Package org.joml

Class Matrix3x2f

java.lang.Object
org.joml.Matrix3x2f
All Implemented Interfaces:
Externalizable, Serializable, Cloneable, Matrix3x2fc
Direct Known Subclasses:
Matrix3x2fStack

public class Matrix3x2f extends Object implements Matrix3x2fc, Externalizable, Cloneable
Contains the definition of a 3x2 matrix of floats, and associated functions to transform it. The matrix is column-major to match OpenGL's interpretation, and it looks like this:

m00 m10 m20
m01 m11 m21

Author:
Kai Burjack
See Also:
Serialized Form
  • Field Summary

    Fields
    Modifier and Type
    Field
    Description
    float
     
    float
     
    float
     
    float
     
    float
     
    float
     
  • Constructor Summary

    Constructors
    Constructor
    Description
    Create a new Matrix3x2f and set it to identity.
    Matrix3x2f​(float m00, float m01, float m10, float m11, float m20, float m21)
    Create a new 3x2 matrix using the supplied float values.
    Create a new Matrix3x2f by reading its 6 float components from the given FloatBuffer at the buffer's current position.
    Create a new Matrix3x2f by setting its left 2x2 submatrix to the values of the given Matrix2fc and the rest to identity.
    Create a new Matrix3x2f and make it a copy of the given matrix.
  • Method Summary

    Modifier and Type
    Method
    Description
     
    float
    Return the determinant of this matrix.
    boolean
    equals​(Object obj)
     
    boolean
    equals​(Matrix3x2fc m, float delta)
    Compare the matrix elements of this matrix with the given matrix using the given delta and return whether all of them are equal within a maximum difference of delta.
    float[]
    get​(float[] arr)
    Store this matrix into the supplied float array in column-major order.
    float[]
    get​(float[] arr, int offset)
    Store this matrix into the supplied float array in column-major order at the given offset.
    get​(int index, ByteBuffer buffer)
    Store this matrix in column-major order into the supplied ByteBuffer starting at the specified absolute buffer position/index.
    get​(int index, FloatBuffer buffer)
    Store this matrix in column-major order into the supplied FloatBuffer starting at the specified absolute buffer position/index.
    get​(ByteBuffer buffer)
    Store this matrix in column-major order into the supplied ByteBuffer at the current buffer position.
    get​(FloatBuffer buffer)
    Store this matrix in column-major order into the supplied FloatBuffer at the current buffer position.
    get​(Matrix3x2f dest)
    Get the current values of this matrix and store them into dest.
    float[]
    get3x3​(float[] arr)
    Store this matrix as an equivalent 3x3 matrix in column-major order into the supplied float array.
    float[]
    get3x3​(float[] arr, int offset)
    Store this matrix as an equivalent 3x3 matrix in column-major order into the supplied float array at the given offset.
    get3x3​(int index, ByteBuffer buffer)
    Store this matrix as an equivalent 3x3 matrix in column-major order into the supplied ByteBuffer starting at the specified absolute buffer position/index.
    get3x3​(int index, FloatBuffer buffer)
    Store this matrix as an equivalent 3x3 matrix in column-major order into the supplied FloatBuffer starting at the specified absolute buffer position/index.
    get3x3​(ByteBuffer buffer)
    Store this matrix as an equivalent 3x3 matrix in column-major order into the supplied ByteBuffer at the current buffer position.
    get3x3​(FloatBuffer buffer)
    Store this matrix as an equivalent 3x3 matrix in column-major order into the supplied FloatBuffer at the current buffer position.
    float[]
    get4x4​(float[] arr)
    Store this matrix as an equivalent 4x4 matrix in column-major order into the supplied float array.
    float[]
    get4x4​(float[] arr, int offset)
    Store this matrix as an equivalent 4x4 matrix in column-major order into the supplied float array at the given offset.
    get4x4​(int index, ByteBuffer buffer)
    Store this matrix as an equivalent 4x4 matrix in column-major order into the supplied ByteBuffer starting at the specified absolute buffer position/index.
    get4x4​(int index, FloatBuffer buffer)
    Store this matrix as an equivalent 4x4 matrix in column-major order into the supplied FloatBuffer starting at the specified absolute buffer position/index.
    get4x4​(ByteBuffer buffer)
    Store this matrix as an equivalent 4x4 matrix in column-major order into the supplied ByteBuffer at the current buffer position.
    get4x4​(FloatBuffer buffer)
    Store this matrix as an equivalent 4x4 matrix in column-major order into the supplied FloatBuffer at the current buffer position.
    getToAddress​(long address)
    Store this matrix in column-major order at the given off-heap address.
    int
     
