, when viewing along the negative axis direction towards the origin. When used with a left-handed coordinate system, the rotation is clockwise.

      Reference: http://en.wikipedia.org

      Parameters:
      ang - the angle in radians
      Returns:
      this
    • rotationXYZ

      public Matrix3d rotationXYZ(double angleX, double angleY, double angleZ)
      Set this matrix to a rotation of angleX radians about the X axis, followed by a rotation of angleY radians about the Y axis and followed by a rotation of angleZ radians about the Z axis.

      When used with a right-handed coordinate system, the produced rotation will rotate a vector counter-clockwise around the rotation axis, when viewing along the negative axis direction towards the origin. When used with a left-handed coordinate system, the rotation is clockwise.

      This method is equivalent to calling: rotationX(angleX).rotateY(angleY).rotateZ(angleZ)

      Parameters:
      angleX - the angle to rotate about X
      angleY - the angle to rotate about Y
      angleZ - the angle to rotate about Z
      Returns:
      this
    • rotationZYX

      public Matrix3d rotationZYX(double angleZ, double angleY, double angleX)
      Set this matrix to a rotation of angleZ radians about the Z axis, followed by a rotation of angleY radians about the Y axis and followed by a rotation of angleX radians about the X axis.

      When used with a right-handed coordinate system, the produced rotation will rotate a vector counter-clockwise around the rotation axis, when viewing along the negative axis direction towards the origin. When used with a left-handed coordinate system, the rotation is clockwise.

      This method is equivalent to calling: rotationZ(angleZ).rotateY(angleY).rotateX(angleX)

      Parameters:
      angleZ - the angle to rotate about Z
      angleY - the angle to rotate about Y
      angleX - the angle to rotate about X
      Returns:
      this
    • rotationYXZ

      public Matrix3d rotationYXZ(double angleY, double angleX, double angleZ)
      Set this matrix to a rotation of angleY radians about the Y axis, followed by a rotation of angleX radians about the X axis and followed by a rotation of angleZ radians about the Z axis.

      When used with a right-handed coordinate system, the produced rotation will rotate a vector counter-clockwise around the rotation axis, when viewing along the negative axis direction towards the origin. When used with a left-handed coordinate system, the rotation is clockwise.

      This method is equivalent to calling: rotationY(angleY).rotateX(angleX).rotateZ(angleZ)

      Parameters:
      angleY - the angle to rotate about Y
      angleX - the angle to rotate about X
      angleZ - the angle to rotate about Z
      Returns:
      this
    • rotation

      public Matrix3d rotation(Quaterniondc quat)
      Set this matrix to the rotation - and possibly scaling - transformation of the given Quaterniondc.

      When used with a right-handed coordinate system, the produced rotation will rotate a vector counter-clockwise around the rotation axis, when viewing along the negative axis direction towards the origin. When used with a left-handed coordinate system, the rotation is clockwise.

      The resulting matrix can be multiplied against another transformation matrix to obtain an additional rotation.

      In order to apply the rotation transformation to an existing transformation, use rotate() instead.

      Reference: http://en.wikipedia.org

      Parameters:
      quat - the Quaterniondc
      Returns:
      this
      See Also:
      rotate(Quaterniondc)
    • rotation

      public Matrix3d rotation(Quaternionfc quat)
      Set this matrix to the rotation - and possibly scaling - transformation of the given Quaternionfc.

      When used with a right-handed coordinate system, the produced rotation will rotate a vector counter-clockwise around the rotation axis, when viewing along the negative axis direction towards the origin. When used with a left-handed coordinate system, the rotation is clockwise.

      The resulting matrix can be multiplied against another transformation matrix to obtain an additional rotation.

      In order to apply the rotation transformation to an existing transformation, use rotate() instead.

      Reference: http://en.wikipedia.org

      Parameters:
      quat - the Quaternionfc
      Returns:
      this
      See Also:
      rotate(Quaternionfc)
    • transform

      public Vector3d transform(Vector3d v)
      Description copied from interface: Matrix3dc
      Transform the given vector by this matrix.
      Specified by:
      transform in interface Matrix3dc
      Parameters:
      v - the vector to transform
      Returns:
      v
    • transform

      public Vector3d transform(Vector3dc v, Vector3d dest)
      Description copied from interface: Matrix3dc
      Transform the given vector by this matrix and store the result in dest.
      Specified by:
      transform in interface Matrix3dc
      Parameters:
      v - the vector to transform
      dest - will hold the result
      Returns:
      dest
    • transform

      public Vector3f transform(Vector3f v)
      Description copied from interface: Matrix3dc
      Transform the given vector by this matrix.
      Specified by:
      transform in interface Matrix3dc
      Parameters:
      v - the vector to transform
      Returns:
      v
    • transform

      public Vector3f transform(Vector3fc v, Vector3f dest)
      Description copied from interface: Matrix3dc
      Transform the given vector by this matrix and store the result in dest.
      Specified by:
      transform in interface Matrix3dc
      Parameters:
      v - the vector to transform
      dest - will hold the result
      Returns:
      dest
    • transform

      public Vector3d transform(double x, double y, double z, Vector3d dest)
      Description copied from interface: Matrix3dc
      Transform the vector (x, y, z) by this matrix and store the result in dest.
      Specified by:
      transform in interface Matrix3dc
      Parameters:
      x - the x coordinate of the vector to transform
      y - the y coordinate of the vector to transform
      z - the z coordinate of the vector to transform
      dest - will hold the result
      Returns:
      dest
    • transformTranspose

      public Vector3d transformTranspose(Vector3d v)
      Description copied from interface: Matrix3dc
      Transform the given vector by the transpose of this matrix.
      Specified by:
      transformTranspose in interface Matrix3dc
      Parameters:
      v - the vector to transform
      Returns:
      v
    • transformTranspose

      public Vector3d transformTranspose(Vector3dc v, Vector3d dest)
      Description copied from interface: Matrix3dc
      Transform the given vector by the transpose of this matrix and store the result in dest.
      Specified by:
      transformTranspose in interface Matrix3dc
      Parameters:
      v - the vector to transform
      dest - will hold the result
      Returns:
      dest
    • transformTranspose

      public Vector3d transformTranspose(double x, double y, double z, Vector3d dest)
      Description copied from interface: Matrix3dc
      Transform the vector (x, y, z) by the transpose of this matrix and store the result in dest.
      Specified by:
      transformTranspose in interface Matrix3dc
      Parameters:
      x - the x coordinate of the vector to transform
      y - the y coordinate of the vector to transform
      z - the z coordinate of the vector to transform
      dest - will hold the result
      Returns:
      dest
    • writeExternal

      public void writeExternal(ObjectOutput out) throws IOException
      Specified by:
      writeExternal in interface Externalizable
      Throws:
      IOException
    • readExternal

      public void readExternal(ObjectInput in) throws IOException
      Specified by:
      readExternal in interface Externalizable
      Throws:
      IOException
    • rotateX

      public Matrix3d rotateX(double ang, Matrix3d dest)
      Description copied from interface: Matrix3dc
      Apply rotation about the X axis to this matrix by rotating the given amount of radians and store the result in dest.

      When used with a right-handed coordinate system, the produced rotation will rotate a vector counter-clockwise around the rotation axis, when viewing along the negative axis direction towards the origin. When used with a left-handed coordinate system, the rotation is clockwise.

      If M is this matrix and R the rotation matrix, then the new matrix will be M * R. So when transforming a vector v with the new matrix by using M * R * v , the rotation will be applied first!

      Reference: http://en.wikipedia.org

      Specified by:
      rotateX in interface Matrix3dc
      Parameters:
      ang - the angle in radians
      dest - will hold the result
      Returns:
      dest
    • rotateX

      public Matrix3d rotateX(double ang)
      Apply rotation about the X axis to this matrix by rotating the given amount of radians.

      When used with a right-handed coordinate system, the produced rotation will rotate a vector counter-clockwise around the rotation axis, when viewing along the negative axis direction towards the origin. When used with a left-handed coordinate system, the rotation is clockwise.

      If M is this matrix and R the rotation matrix, then the new matrix will be M * R. So when transforming a vector v with the new matrix by using M * R * v , the rotation will be applied first!

      Reference: http://en.wikipedia.org

      Parameters:
      ang - the angle in radians
      Returns:
      this
    • rotateY

      public Matrix3d rotateY(double ang, Matrix3d dest)
      Description copied from interface: Matrix3dc
      Apply rotation about the Y axis to this matrix by rotating the given amount of radians and store the result in dest.

      When used with a right-handed coordinate system, the produced rotation will rotate a vector counter-clockwise around the rotation axis, when viewing along the negative axis direction towards the origin. When used with a left-handed coordinate system, the rotation is clockwise.

      If M is this matrix and R the rotation matrix, then the new matrix will be M * R. So when transforming a vector v with the new matrix by using M * R * v , the rotation will be applied first!

      Reference: http://en.wikipedia.org

      Specified by:
      rotateY in interface Matrix3dc
      Parameters:
      ang - the angle in radians
      dest - will hold the result
      Returns:
      dest
    • rotateY

      public Matrix3d rotateY(double ang)
      Apply rotation about the Y axis to this matrix by rotating the given amount of radians.

      When used with a right-handed coordinate system, the produced rotation will rotate a vector counter-clockwise around the rotation axis, when viewing along the negative axis direction towards the origin. When used with a left-handed coordinate system, the rotation is clockwise.

      If M is this matrix and R the rotation matrix, then the new matrix will be M * R. So when transforming a vector v with the new matrix by using M * R * v , the rotation will be applied first!

      Reference: http://en.wikipedia.org

      Parameters:
      ang - the angle in radians
      Returns:
      this
    • rotateZ

      public Matrix3d rotateZ(double ang, Matrix3d dest)
      Description copied from interface: Matrix3dc
      Apply rotation about the Z axis to this matrix by rotating the given amount of radians and store the result in dest.

      When used with a right-handed coordinate system, the produced rotation will rotate a vector counter-clockwise around the rotation axis, when viewing along the negative axis direction towards the origin. When used with a left-handed coordinate system, the rotation is clockwise.

      If M is this matrix and R the rotation matrix, then the new matrix will be M * R. So when transforming a vector v with the new matrix by using M * R * v , the rotation will be applied first!

      Reference: http://en.wikipedia.org

      Specified by:
      rotateZ in interface Matrix3dc
      Parameters:
      ang - the angle in radians
      dest - will hold the result
      Returns:
      dest
    • rotateZ

      public Matrix3d rotateZ(double ang)
      Apply rotation about the Z axis to this matrix by rotating the given amount of radians.

      When used with a right-handed coordinate system, the produced rotation will rotate a vector counter-clockwise around the rotation axis, when viewing along the negative axis direction towards the origin. When used with a left-handed coordinate system, the rotation is clockwise.

      If M is this matrix and R the rotation matrix, then the new matrix will be M * R. So when transforming a vector v with the new matrix by using M * R * v , the rotation will be applied first!

      Reference: http://en.wikipedia.org

      Parameters:
      ang - the angle in radians
      Returns:
      this
    • rotateXYZ

      public Matrix3d rotateXYZ(double angleX, double angleY, double angleZ)
      Apply rotation of angleX radians about the X axis, followed by a rotation of angleY radians about the Y axis and followed by a rotation of angleZ radians about the Z axis.

      When used with a right-handed coordinate system, the produced rotation will rotate a vector counter-clockwise around the rotation axis, when viewing along the negative axis direction towards the origin. When used with a left-handed coordinate system, the rotation is clockwise.

      If M is this matrix and R the rotation matrix, then the new matrix will be M * R. So when transforming a vector v with the new matrix by using M * R * v, the rotation will be applied first!

      This method is equivalent to calling: rotateX(angleX).rotateY(angleY).rotateZ(angleZ)

      Parameters:
      angleX - the angle to rotate about X
      angleY - the angle to rotate about Y
      angleZ - the angle to rotate about Z
      Returns:
      this
    • rotateXYZ

      public Matrix3d rotateXYZ(double angleX, double angleY, double angleZ, Matrix3d dest)
      Description copied from interface: Matrix3dc
      Apply rotation of angleX radians about the X axis, followed by a rotation of angleY radians about the Y axis and followed by a rotation of angleZ radians about the Z axis and store the result in dest.

      When used with a right-handed coordinate system, the produced rotation will rotate a vector counter-clockwise around the rotation axis, when viewing along the negative axis direction towards the origin. When used with a left-handed coordinate system, the rotation is clockwise.

      If M is this matrix and R the rotation matrix, then the new matrix will be M * R. So when transforming a vector v with the new matrix by using M * R * v, the rotation will be applied first!

      This method is equivalent to calling: rotateX(angleX, dest).rotateY(angleY).rotateZ(angleZ)

      Specified by:
      rotateXYZ in interface Matrix3dc
      Parameters:
      angleX - the angle to rotate about X
      angleY - the angle to rotate about Y
      angleZ - the angle to rotate about Z
      dest - will hold the result
      Returns:
      dest
    • rotateZYX

      public Matrix3d rotateZYX(double angleZ, double angleY, double angleX)
      Apply rotation of angleZ radians about the Z axis, followed by a rotation of angleY radians about the Y axis and followed by a rotation of angleX radians about the X axis.

      When used with a right-handed coordinate system, the produced rotation will rotate a vector counter-clockwise around the rotation axis, when viewing along the negative axis direction towards the origin. When used with a left-handed coordinate system, the rotation is clockwise.

      If M is this matrix and R the rotation matrix, then the new matrix will be M * R. So when transforming a vector v with the new matrix by using M * R * v, the rotation will be applied first!

      This method is equivalent to calling: rotateZ(angleZ).rotateY(angleY).rotateX(angleX)

      Parameters:
      angleZ - the angle to rotate about Z
      angleY - the angle to rotate about Y
      angleX - the angle to rotate about X
      Returns:
      this
    • rotateZYX

      public Matrix3d rotateZYX(double angleZ, double angleY, double angleX, Matrix3d dest)
      Description copied from interface: Matrix3dc
      Apply rotation of angleZ radians about the Z axis, followed by a rotation of angleY radians about the Y axis and followed by a rotation of angleX radians about the X axis and store the result in dest.

      When used with a right-handed coordinate system, the produced rotation will rotate a vector counter-clockwise around the rotation axis, when viewing along the negative axis direction towards the origin. When used with a left-handed coordinate system, the rotation is clockwise.

      If M is this matrix and R the rotation matrix, then the new matrix will be M * R. So when transforming a vector v with the new matrix by using M * R * v, the rotation will be applied first!

      This method is equivalent to calling: rotateZ(angleZ, dest).rotateY(angleY).rotateX(angleX)

      Specified by:
      rotateZYX in interface Matrix3dc
      Parameters:
      angleZ - the angle to rotate about Z
      angleY - the angle to rotate about Y
      angleX - the angle to rotate about X
      dest - will hold the result
      Returns:
      dest
    • rotateYXZ

      public Matrix3d rotateYXZ(Vector3d angles)
      Apply rotation of angles.y radians about the Y axis, followed by a rotation of angles.x radians about the X axis and followed by a rotation of angles.z radians about the Z axis.

      When used with a right-handed coordinate system, the produced rotation will rotate a vector counter-clockwise around the rotation axis, when viewing along the negative axis direction towards the origin. When used with a left-handed coordinate system, the rotation is clockwise.

      If M is this matrix and R the rotation matrix, then the new matrix will be M * R. So when transforming a vector v with the new matrix by using M * R * v, the rotation will be applied first!

      This method is equivalent to calling: rotateY(angles.y).rotateX(angles.x).rotateZ(angles.z)

      Parameters:
      angles - the Euler angles
      Returns:
      this
    • rotateYXZ

      public Matrix3d rotateYXZ(double angleY, double angleX, double angleZ)
      Apply rotation of angleY radians about the Y axis, followed by a rotation of angleX radians about the X axis and followed by a rotation of angleZ radians about the Z axis.

      When used with a right-handed coordinate system, the produced rotation will rotate a vector counter-clockwise around the rotation axis, when viewing along the negative axis direction towards the origin. When used with a left-handed coordinate system, the rotation is clockwise.

      If M is this matrix and R the rotation matrix, then the new matrix will be M * R. So when transforming a vector v with the new matrix by using M * R * v, the rotation will be applied first!

      This method is equivalent to calling: rotateY(angleY).rotateX(angleX).rotateZ(angleZ)

      Parameters:
      angleY - the angle to rotate about Y
      angleX - the angle to rotate about X
      angleZ - the angle to rotate about Z
      Returns:
      this
    • rotateYXZ

      public Matrix3d rotateYXZ(double angleY, double angleX, double angleZ, Matrix3d dest)
      Description copied from interface: Matrix3dc
      Apply rotation of angleY radians about the Y axis, followed by a rotation of angleX radians about the X axis and followed by a rotation of angleZ radians about the Z axis and store the result in dest.

      When used with a right-handed coordinate system, the produced rotation will rotate a vector counter-clockwise around the rotation axis, when viewing along the negative axis direction towards the origin. When used with a left-handed coordinate system, the rotation is clockwise.

      If M is this matrix and R the rotation matrix, then the new matrix will be M * R. So when transforming a vector v with the new matrix by using M * R * v, the rotation will be applied first!

      This method is equivalent to calling: rotateY(angleY, dest).rotateX(angleX).rotateZ(angleZ)

      Specified by:
      rotateYXZ in interface Matrix3dc
      Parameters:
      angleY - the angle to rotate about Y
      angleX - the angle to rotate about X
      angleZ - the angle to rotate about Z
      dest - will hold the result
      Returns:
      dest
    • rotate

      public Matrix3d rotate(double ang, double x, double y, double z)
      Apply rotation to this matrix by rotating the given amount of radians about the given axis specified as x, y and z components.

      The axis described by the three components needs to be a unit vector.

      When used with a right-handed coordinate system, the produced rotation will rotate a vector counter-clockwise around the rotation axis, when viewing along the negative axis direction towards the origin. When used with a left-handed coordinate system, the rotation is clockwise.

      If M is this matrix and R the rotation matrix, then the new matrix will be M * R. So when transforming a vector v with the new matrix by using M * R * v , the rotation will be applied first!