    Set this matrix to the identity.
    Invert this matrix by assuming a third row in this matrix of (0, 0, 1).
    invert​(Matrix3x2f dest)
    Invert the this matrix by assuming a third row in this matrix of (0, 0, 1) and store the result in dest.
    boolean
    Determine whether all matrix elements are finite floating-point values, that is, they are not NaN and not infinity.
    float
    m00()
    Return the value of the matrix element at column 0 and row 0.
    float
    m01()
    Return the value of the matrix element at column 0 and row 1.
    float
    m10()
    Return the value of the matrix element at column 1 and row 0.
    float
    m11()
    Return the value of the matrix element at column 1 and row 1.
    float
    m20()
    Return the value of the matrix element at column 2 and row 0.
    float
    m21()
    Return the value of the matrix element at column 2 and row 1.
    mul​(Matrix3x2fc right)
    Multiply this matrix by the supplied right matrix by assuming a third row in both matrices of (0, 0, 1).
    mul​(Matrix3x2fc right, Matrix3x2f dest)
    Multiply this matrix by the supplied right matrix by assuming a third row in both matrices of (0, 0, 1) and store the result in dest.
    Pre-multiply this matrix by the supplied left matrix and store the result in this.
    Pre-multiply this matrix by the supplied left matrix and store the result in dest.
    Obtain the direction of +X before the transformation represented by this orthogonal matrix is applied.
    Obtain the direction of +Y before the transformation represented by this orthogonal matrix is applied.
    origin​(Vector2f origin)
    Obtain the position that gets transformed to the origin by this matrix.
    Obtain the direction of +X before the transformation represented by this matrix is applied.
    Obtain the direction of +Y before the transformation represented by this matrix is applied.
    void
     