      Reference: http://en.wikipedia.org

      Parameters:
      ang - the angle in radians
      x - the x component of the axis
      y - the y component of the axis
      z - the z component of the axis
      Returns:
      this
    • rotate

      public Matrix3d rotate(double ang, double x, double y, double z, Matrix3d dest)
      Description copied from interface: Matrix3dc
      Apply rotation to this matrix by rotating the given amount of radians about the given axis specified as x, y and z components, and store the result in dest.

      The axis described by the three components needs to be a unit vector.

      When used with a right-handed coordinate system, the produced rotation will rotate a vector counter-clockwise around the rotation axis, when viewing along the negative axis direction towards the origin. When used with a left-handed coordinate system, the rotation is clockwise.

      If M is this matrix and R the rotation matrix, then the new matrix will be M * R. So when transforming a vector v with the new matrix by using M * R * v , the rotation will be applied first!

      Reference: http://en.wikipedia.org

      Specified by:
      rotate in interface Matrix3dc
      Parameters:
      ang - the angle in radians
      x - the x component of the axis
      y - the y component of the axis
      z - the z component of the axis
      dest - will hold the result
      Returns:
      dest
    • rotateLocal

      public Matrix3d rotateLocal(double ang, double x, double y, double z, Matrix3d dest)
      Pre-multiply a rotation to this matrix by rotating the given amount of radians about the specified (x, y, z) axis and store the result in dest.

      The axis described by the three components needs to be a unit vector.

      When used with a right-handed coordinate system, the produced rotation will rotate a vector counter-clockwise around the rotation axis, when viewing along the negative axis direction towards the origin. When used with a left-handed coordinate system, the rotation is clockwise.

      If M is this matrix and R the rotation matrix, then the new matrix will be R * M. So when transforming a vector v with the new matrix by using R * M * v, the rotation will be applied last!

      In order to set the matrix to a rotation matrix without pre-multiplying the rotation transformation, use rotation().

      Reference: http://en.wikipedia.org

      Specified by:
      rotateLocal in interface Matrix3dc
      Parameters:
      ang - the angle in radians
      x - the x component of the axis
      y - the y component of the axis
      z - the z component of the axis
      dest - will hold the result
      Returns:
      dest
      See Also:
      rotation(double, double, double, double)
    • rotateLocal

      public Matrix3d rotateLocal(double ang, double x, double y, double z)
      Pre-multiply a rotation to this matrix by rotating the given amount of radians about the specified (x, y, z) axis.

      The axis described by the three components needs to be a unit vector.

      When used with a right-handed coordinate system, the produced rotation will rotate a vector counter-clockwise around the rotation axis, when viewing along the negative axis direction towards the origin. When used with a left-handed coordinate system, the rotation is clockwise.

      If M is this matrix and R the rotation matrix, then the new matrix will be R * M. So when transforming a vector v with the new matrix by using R * M * v, the rotation will be applied last!

      In order to set the matrix to a rotation matrix without pre-multiplying the rotation transformation, use rotation().

      Reference: http://en.wikipedia.org

      Parameters:
      ang - the angle in radians
      x - the x component of the axis
      y - the y component of the axis
      z - the z component of the axis
      Returns:
      this
      See Also:
      rotation(double, double, double, double)
    • rotateLocalX

      public Matrix3d rotateLocalX(double ang, Matrix3d dest)
      Pre-multiply a rotation around the X axis to this matrix by rotating the given amount of radians about the X axis and store the result in dest.

      When used with a right-handed coordinate system, the produced rotation will rotate a vector counter-clockwise around the rotation axis, when viewing along the negative axis direction towards the origin. When used with a left-handed coordinate system, the rotation is clockwise.

      If M is this matrix and R the rotation matrix, then the new matrix will be R * M. So when transforming a vector v with the new matrix by using R * M * v, the rotation will be applied last!

      In order to set the matrix to a rotation matrix without pre-multiplying the rotation transformation, use rotationX().

      Reference: http://en.wikipedia.org

      Specified by:
      rotateLocalX in interface Matrix3dc
      Parameters:
      ang - the angle in radians to rotate about the X axis
      dest - will hold the result
      Returns:
      dest
      See Also:
      rotationX(double)
    • rotateLocalX

      public Matrix3d rotateLocalX(double ang)
      Pre-multiply a rotation to this matrix by rotating the given amount of radians about the X axis.

      When used with a right-handed coordinate system, the produced rotation will rotate a vector counter-clockwise around the rotation axis, when viewing along the negative axis direction towards the origin. When used with a left-handed coordinate system, the rotation is clockwise.

      If M is this matrix and R the rotation matrix, then the new matrix will be R * M. So when transforming a vector v with the new matrix by using R * M * v, the rotation will be applied last!

      In order to set the matrix to a rotation matrix without pre-multiplying the rotation transformation, use rotationX().

      Reference: http://en.wikipedia.org

      Parameters:
      ang - the angle in radians to rotate about the X axis
      Returns:
      this
      See Also:
      rotationX(double)
    • rotateLocalY

      public Matrix3d rotateLocalY(double ang, Matrix3d dest)
      Pre-multiply a rotation around the Y axis to this matrix by rotating the given amount of radians about the Y axis and store the result in dest.

      When used with a right-handed coordinate system, the produced rotation will rotate a vector counter-clockwise around the rotation axis, when viewing along the negative axis direction towards the origin. When used with a left-handed coordinate system, the rotation is clockwise.

      If M is this matrix and R the rotation matrix, then the new matrix will be R * M. So when transforming a vector v with the new matrix by using R * M * v, the rotation will be applied last!

      In order to set the matrix to a rotation matrix without pre-multiplying the rotation transformation, use rotationY().

      Reference: http://en.wikipedia.org

      Specified by:
      rotateLocalY in interface Matrix3dc
      Parameters:
      ang - the angle in radians to rotate about the Y axis
      dest - will hold the result
      Returns:
      dest
      See Also:
      rotationY(double)
    • rotateLocalY

      public Matrix3d rotateLocalY(double ang)
      Pre-multiply a rotation to this matrix by rotating the given amount of radians about the Y axis.

      When used with a right-handed coordinate system, the produced rotation will rotate a vector counter-clockwise around the rotation axis, when viewing along the negative axis direction towards the origin. When used with a left-handed coordinate system, the rotation is clockwise.

      If M is this matrix and R the rotation matrix, then the new matrix will be R * M. So when transforming a vector v with the new matrix by using R * M * v, the rotation will be applied last!

      In order to set the matrix to a rotation matrix without pre-multiplying the rotation transformation, use rotationY().

      Reference: http://en.wikipedia.org

      Parameters:
      ang - the angle in radians to rotate about the Y axis
      Returns:
      this
      See Also:
      rotationY(double)
    • rotateLocalZ

      public Matrix3d rotateLocalZ(double ang, Matrix3d dest)
      Pre-multiply a rotation around the Z axis to this matrix by rotating the given amount of radians about the Z axis and store the result in dest.

      When used with a right-handed coordinate system, the produced rotation will rotate a vector counter-clockwise around the rotation axis, when viewing along the negative axis direction towards the origin. When used with a left-handed coordinate system, the rotation is clockwise.

      If M is this matrix and R the rotation matrix, then the new matrix will be R * M. So when transforming a vector v with the new matrix by using R * M * v, the rotation will be applied last!

      In order to set the matrix to a rotation matrix without pre-multiplying the rotation transformation, use rotationZ().

      Reference: http://en.wikipedia.org

      Specified by:
      rotateLocalZ in interface Matrix3dc
      Parameters:
      ang - the angle in radians to rotate about the Z axis
      dest - will hold the result
      Returns:
      dest
      See Also:
      rotationZ(double)
    • rotateLocalZ

      public Matrix3d rotateLocalZ(double ang)
      Pre-multiply a rotation to this matrix by rotating the given amount of radians about the Z axis.

      When used with a right-handed coordinate system, the produced rotation will rotate a vector counter-clockwise around the rotation axis, when viewing along the negative axis direction towards the origin. When used with a left-handed coordinate system, the rotation is clockwise.

      If M is this matrix and R the rotation matrix, then the new matrix will be R * M. So when transforming a vector v with the new matrix by using R * M * v, the rotation will be applied last!

      In order to set the matrix to a rotation matrix without pre-multiplying the rotation transformation, use rotationY().

      Reference: http://en.wikipedia.org

      Parameters:
      ang - the angle in radians to rotate about the Z axis
      Returns:
      this
      See Also:
      rotationY(double)
    • rotateLocal

      public Matrix3d rotateLocal(Quaterniondc quat, Matrix3d dest)
      Pre-multiply the rotation - and possibly scaling - transformation of the given Quaterniondc to this matrix and store the result in dest.

      When used with a right-handed coordinate system, the produced rotation will rotate a vector counter-clockwise around the rotation axis, when viewing along the negative axis direction towards the origin. When used with a left-handed coordinate system, the rotation is clockwise.

      If M is this matrix and Q the rotation matrix obtained from the given quaternion, then the new matrix will be Q * M. So when transforming a vector v with the new matrix by using Q * M * v, the quaternion rotation will be applied last!

      In order to set the matrix to a rotation transformation without pre-multiplying, use rotation(Quaterniondc).