    rotate​(float ang)
    Apply a rotation transformation to this matrix by rotating the given amount of radians.
    rotate​(float ang, Matrix3x2f dest)
    Apply a rotation transformation to this matrix by rotating the given amount of radians and store the result in dest.
    rotateAbout​(float ang, float x, float y)
    Apply a rotation transformation to this matrix by rotating the given amount of radians about the specified rotation center (x, y).
    rotateAbout​(float ang, float x, float y, Matrix3x2f dest)
    Apply a rotation transformation to this matrix by rotating the given amount of radians about the specified rotation center (x, y) and store the result in dest.
    rotateLocal​(float ang)
    Pre-multiply a rotation to this matrix by rotating the given amount of radians.
    rotateLocal​(float ang, Matrix3x2f dest)
    Pre-multiply a rotation to this matrix by rotating the given amount of radians and store the result in dest.
    rotateTo​(Vector2fc fromDir, Vector2fc toDir)
    Apply a rotation transformation to this matrix that rotates the given normalized fromDir direction vector to point along the normalized toDir.
    rotateTo​(Vector2fc fromDir, Vector2fc toDir, Matrix3x2f dest)
    Apply a rotation transformation to this matrix that rotates the given normalized fromDir direction vector to point along the normalized toDir, and store the result in dest.
    rotation​(float angle)
    Set this matrix to a rotation matrix which rotates the given radians.
    scale​(float xy)
    Apply scaling to this matrix by uniformly scaling the two base axes by the given xyz factor.
    scale​(float x, float y)
    Apply scaling to this matrix by scaling the base axes by the given x and y factors.
    scale​(float x, float y, Matrix3x2f dest)
    Apply scaling to this matrix by scaling the unit axes by the given x and y and store the result in dest.
    scale​(float xy, Matrix3x2f dest)
    Apply scaling to this matrix by uniformly scaling the two base axes by the given xy factor and store the result in dest.
    Apply scaling to this matrix by scaling the base axes by the given xy factors.
    scale​(Vector2fc xy, Matrix3x2f dest)
    Apply scaling to this matrix by scaling the base axes by the given xy factors and store the result in dest.
    scaleAround​(float factor, float ox, float oy)
    Apply scaling to this matrix by scaling the base axes by the given factor while using (ox, oy) as the scaling origin.
    scaleAround​(float sx, float sy, float ox, float oy)
    Apply scaling to this matrix by scaling the base axes by the given sx and sy factors while using (ox, oy) as the scaling origin.
    scaleAround​(float sx, float sy, float ox, float oy, Matrix3x2f dest)
    Apply scaling to this matrix by scaling the base axes by the given sx and sy factors while using (ox, oy) as the scaling origin, and store the result in dest.
    scaleAround​(float factor, float ox, float oy, Matrix3x2f dest)
    Apply scaling to this matrix by scaling the base axes by the given factor while using (ox, oy) as the scaling origin, and store the result in dest.
    scaleAroundLocal​(float factor, float ox, float oy)
    Pre-multiply scaling to this matrix by scaling the base axes by the given factor while using (ox, oy) as the scaling origin.
    scaleAroundLocal​(float sx, float sy, float sz, float ox, float oy, float oz)
    Pre-multiply scaling to this matrix by scaling the base axes by the given sx and sy factors while using (ox, oy) as the scaling origin.
    scaleAroundLocal​(float sx, float sy, float ox, float oy, Matrix3x2f dest)
    Pre-multiply scaling to this matrix by scaling the base axes by the given sx and sy factors while using the given (ox, oy) as the scaling origin, and store the result in dest.
    scaleAroundLocal​(float factor, float ox, float oy, Matrix3x2f dest)
    Pre-multiply scaling to this matrix by scaling the base axes by the given factor while using (ox, oy) as the scaling origin, and store the result in dest.
    scaleLocal​(float xy)
    Pre-multiply scaling to this matrix by scaling the base axes by the given xy factor.
    scaleLocal​(float x, float y)
    Pre-multiply scaling to this matrix by scaling the base axes by the given x and y factors.
    scaleLocal​(float x, float y, Matrix3x2f dest)
    Pre-multiply scaling to this matrix by scaling the base axes by the given x and y factors and store the result in dest.
    scaleLocal​(float xy, Matrix3x2f dest)
    Pre-multiply scaling to this matrix by scaling the two base axes by the given xy factor, and store the result in dest.
    scaling​(float factor)
    Set this matrix to be a simple scale matrix, which scales the two base axes uniformly by the given factor.
    scaling​(float x, float y)
    Set this matrix to be a simple scale matrix.
    set​(float[] m)
    Set the values in this matrix based on the supplied float array.
    set​(float m00, float m01, float m10, float m11, float m20, float m21)
    Set the values within this matrix to the supplied float values.
    set​(int index, ByteBuffer buffer)
    Set the values of this matrix by reading 6 float values from the given ByteBuffer in column-major order, starting at the specified absolute buffer position/index.
    set​(int index, FloatBuffer buffer)
    Set the values of this matrix by reading 6 float values from the given FloatBuffer in column-major order, starting at the specified absolute buffer position/index.
    set​(ByteBuffer buffer)
    Set the values of this matrix by reading 6 float values from the given ByteBuffer in column-major order, starting at its current position.
    set​(FloatBuffer buffer)
    Set the values of this matrix by reading 6 float values from the given FloatBuffer in column-major order, starting at its current position.
    set​(Matrix2fc m)
    Set the left 2x2 submatrix of this Matrix3x2f to the given Matrix2fc and don't change the other elements.
    Set the elements of this matrix to the ones in m.
    setFromAddress​(long address)
    Set the values of this matrix by reading 6 float values from off-heap memory in column-major order, starting at the given address.
    setTranslation​(float x, float y)
    Set only the translation components of this matrix (m20, m21) to the given values (x, y).
    Set only the translation components of this matrix (m20, m21) to the given values (offset.x, offset.y).
    setView​(float left, float right, float bottom, float top)