      Reference: http://en.wikipedia.org

      Specified by:
      rotateLocal in interface Matrix3dc
      Parameters:
      quat - the Quaterniondc
      dest - will hold the result
      Returns:
      dest
      See Also:
      rotation(Quaterniondc)
    • rotateLocal

      public Matrix3d rotateLocal(Quaterniondc quat)
      Pre-multiply the rotation - and possibly scaling - transformation of the given Quaterniondc to this matrix.

      When used with a right-handed coordinate system, the produced rotation will rotate a vector counter-clockwise around the rotation axis, when viewing along the negative axis direction towards the origin. When used with a left-handed coordinate system, the rotation is clockwise.

      If M is this matrix and Q the rotation matrix obtained from the given quaternion, then the new matrix will be Q * M. So when transforming a vector v with the new matrix by using Q * M * v, the quaternion rotation will be applied last!

      In order to set the matrix to a rotation transformation without pre-multiplying, use rotation(Quaterniondc).

      Reference: http://en.wikipedia.org

      Parameters:
      quat - the Quaterniondc
      Returns:
      this
      See Also:
      rotation(Quaterniondc)
    • rotateLocal

      public Matrix3d rotateLocal(Quaternionfc quat, Matrix3d dest)
      Pre-multiply the rotation - and possibly scaling - transformation of the given Quaternionfc to this matrix and store the result in dest.

      When used with a right-handed coordinate system, the produced rotation will rotate a vector counter-clockwise around the rotation axis, when viewing along the negative axis direction towards the origin. When used with a left-handed coordinate system, the rotation is clockwise.

      If M is this matrix and Q the rotation matrix obtained from the given quaternion, then the new matrix will be Q * M. So when transforming a vector v with the new matrix by using Q * M * v, the quaternion rotation will be applied last!

      In order to set the matrix to a rotation transformation without pre-multiplying, use rotation(Quaternionfc).

      Reference: http://en.wikipedia.org

      Specified by:
      rotateLocal in interface Matrix3dc
      Parameters:
      quat - the Quaternionfc
      dest - will hold the result
      Returns:
      dest
      See Also:
      rotation(Quaternionfc)
    • rotateLocal

      public Matrix3d rotateLocal(Quaternionfc quat)
      Pre-multiply the rotation - and possibly scaling - transformation of the given Quaternionfc to this matrix.

      When used with a right-handed coordinate system, the produced rotation will rotate a vector counter-clockwise around the rotation axis, when viewing along the negative axis direction towards the origin. When used with a left-handed coordinate system, the rotation is clockwise.

      If M is this matrix and Q the rotation matrix obtained from the given quaternion, then the new matrix will be Q * M. So when transforming a vector v with the new matrix by using Q * M * v, the quaternion rotation will be applied last!

      In order to set the matrix to a rotation transformation without pre-multiplying, use rotation(Quaternionfc).

      Reference: http://en.wikipedia.org

      Parameters:
      quat - the Quaternionfc
      Returns:
      this
      See Also:
      rotation(Quaternionfc)
    • rotate

      public Matrix3d rotate(Quaterniondc quat)
      Apply the rotation - and possibly scaling - transformation of the given Quaterniondc to this matrix.

      When used with a right-handed coordinate system, the produced rotation will rotate a vector counter-clockwise around the rotation axis, when viewing along the negative axis direction towards the origin. When used with a left-handed coordinate system, the rotation is clockwise.

      If M is this matrix and Q the rotation matrix obtained from the given quaternion, then the new matrix will be M * Q. So when transforming a vector v with the new matrix by using M * Q * v, the quaternion rotation will be applied first!

      In order to set the matrix to a rotation transformation without post-multiplying, use rotation(Quaterniondc).

      Reference: http://en.wikipedia.org

      Parameters:
      quat - the Quaterniondc
      Returns:
      this
      See Also:
      rotation(Quaterniondc)
    • rotate

      public Matrix3d rotate(Quaterniondc quat, Matrix3d dest)
      Apply the rotation - and possibly scaling - transformation of the given Quaterniondc to this matrix and store the result in dest.

      When used with a right-handed coordinate system, the produced rotation will rotate a vector counter-clockwise around the rotation axis, when viewing along the negative axis direction towards the origin. When used with a left-handed coordinate system, the rotation is clockwise.

      If M is this matrix and Q the rotation matrix obtained from the given quaternion, then the new matrix will be M * Q. So when transforming a vector v with the new matrix by using M * Q * v, the quaternion rotation will be applied first!

      In order to set the matrix to a rotation transformation without post-multiplying, use rotation(Quaterniondc).

      Reference: http://en.wikipedia.org

      Specified by:
      rotate in interface Matrix3dc
      Parameters:
      quat - the Quaterniondc
      dest - will hold the result
      Returns:
      dest
      See Also:
      rotation(Quaterniondc)
    • rotate

      public Matrix3d rotate(Quaternionfc quat)
      Apply the rotation - and possibly scaling - transformation of the given Quaternionfc to this matrix.

      When used with a right-handed coordinate system, the produced rotation will rotate a vector counter-clockwise around the rotation axis, when viewing along the negative axis direction towards the origin. When used with a left-handed coordinate system, the rotation is clockwise.

      If M is this matrix and Q the rotation matrix obtained from the given quaternion, then the new matrix will be M * Q. So when transforming a vector v with the new matrix by using M * Q * v, the quaternion rotation will be applied first!

      In order to set the matrix to a rotation transformation without post-multiplying, use rotation(Quaternionfc).

      Reference: http://en.wikipedia.org

      Parameters:
      quat - the Quaternionfc
      Returns:
      this
      See Also:
      rotation(Quaternionfc)
    • rotate

      public Matrix3d rotate(Quaternionfc quat, Matrix3d dest)
      Apply the rotation - and possibly scaling - transformation of the given Quaternionfc to this matrix and store the result in dest.

      When used with a right-handed coordinate system, the produced rotation will rotate a vector counter-clockwise around the rotation axis, when viewing along the negative axis direction towards the origin. When used with a left-handed coordinate system, the rotation is clockwise.

      If M is this matrix and Q the rotation matrix obtained from the given quaternion, then the new matrix will be M * Q. So when transforming a vector v with the new matrix by using M * Q * v, the quaternion rotation will be applied first!

      In order to set the matrix to a rotation transformation without post-multiplying, use rotation(Quaternionfc).

      Reference: http://en.wikipedia.org

      Specified by:
      rotate in interface Matrix3dc
      Parameters:
      quat - the Quaternionfc
      dest - will hold the result
      Returns:
      dest
      See Also:
      rotation(Quaternionfc)
    • rotate

      public Matrix3d rotate(AxisAngle4f axisAngle)
      Apply a rotation transformation, rotating about the given AxisAngle4f, to this matrix.

      When used with a right-handed coordinate system, the produced rotation will rotate a vector counter-clockwise around the rotation axis, when viewing along the negative axis direction towards the origin. When used with a left-handed coordinate system, the rotation is clockwise.

      If M is this matrix and A the rotation matrix obtained from the given AxisAngle4f, then the new matrix will be M * A. So when transforming a vector v with the new matrix by using M * A * v, the AxisAngle4f rotation will be applied first!

      In order to set the matrix to a rotation transformation without post-multiplying, use rotation(AxisAngle4f).

      Reference: http://en.wikipedia.org

      Parameters:
      axisAngle - the AxisAngle4f (needs to be normalized)
      Returns:
      this
      See Also:
      rotate(double, double, double, double), rotation(AxisAngle4f)
    • rotate

      public Matrix3d rotate(AxisAngle4f axisAngle, Matrix3d dest)
      Apply a rotation transformation, rotating about the given AxisAngle4f and store the result in dest.

      When used with a right-handed coordinate system, the produced rotation will rotate a vector counter-clockwise around the rotation axis, when viewing along the negative axis direction towards the origin. When used with a left-handed coordinate system, the rotation is clockwise.

      If M is this matrix and A the rotation matrix obtained from the given AxisAngle4f, then the new matrix will be M * A. So when transforming a vector v with the new matrix by using M * A * v, the AxisAngle4f rotation will be applied first!

      In order to set the matrix to a rotation transformation without post-multiplying, use rotation(AxisAngle4f).

      Reference: http://en.wikipedia.org

      Specified by:
      rotate in interface Matrix3dc
      Parameters:
      axisAngle - the AxisAngle4f (needs to be normalized)
      dest - will hold the result
      Returns:
      dest
      See Also:
      rotate(double, double, double, double), rotation(AxisAngle4f)
    • rotate

      public Matrix3d rotate(AxisAngle4d axisAngle)
      Apply a rotation transformation, rotating about the given AxisAngle4d, to this matrix.

      When used with a right-handed coordinate system, the produced rotation will rotate a vector counter-clockwise around the rotation axis, when viewing along the negative axis direction towards the origin. When used with a left-handed coordinate system, the rotation is clockwise.

      If M is this matrix and A the rotation matrix obtained from the given AxisAngle4d, then the new matrix will be M * A. So when transforming a vector v with the new matrix by using M * A * v, the AxisAngle4d rotation will be applied first!

      In order to set the matrix to a rotation transformation without post-multiplying, use rotation(AxisAngle4d).

      Reference: http://en.wikipedia.org

      Parameters:
      axisAngle - the AxisAngle4d (needs to be normalized)
      Returns:
      this
      See Also:
      rotate(double, double, double, double), rotation(AxisAngle4d)
    • rotate

      public Matrix3d rotate(AxisAngle4d axisAngle, Matrix3d dest)
      Apply a rotation transformation, rotating about the given AxisAngle4d and store the result in dest.

      When used with a right-handed coordinate system, the produced rotation will rotate a vector counter-clockwise around the rotation axis, when viewing along the negative axis direction towards the origin. When used with a left-handed coordinate system, the rotation is clockwise.

      If M is this matrix and A the rotation matrix obtained from the given AxisAngle4d, then the new matrix will be M * A. So when transforming a vector v with the new matrix by using M * A * v, the AxisAngle4d rotation will be applied first!

      In order to set the matrix to a rotation transformation without post-multiplying, use rotation(AxisAngle4d).

      Reference: http://en.wikipedia.org

      Specified by:
      rotate in interface Matrix3dc
      Parameters:
      axisAngle - the AxisAngle4d (needs to be normalized)
      dest - will hold the result
      Returns:
      dest
      See Also:
      rotate(double, double, double, double), rotation(AxisAngle4d)
    • rotate

      public Matrix3d rotate(double angle, Vector3dc axis)
      Apply a rotation transformation, rotating the given radians about the specified axis, to this matrix.

      The axis described by the axis vector needs to be a unit vector.

      When used with a right-handed coordinate system, the produced rotation will rotate a vector counter-clockwise around the rotation axis, when viewing along the negative axis direction towards the origin. When used with a left-handed coordinate system, the rotation is clockwise.

      If M is this matrix and A the rotation matrix obtained from the given angle and axis, then the new matrix will be M * A. So when transforming a vector v with the new matrix by using M * A * v, the axis-angle rotation will be applied first!

      In order to set the matrix to a rotation transformation without post-multiplying, use rotation(double, Vector3dc).

      Reference: http://en.wikipedia.org

      Parameters:
      angle - the angle in radians
      axis - the rotation axis (needs to be normalized)
      Returns:
      this
      See Also:
      rotate(double, double, double, double), rotation(double, Vector3dc)
    • rotate

      public Matrix3d rotate(double angle, Vector3dc axis, Matrix3d dest)
      Apply a rotation transformation, rotating the given radians about the specified axis and store the result in dest.

      The axis described by the axis vector needs to be a unit vector.

      When used with a right-handed coordinate system, the produced rotation will rotate a vector counter-clockwise around the rotation axis, when viewing along the negative axis direction towards the origin. When used with a left-handed coordinate system, the rotation is clockwise.

      If M is this matrix and A the rotation matrix obtained from the given axis and angle, then the new matrix will be M * A. So when transforming a vector v with the new matrix by using M * A * v, the axis-angle rotation will be applied first!

      In order to set the matrix to a rotation transformation without post-multiplying, use rotation(double, Vector3dc).

      Reference: http://en.wikipedia.org

      Specified by:
      rotate in interface Matrix3dc
      Parameters:
      angle - the angle in radians
      axis - the rotation axis (needs to be normalized)
      dest - will hold the result
      Returns:
      dest
      See Also:
      rotate(double, double, double, double), rotation(double, Vector3dc)
    • rotate

      public Matrix3d rotate(double angle, Vector3fc axis)
      Apply a rotation transformation, rotating the given radians about the specified axis, to this matrix.

      The axis described by the axis vector needs to be a unit vector.

      When used with a right-handed coordinate system, the produced rotation will rotate a vector counter-clockwise around the rotation axis, when viewing along the negative axis direction towards the origin. When used with a left-handed coordinate system, the rotation is clockwise.

      If M is this matrix and A the rotation matrix obtained from the given angle and axis, then the new matrix will be M * A. So when transforming a vector v with the new matrix by using M * A * v, the axis-angle rotation will be applied first!

      In order to set the matrix to a rotation transformation without post-multiplying, use rotation(double, Vector3fc).

      Reference: http://en.wikipedia.org

      Parameters:
      angle - the angle in radians
      axis - the rotation axis (needs to be normalized)
      Returns:
      this
      See Also:
      rotate(double, double, double, double), rotation(double, Vector3fc)
    • rotate

      public Matrix3d rotate(double angle, Vector3fc axis, Matrix3d dest)
      Apply a rotation transformation, rotating the given radians about the specified axis and store the result in dest.

      The axis described by the axis vector needs to be a unit vector.

      When used with a right-handed coordinate system, the produced rotation will rotate a vector counter-clockwise around the rotation axis, when viewing along the negative axis direction towards the origin. When used with a left-handed coordinate system, the rotation is clockwise.

      If M is this matrix and A the rotation matrix obtained from the given axis and angle, then the new matrix will be M * A. So when transforming a vector v with the new matrix by using M * A * v, the axis-angle rotation will be applied first!

      In order to set the matrix to a rotation transformation without post-multiplying, use rotation(double, Vector3fc).

      Reference: http://en.wikipedia.org

      Specified by:
      rotate in interface Matrix3dc
      Parameters:
      angle - the angle in radians
      axis - the rotation axis (needs to be normalized)
      dest - will hold the result
      Returns:
      dest
      See Also:
      rotate(double, double, double, double), rotation(double, Vector3fc)
    • getRow

      public Vector3d getRow(int row, Vector3d dest) throws IndexOutOfBoundsException
      Description copied from interface: Matrix3dc
      Get the row at the given row index, starting with 0.
      Specified by:
      getRow in interface Matrix3dc
      Parameters:
      row - the row index in [0..2]
      dest - will hold the row components
      Returns:
      the passed in destination
      Throws:
      IndexOutOfBoundsException - if row is not in [0..2]
    • setRow

      public Matrix3d setRow(int row, Vector3dc src) throws IndexOutOfBoundsException
      Set the row at the given row index, starting with 0.
      Parameters:
      row - the row index in [0..2]
      src - the row components to set
      Returns:
      this
      Throws:
      IndexOutOfBoundsException - if row is not in [0..2]
    • setRow

      public Matrix3d setRow(int row, double x, double y, double z) throws IndexOutOfBoundsException
      Set the row at the given row index, starting with 0.
      Parameters:
      row - the column index in [0..2]
      x - the first element in the row
      y - the second element in the row
      z - the third element in the row
      Returns:
      this
      Throws:
      IndexOutOfBoundsException - if row is not in [0..2]
    • getColumn

      public Vector3d getColumn(int column, Vector3d dest) throws IndexOutOfBoundsException
      Description copied from interface: Matrix3dc
      Get the column at the given column index, starting with 0.
      Specified by:
      getColumn in interface Matrix3dc
      Parameters:
      column - the column index in [0..2]
      dest - will hold the column components
      Returns:
      the passed in destination
      Throws:
      IndexOutOfBoundsException - if column is not in [0..2]
    • setColumn

      public Matrix3d setColumn(int column, Vector3dc src) throws IndexOutOfBoundsException
      Set the column at the given column index, starting with 0.
      Parameters:
      column - the column index in [0..2]
      src - the column components to set
      Returns:
      this
      Throws:
      IndexOutOfBoundsException - if column is not in [0..2]
    • setColumn

      public Matrix3d setColumn(int column, double x, double y, double z) throws IndexOutOfBoundsException
      Set the column at the given column index, starting with 0.
      Parameters:
      column - the column index in [0..2]
      x - the first element in the column
      y - the second element in the column
      z - the third element in the column
      Returns:
      this
      Throws:
      IndexOutOfBoundsException - if column is not in [0..2]
    • get

      public double get(int column, int row)
      Description copied from interface: Matrix3dc
      Get the matrix element value at the given column and row.
      Specified by:
      get in interface Matrix3dc
      Parameters:
      column - the colum index in [0..2]
      row - the row index in [0..2]
      Returns:
      the element value
    • set

      public Matrix3d set(int column, int row, double value)
      Set the matrix element at the given column and row to the specified value.
      Parameters:
      column - the colum index in [0..2]
      row - the row index in [0..2]
      value - the value
      Returns:
      this
    • getRowColumn

      public double getRowColumn(int row, int column)
      Description copied from interface: Matrix3dc
      Get the matrix element value at the given row and column.
      Specified by:
      getRowColumn in interface Matrix3dc
      Parameters:
      row - the colum index in [0..2]
      column - the row index in [0..2]
      Returns:
      the element value
    • setRowColumn

      public Matrix3d setRowColumn(int row, int column, double value)
      Set the matrix element at the given row and column to the specified value.
      Parameters:
      row - the row index in [0..2]
      column - the colum index in [0..2]
      value - the value
      Returns:
      this
    • normal

      public Matrix3d normal()
      Set this matrix to its own normal matrix.

      The normal matrix of m is the transpose of the inverse of m.

      Please note that, if this is an orthogonal matrix or a matrix whose columns are orthogonal vectors, then this method need not be invoked, since in that case this itself is its normal matrix. In this case, use set(Matrix3dc) to set a given Matrix3f to this matrix.

      Returns:
      this
      See Also:
      set(Matrix3dc)
    • normal

      public Matrix3d normal(Matrix3d dest)
      Compute a normal matrix from this matrix and store it into dest.

      The normal matrix of m is the transpose of the inverse of m.

      Please note that, if this is an orthogonal matrix or a matrix whose columns are orthogonal vectors, then this method need not be invoked, since in that case this itself is its normal matrix. In this case, use set(Matrix3dc) to set a given Matrix3d to this matrix.

      Specified by:
      normal in interface Matrix3dc
      Parameters:
      dest - will hold the result
      Returns:
      dest
      See Also:
      set(Matrix3dc)
    • cofactor

      public Matrix3d cofactor()
      Compute the cofactor matrix of this.

      The cofactor matrix can be used instead of normal() to transform normals when the orientation of the normals with respect to the surface should be preserved.

      Returns:
      this
    • cofactor

      public Matrix3d cofactor(Matrix3d dest)
      Compute the cofactor matrix of this and store it into dest.

      The cofactor matrix can be used instead of normal(Matrix3d) to transform normals when the orientation of the normals with respect to the surface should be preserved.

      Specified by:
      cofactor in interface Matrix3dc
      Parameters:
      dest - will hold the result
      Returns:
      dest
    • lookAlong

      public Matrix3d lookAlong(Vector3dc dir, Vector3dc up)
      Apply a rotation transformation to this matrix to make -z point along dir.

      If M is this matrix and L the lookalong rotation matrix, then the new matrix will be M * L. So when transforming a vector v with the new matrix by using M * L * v, the lookalong rotation transformation will be applied first!

      In order to set the matrix to a lookalong transformation without post-multiplying it, use setLookAlong().

      Parameters:
      dir - the direction in space to look along
      up - the direction of 'up'
      Returns:
      this
      See Also:
      lookAlong(double, double, double, double, double, double), setLookAlong(Vector3dc, Vector3dc)
    • lookAlong

      public Matrix3d lookAlong(Vector3dc dir, Vector3dc up, Matrix3d dest)
      Apply a rotation transformation to this matrix to make -z point along dir and store the result in dest.

      If M is this matrix and L the lookalong rotation matrix, then the new matrix will be M * L. So when transforming a vector v with the new matrix by using M * L * v, the lookalong rotation transformation will be applied first!

      In order to set the matrix to a lookalong transformation without post-multiplying it, use setLookAlong().

      Specified by:
      lookAlong in interface Matrix3dc
      Parameters:
      dir - the direction in space to look along
      up - the direction of 'up'
      dest - will hold the result
      Returns:
      dest
      See Also:
      lookAlong(double, double, double, double, double, double), setLookAlong(Vector3dc, Vector3dc)
    • lookAlong

      public Matrix3d lookAlong(double dirX, double dirY, double dirZ, double upX, double upY, double upZ, Matrix3d dest)
      Apply a rotation transformation to this matrix to make -z point along dir and store the result in dest.

      If M is this matrix and L the lookalong rotation matrix, then the new matrix will be M * L. So when transforming a vector v with the new matrix by using M * L * v, the lookalong rotation transformation will be applied first!

      In order to set the matrix to a lookalong transformation without post-multiplying it, use setLookAlong()

      Specified by:
      lookAlong in interface Matrix3dc
      Parameters:
      dirX - the x-coordinate of the direction to look along
      dirY - the y-coordinate of the direction to look along
      dirZ - the z-coordinate of the direction to look along
      upX - the x-coordinate of the up vector
      upY - the y-coordinate of the up vector
      upZ - the z-coordinate of the up vector
      dest - will hold the result
      Returns:
      dest
      See Also:
      setLookAlong(double, double, double, double, double, double)
    • lookAlong

      public Matrix3d lookAlong(double dirX, double dirY, double dirZ, double upX, double upY, double upZ)
      Apply a rotation transformation to this matrix to make -z point along dir.

      If M is this matrix and L the lookalong rotation matrix, then the new matrix will be M * L. So when transforming a vector v with the new matrix by using M * L * v, the lookalong rotation transformation will be applied first!

      In order to set the matrix to a lookalong transformation without post-multiplying it, use setLookAlong()

      Parameters:
      dirX - the x-coordinate of the direction to look along
      dirY - the y-coordinate of the direction to look along
      dirZ - the z-coordinate of the direction to look along
      upX - the x-coordinate of the up vector
      upY - the y-coordinate of the up vector
      upZ - the z-coordinate of the up vector
      Returns:
      this
      See Also:
      setLookAlong(double, double, double, double, double, double)
    • setLookAlong

      public Matrix3d setLookAlong(Vector3dc dir, Vector3dc up)
      Set this matrix to a rotation transformation to make -z point along dir.

      In order to apply the lookalong transformation to any previous existing transformation, use lookAlong(Vector3dc, Vector3dc).

      Parameters:
      dir - the direction in space to look along
      up - the direction of 'up'
      Returns:
      this
      See Also:
      setLookAlong(Vector3dc, Vector3dc), lookAlong(Vector3dc, Vector3dc)
    • setLookAlong

      public Matrix3d setLookAlong(double dirX, double dirY, double dirZ, double upX, double upY, double upZ)
      Set this matrix to a rotation transformation to make -z point along dir.

      In order to apply the lookalong transformation to any previous existing transformation, use lookAlong()

      Parameters:
      dirX - the x-coordinate of the direction to look along
      dirY - the y-coordinate of the direction to look along
      dirZ - the z-coordinate of the direction to look along
      upX - the x-coordinate of the up vector
      upY - the y-coordinate of the up vector
      upZ - the z-coordinate of the up vector
      Returns:
      this
      See Also:
      setLookAlong(double, double, double, double, double, double), lookAlong(double, double, double, double, double, double)
    • getScale

      public Vector3d getScale(Vector3d dest)
      Description copied from interface: Matrix3dc
      Get the scaling factors of this matrix for the three base axes.
      Specified by:
      getScale in interface Matrix3dc
      Parameters:
      dest - will hold the scaling factors for x, y and z
      Returns:
      dest
    • positiveZ

      public Vector3d positiveZ(Vector3d dir)
      Description copied from interface: Matrix3dc
      Obtain the direction of +Z before the transformation represented by this matrix is applied.

      This method is equivalent to the following code:

       Matrix3d inv = new Matrix3d(this).invert();
       inv.transform(dir.set(0, 0, 1)).normalize();
       
      If this is already an orthogonal matrix, then consider using Matrix3dc.normalizedPositiveZ(Vector3d) instead.

      Reference: http://www.euclideanspace.com

      Specified by:
      positiveZ in interface Matrix3dc
      Parameters:
      dir - will hold the direction of +Z
      Returns:
      dir
    • normalizedPositiveZ

      public Vector3d normalizedPositiveZ(Vector3d dir)
      Description copied from interface: Matrix3dc
      Obtain the direction of +Z before the transformation represented by this orthogonal matrix is applied. This method only produces correct results if this is an orthogonal matrix.

      This method is equivalent to the following code:

       Matrix3d inv = new Matrix3d(this).transpose();
       inv.transform(dir.set(0, 0, 1));
       

      Reference: http://www.euclideanspace.com

      Specified by:
      normalizedPositiveZ in interface Matrix3dc
      Parameters:
      dir - will hold the direction of +Z
      Returns:
      dir
    • positiveX

      public Vector3d positiveX(Vector3d dir)
      Description copied from interface: Matrix3dc
      Obtain the direction of +X before the transformation represented by this matrix is applied.

      This method is equivalent to the following code:

       Matrix3d inv = new Matrix3d(this).invert();
       inv.transform(dir.set(1, 0, 0)).normalize();
       
      If this is already an orthogonal matrix, then consider using Matrix3dc.normalizedPositiveX(Vector3d) instead.

      Reference: http://www.euclideanspace.com

      Specified by:
      positiveX in interface Matrix3dc
      Parameters:
      dir - will hold the direction of +X
      Returns:
      dir
    • normalizedPositiveX

      public Vector3d normalizedPositiveX(Vector3d dir)
      Description copied from interface: Matrix3dc
      Obtain the direction of +X before the transformation represented by this orthogonal matrix is applied. This method only produces correct results if this is an orthogonal matrix.

      This method is equivalent to the following code:

       Matrix3d inv = new Matrix3d(this).transpose();
       inv.transform(dir.set(1, 0, 0));
       

      Reference: http://www.euclideanspace.com

      Specified by:
      normalizedPositiveX in interface Matrix3dc
      Parameters:
      dir - will hold the direction of +X
      Returns:
      dir
    • positiveY

      public Vector3d positiveY(Vector3d dir)
      Description copied from interface: Matrix3dc
      Obtain the direction of +Y before the transformation represented by this matrix is applied.

      This method is equivalent to the following code:

       Matrix3d inv = new Matrix3d(this).invert();
       inv.transform(dir.set(0, 1, 0)).normalize();
       
      If this is already an orthogonal matrix, then consider using Matrix3dc.normalizedPositiveY(Vector3d) instead.

      Reference: http://www.euclideanspace.com

      Specified by:
      positiveY in interface Matrix3dc
      Parameters:
      dir - will hold the direction of +Y
      Returns:
      dir
    • normalizedPositiveY

      public Vector3d normalizedPositiveY(Vector3d dir)
      Description copied from interface: Matrix3dc
      Obtain the direction of +Y before the transformation represented by this orthogonal matrix is applied. This method only produces correct results if this is an orthogonal matrix.

      This method is equivalent to the following code:

       Matrix3d inv = new Matrix3d(this).transpose();
       inv.transform(dir.set(0, 1, 0));
       

      Reference: http://www.euclideanspace.com

      Specified by:
      normalizedPositiveY in interface Matrix3dc
      Parameters:
      dir - will hold the direction of +Y
      Returns:
      dir
    • hashCode

      public int hashCode()
      Overrides:
      hashCode in class Object
    • equals

      public boolean equals(Object obj)
      Overrides:
      equals in class Object
    • equals

      public boolean equals(Matrix3dc m, double delta)
      Description copied from interface: Matrix3dc
      Compare the matrix elements of this matrix with the given matrix using the given delta and return whether all of them are equal within a maximum difference of delta.

      Please note that this method is not used by any data structure such as ArrayList HashSet or HashMap and their operations, such as ArrayList.contains(Object) or HashSet.remove(Object), since those data structures only use the Object.equals(Object) and Object.hashCode() methods.

      Specified by:
      equals in interface Matrix3dc
      Parameters:
      m - the other matrix
      delta - the allowed maximum difference
      Returns:
      true whether all of the matrix elements are equal; false otherwise
    • swap

      public Matrix3d swap(Matrix3d other)
      Exchange the values of this matrix with the given other matrix.
      Parameters:
      other - the other matrix to exchange the values with
      Returns:
      this
    • add

      public Matrix3d add(Matrix3dc other)
      Component-wise add this and other.
      Parameters:
      other - the other addend
      Returns:
      this
    • add

      public Matrix3d add(Matrix3dc other, Matrix3d dest)
      Description copied from interface: Matrix3dc
      Component-wise add this and other and store the result in dest.
      Specified by:
      add in interface Matrix3dc
      Parameters:
      other - the other addend
      dest - will hold the result
      Returns:
      dest
    • sub

      public Matrix3d sub(Matrix3dc subtrahend)
      Component-wise subtract subtrahend from this.
      Parameters:
      subtrahend - the subtrahend
      Returns:
      this
    • sub

      public Matrix3d sub(Matrix3dc subtrahend, Matrix3d dest)
      Description copied from interface: Matrix3dc
      Component-wise subtract subtrahend from this and store the result in dest.
      Specified by:
      sub in interface Matrix3dc
      Parameters:
      subtrahend - the subtrahend
      dest - will hold the result
      Returns:
      dest
    • mulComponentWise

      public Matrix3d mulComponentWise(Matrix3dc other)
      Component-wise multiply this by other.
      Parameters:
      other - the other matrix
      Returns:
      this
    • mulComponentWise

      public Matrix3d mulComponentWise(Matrix3dc other, Matrix3d dest)
      Description copied from interface: Matrix3dc
      Component-wise multiply this by other and store the result in dest.
      Specified by:
      mulComponentWise in interface Matrix3dc
      Parameters:
      other - the other matrix
      dest - will hold the result
      Returns:
      dest
    • setSkewSymmetric

      public Matrix3d setSkewSymmetric(double a, double b, double c)
      Set this matrix to a skew-symmetric matrix using the following layout:
        0,  a, -b
       -a,  0,  c
        b, -c,  0
       
      Reference: https://en.wikipedia.org
      Parameters:
      a - the value used for the matrix elements m01 and m10
      b - the value used for the matrix elements m02 and m20
      c - the value used for the matrix elements m12 and m21
      Returns:
      this
    • lerp

      public Matrix3d lerp(Matrix3dc other, double t)
      Linearly interpolate this and other using the given interpolation factor t and store the result in this.

      If t is 0.0 then the result is this. If the interpolation factor is 1.0 then the result is other.

      Parameters:
      other - the other matrix
      t - the interpolation factor between 0.0 and 1.0
      Returns:
      this
    • lerp

      public Matrix3d lerp(Matrix3dc other, double t, Matrix3d dest)
      Description copied from interface: Matrix3dc
      Linearly interpolate this and other using the given interpolation factor t and store the result in dest.

      If t is 0.0 then the result is this. If the interpolation factor is 1.0 then the result is other.

      Specified by:
      lerp in interface Matrix3dc
      Parameters:
      other - the other matrix
      t - the interpolation factor between 0.0 and 1.0
      dest - will hold the result
      Returns:
      dest
    • rotateTowards

      public Matrix3d rotateTowards(Vector3dc direction, Vector3dc up, Matrix3d dest)
      Apply a model transformation to this matrix for a right-handed coordinate system, that aligns the local +Z axis with direction and store the result in dest.

      If M is this matrix and L the lookat matrix, then the new matrix will be M * L. So when transforming a vector v with the new matrix by using M * L * v, the lookat transformation will be applied first!

      In order to set the matrix to a rotation transformation without post-multiplying it, use rotationTowards().

      This method is equivalent to calling: mul(new Matrix3d().lookAlong(new Vector3d(dir).negate(), up).invert(), dest)

      Specified by:
      rotateTowards in interface Matrix3dc
      Parameters:
      direction - the direction to rotate towards
      up - the model's up vector
      dest - will hold the result
      Returns:
      dest
      See Also:
      rotateTowards(double, double, double, double, double, double, Matrix3d), rotationTowards(Vector3dc, Vector3dc)
    • rotateTowards

      public Matrix3d rotateTowards(Vector3dc direction, Vector3dc up)
      Apply a model transformation to this matrix for a right-handed coordinate system, that aligns the local +Z axis with direction.

      If M is this matrix and L the lookat matrix, then the new matrix will be M * L. So when transforming a vector v with the new matrix by using M * L * v, the lookat transformation will be applied first!

      In order to set the matrix to a rotation transformation without post-multiplying it, use rotationTowards().

      This method is equivalent to calling: mul(new Matrix3d().lookAlong(new Vector3d(dir).negate(), up).invert())

      Parameters:
      direction - the direction to orient towards
      up - the up vector
      Returns:
      this
      See Also:
      rotateTowards(double, double, double, double, double, double), rotationTowards(Vector3dc, Vector3dc)
    • rotateTowards

      public Matrix3d rotateTowards(double dirX, double dirY, double dirZ, double upX, double upY, double upZ)
      Apply a model transformation to this matrix for a right-handed coordinate system, that aligns the local +Z axis with direction.

      If M is this matrix and L the lookat matrix, then the new matrix will be M * L. So when transforming a vector v with the new matrix by using M * L * v, the lookat transformation will be applied first!

      In order to set the matrix to a rotation transformation without post-multiplying it, use rotationTowards().

      This method is equivalent to calling: mul(new Matrix3d().lookAlong(-dirX, -dirY, -dirZ, upX, upY, upZ).invert())

      Parameters:
      dirX - the x-coordinate of the direction to rotate towards
      dirY - the y-coordinate of the direction to rotate towards
      dirZ - the z-coordinate of the direction to rotate towards
      upX - the x-coordinate of the up vector
      upY - the y-coordinate of the up vector
      upZ - the z-coordinate of the up vector
      Returns:
      this
      See Also:
      rotateTowards(Vector3dc, Vector3dc), rotationTowards(double, double, double, double, double, double)
    • rotateTowards

      public Matrix3d rotateTowards(double dirX, double dirY, double dirZ, double upX, double upY, double upZ, Matrix3d dest)
      Apply a model transformation to this matrix for a right-handed coordinate system, that aligns the local +Z axis with dir and store the result in dest.

      If M is this matrix and L the lookat matrix, then the new matrix will be M * L. So when transforming a vector v with the new matrix by using M * L * v, the lookat transformation will be applied first!

      In order to set the matrix to a rotation transformation without post-multiplying it, use rotationTowards().

      This method is equivalent to calling: mul(new Matrix3d().lookAlong(-dirX, -dirY, -dirZ, upX, upY, upZ).invert(), dest)

      Specified by:
      rotateTowards in interface Matrix3dc
      Parameters:
      dirX - the x-coordinate of the direction to rotate towards
      dirY - the y-coordinate of the direction to rotate towards
      dirZ - the z-coordinate of the direction to rotate towards
      upX - the x-coordinate of the up vector
      upY - the y-coordinate of the up vector
      upZ - the z-coordinate of the up vector
      dest - will hold the result
      Returns:
      dest
      See Also:
      rotateTowards(Vector3dc, Vector3dc), rotationTowards(double, double, double, double, double, double)
    • rotationTowards

      public Matrix3d rotationTowards(Vector3dc dir, Vector3dc up)
      Set this matrix to a model transformation for a right-handed coordinate system, that aligns the local -z axis with center - eye.

      In order to apply the rotation transformation to a previous existing transformation, use rotateTowards.

      This method is equivalent to calling: setLookAlong(new Vector3d(dir).negate(), up).invert()

      Parameters:
      dir - the direction to orient the local -z axis towards
      up - the up vector
      Returns:
      this
      See Also:
      rotationTowards(Vector3dc, Vector3dc), rotateTowards(double, double, double, double, double, double)
    • rotationTowards

      public Matrix3d rotationTowards(double dirX, double dirY, double dirZ, double upX, double upY, double upZ)
      Set this matrix to a model transformation for a right-handed coordinate system, that aligns the local -z axis with center - eye.

      In order to apply the rotation transformation to a previous existing transformation, use rotateTowards.

      This method is equivalent to calling: setLookAlong(-dirX, -dirY, -dirZ, upX, upY, upZ).invert()

      Parameters:
      dirX - the x-coordinate of the direction to rotate towards
      dirY - the y-coordinate of the direction to rotate towards
      dirZ - the z-coordinate of the direction to rotate towards
      upX - the x-coordinate of the up vector
      upY - the y-coordinate of the up vector
      upZ - the z-coordinate of the up vector
      Returns:
      this
      See Also:
      rotateTowards(Vector3dc, Vector3dc), rotationTowards(double, double, double, double, double, double)
    • getEulerAnglesZYX

      public Vector3d getEulerAnglesZYX(Vector3d dest)
      Extract the Euler angles from the rotation represented by this matrix and store the extracted Euler angles in dest.

      This method assumes that this matrix only represents a rotation without scaling.

      Note that the returned Euler angles must be applied in the order Z * Y * X to obtain the identical matrix. This means that calling rotateZYX(double, double, double) using the obtained Euler angles will yield the same rotation as the original matrix from which the Euler angles were obtained, so in the below code the matrix m2 should be identical to m (disregarding possible floating-point inaccuracies).

       Matrix3d m = ...; // <- matrix only representing rotation
       Matrix3d n = new Matrix3d();
       n.rotateZYX(m.getEulerAnglesZYX(new Vector3d()));
       

      Reference: http://nghiaho.com/

      Specified by:
      getEulerAnglesZYX in interface Matrix3dc
      Parameters:
      dest - will hold the extracted Euler angles
      Returns:
      dest
    • obliqueZ

      public Matrix3d obliqueZ(double a, double b)
      Apply an oblique projection transformation to this matrix with the given values for a and b.

      If M is this matrix and O the oblique transformation matrix, then the new matrix will be M * O. So when transforming a vector v with the new matrix by using M * O * v, the oblique transformation will be applied first!

      The oblique transformation is defined as:

       x' = x + a*z
       y' = y + a*z
       z' = z
       
      or in matrix form:
       1 0 a
       0 1 b
       0 0 1
       
      Parameters:
      a - the value for the z factor that applies to x
      b - the value for the z factor that applies to y
      Returns:
      this
    • obliqueZ

      public Matrix3d obliqueZ(double a, double b, Matrix3d dest)
      Apply an oblique projection transformation to this matrix with the given values for a and b and store the result in dest.

      If M is this matrix and O the oblique transformation matrix, then the new matrix will be M * O. So when transforming a vector v with the new matrix by using M * O * v, the oblique transformation will be applied first!

      The oblique transformation is defined as:

       x' = x + a*z
       y' = y + a*z
       z' = z
       
      or in matrix form:
       1 0 a
       0 1 b
       0 0 1
       
      Specified by:
      obliqueZ in interface Matrix3dc
      Parameters:
      a - the value for the z factor that applies to x
      b - the value for the z factor that applies to y
      dest - will hold the result
      Returns:
      dest
    • reflect

      public Matrix3d reflect(double nx, double ny, double nz, Matrix3d dest)
      Description copied from interface: Matrix3dc
      Apply a mirror/reflection transformation to this matrix that reflects through the given plane specified via the plane normal (nx, ny, nz), and store the result in dest.

      If M is this matrix and R the reflection matrix, then the new matrix will be M * R. So when transforming a vector v with the new matrix by using M * R * v, the reflection will be applied first!

      Specified by:
      reflect in interface Matrix3dc
      Parameters:
      nx - the x-coordinate of the plane normal
      ny - the y-coordinate of the plane normal
      nz - the z-coordinate of the plane normal
      dest - will hold the result
      Returns:
      this
    • reflect

      public Matrix3d reflect(double nx, double ny, double nz)
      Apply a mirror/reflection transformation to this matrix that reflects through the given plane specified via the plane normal.

      If M is this matrix and R the reflection matrix, then the new matrix will be M * R. So when transforming a vector v with the new matrix by using M * R * v, the reflection will be applied first!

      Parameters:
      nx - the x-coordinate of the plane normal
      ny - the y-coordinate of the plane normal
      nz - the z-coordinate of the plane normal
      Returns:
      this
    • reflect

      public Matrix3d reflect(Vector3dc normal)
      Apply a mirror/reflection transformation to this matrix that reflects through the given plane specified via the plane normal.

      If M is this matrix and R the reflection matrix, then the new matrix will be M * R. So when transforming a vector v with the new matrix by using M * R * v, the reflection will be applied first!

      Parameters:
      normal - the plane normal
      Returns:
      this
    • reflect

      public Matrix3d reflect(Quaterniondc orientation)
      Apply a mirror/reflection transformation to this matrix that reflects about a plane specified via the plane orientation.

      This method can be used to build a reflection transformation based on the orientation of a mirror object in the scene. It is assumed that the default mirror plane's normal is (0, 0, 1). So, if the given Quaterniondc is the identity (does not apply any additional rotation), the reflection plane will be z=0.

      If M is this matrix and R the reflection matrix, then the new matrix will be M * R. So when transforming a vector v with the new matrix by using M * R * v, the reflection will be applied first!

      Parameters:
      orientation - the plane orientation
      Returns:
      this
    • reflect

      public Matrix3d reflect(Quaterniondc orientation, Matrix3d dest)
      Description copied from interface: Matrix3dc
      Apply a mirror/reflection transformation to this matrix that reflects through a plane specified via the plane orientation, and store the result in dest.

      This method can be used to build a reflection transformation based on the orientation of a mirror object in the scene. It is assumed that the default mirror plane's normal is (0, 0, 1). So, if the given Quaterniondc is the identity (does not apply any additional rotation), the reflection plane will be z=0.

      If M is this matrix and R the reflection matrix, then the new matrix will be M * R. So when transforming a vector v with the new matrix by using M * R * v, the reflection will be applied first!

      Specified by:
      reflect in interface Matrix3dc
      Parameters:
      orientation - the plane orientation
      dest - will hold the result
      Returns:
      this
    • reflect

      public Matrix3d reflect(Vector3dc normal, Matrix3d dest)
      Description copied from interface: Matrix3dc
      Apply a mirror/reflection transformation to this matrix that reflects through the given plane specified via the plane normal, and store the result in dest.

      If M is this matrix and R the reflection matrix, then the new matrix will be M * R. So when transforming a vector v with the new matrix by using M * R * v, the reflection will be applied first!

      Specified by:
      reflect in interface Matrix3dc
      Parameters:
      normal - the plane normal
      dest - will hold the result
      Returns:
      this
    • reflection

      public Matrix3d reflection(double nx, double ny, double nz)
      Set this matrix to a mirror/reflection transformation that reflects through the given plane specified via the plane normal.
      Parameters:
      nx - the x-coordinate of the plane normal
      ny - the y-coordinate of the plane normal
      nz - the z-coordinate of the plane normal
      Returns:
      this
    • reflection

      public Matrix3d reflection(Vector3dc normal)
      Set this matrix to a mirror/reflection transformation that reflects through the given plane specified via the plane normal.
      Parameters:
      normal - the plane normal
      Returns:
      this
    • reflection

      public Matrix3d reflection(Quaterniondc orientation)
      Set this matrix to a mirror/reflection transformation that reflects through a plane specified via the plane orientation.

      This method can be used to build a reflection transformation based on the orientation of a mirror object in the scene. It is assumed that the default mirror plane's normal is (0, 0, 1). So, if the given Quaterniondc is the identity (does not apply any additional rotation), the reflection plane will be z=0, offset by the given point.

      Parameters:
      orientation - the plane orientation
      Returns:
      this
    • isFinite

      public boolean isFinite()
      Description copied from interface: Matrix3dc
      Determine whether all matrix elements are finite floating-point values, that is, they are not NaN and not infinity.
      Specified by:
      isFinite in interface Matrix3dc
      Returns:
      true if all components are finite floating-point values; false otherwise
    • quadraticFormProduct

      public double quadraticFormProduct(double x, double y, double z)
      Description copied from interface: Matrix3dc
      Compute (x, y, z)^T * this * (x, y, z).
      Specified by:
      quadraticFormProduct in interface Matrix3dc
      Parameters:
      x - the x coordinate of the vector to multiply
      y - the y coordinate of the vector to multiply
      z - the z coordinate of the vector to multiply
      Returns:
      the result
    • quadraticFormProduct

      public double quadraticFormProduct(Vector3dc v)
      Description copied from interface: Matrix3dc
      Compute v^T * this * v.
      Specified by:
      quadraticFormProduct in interface Matrix3dc
      Parameters:
      v - the vector to multiply
      Returns:
      the result
    • quadraticFormProduct

      public double quadraticFormProduct(Vector3fc v)
      Description copied from interface: Matrix3dc
      Compute v^T * this * v.
      Specified by:
      quadraticFormProduct in interface Matrix3dc
      Parameters:
      v - the vector to multiply
      Returns:
      the result
    • clone

      public Object clone() throws CloneNotSupportedException
      Overrides:
      clone in class Object
      Throws:
      CloneNotSupportedException