    Set this matrix to define a "view" transformation that maps the given (left, bottom) and (right, top) corners to (-1, -1) and (1, 1) respectively.
    shearX​(float yFactor)
    Apply shearing to this matrix by shearing along the X axis using the Y axis factor yFactor.
    shearX​(float yFactor, Matrix3x2f dest)
    Apply shearing to this matrix by shearing along the X axis using the Y axis factor yFactor, and store the result in dest.
    shearY​(float xFactor)
    Apply shearing to this matrix by shearing along the Y axis using the X axis factor xFactor.
    shearY​(float xFactor, Matrix3x2f dest)
    Apply shearing to this matrix by shearing along the Y axis using the X axis factor xFactor, and store the result in dest.
    span​(Vector2f corner, Vector2f xDir, Vector2f yDir)
    Compute the extents of the coordinate system before this transformation was applied and store the resulting corner coordinates in corner and the span vectors in xDir and yDir.
    boolean
    testAar​(float minX, float minY, float maxX, float maxY)
    Test whether the given axis-aligned rectangle is partly or completely within or outside of the frustum defined by this matrix.
    boolean
    testCircle​(float x, float y, float r)
    Test whether the given circle is partly or completely within or outside of the frustum defined by this matrix.
    boolean
    testPoint​(float x, float y)
    Test whether the given point (x, y) is within the frustum defined by this matrix.
    Return a string representation of this matrix.
    toString​(NumberFormat formatter)
    Return a string representation of this matrix by formatting the matrix elements with the given NumberFormat.
    transform​(float x, float y, float z, Vector3f dest)
    Transform/multiply the given vector (x, y, z) by this matrix and store the result in dest.
    Transform/multiply the given vector by this matrix by assuming a third row in this matrix of (0, 0, 1) and store the result in that vector.
    Transform/multiply the given vector by this matrix by assuming a third row in this matrix of (0, 0, 1) and store the result in dest.
    transformDirection​(float x, float y, Vector2f dest)
    Transform/multiply the given 2D-vector (x, y), as if it was a 3D-vector with z=0, by this matrix and store the result in dest.
    Transform/multiply the given 2D-vector, as if it was a 3D-vector with z=0, by this matrix and store the result in that vector.
    Transform/multiply the given 2D-vector, as if it was a 3D-vector with z=0, by this matrix and store the result in dest.
    transformPosition​(float x, float y, Vector2f dest)
    Transform/multiply the given 2D-vector (x, y), as if it was a 3D-vector with z=1, by this matrix and store the result in dest.
    Transform/multiply the given 2D-vector, as if it was a 3D-vector with z=1, by this matrix and store the result in that vector.
    Transform/multiply the given 2D-vector, as if it was a 3D-vector with z=1, by this matrix and store the result in dest.
    translate​(float x, float y)
    Apply a translation to this matrix by translating by the given number of units in x and y.
    translate​(float x, float y, Matrix3x2f dest)
    Apply a translation to this matrix by translating by the given number of units in x and y and store the result in dest.
    translate​(Vector2fc offset)
    Apply a translation to this matrix by translating by the given number of units in x and y.
    translate​(Vector2fc offset, Matrix3x2f dest)
    Apply a translation to this matrix by translating by the given number of units in x and y, and store the result in dest.
    translateLocal​(float x, float y)
    Pre-multiply a translation to this matrix by translating by the given number of units in x and y.
    translateLocal​(float x, float y, Matrix3x2f dest)
    Pre-multiply a translation to this matrix by translating by the given number of units in x and y and store the result in dest.
    Pre-multiply a translation to this matrix by translating by the given number of units in x and y.
    Pre-multiply a translation to this matrix by translating by the given number of units in x and y and store the result in dest.
    translation​(float x, float y)
    Set this matrix to be a simple translation matrix in a two-dimensional coordinate system.
    Set this matrix to be a simple translation matrix in a two-dimensional coordinate system.
    unproject​(float winX, float winY, int[] viewport, Vector2f dest)
    Unproject the given window coordinates (winX, winY) by this matrix using the specified viewport.
    unprojectInv​(float winX, float winY, int[] viewport, Vector2f dest)
    Unproject the given window coordinates (winX, winY) by this matrix using the specified viewport.
    view​(float left, float right, float bottom, float top)
    Apply a "view" transformation to this matrix that maps the given (left, bottom) and (right, top) corners to (-1, -1) and (1, 1) respectively.
    view​(float left, float right, float bottom, float top, Matrix3x2f dest)
    Apply a "view" transformation to this matrix that maps the given (left, bottom) and (right, top) corners to (-1, -1) and (1, 1) respectively and store the result in dest.
    float[]
    viewArea​(float[] area)
    Obtain the extents of the view transformation of this matrix and store it in area.
    void
     
    Set all values within this matrix to zero.

    Methods inherited from class java.lang.Object

    finalize, getClass, notify, notifyAll, wait, wait, wait
  • Field Details

    • m00

      public float m00
    • m01

      public float m01
    • m10

      public float m10
    • m11

      public float m11
    • m20

      public float m20
    • m21

      public float m21
  • Constructor Details

    • Matrix3x2f

      public Matrix3x2f()
      Create a new Matrix3x2f and set it to identity.
    • Matrix3x2f

      public Matrix3x2f(Matrix3x2fc mat)
      Create a new Matrix3x2f and make it a copy of the given matrix.
      Parameters:
      mat - the Matrix3x2fc to copy the values from
    • Matrix3x2f

      public Matrix3x2f(Matrix2fc mat)
      Create a new Matrix3x2f by setting its left 2x2 submatrix to the values of the given Matrix2fc and the rest to identity.
      Parameters:
      mat - the Matrix2fc
    • Matrix3x2f

      public Matrix3x2f(float m00, float m01, float m10, float m11, float m20, float m21)
      Create a new 3x2 matrix using the supplied float values. The order of the parameter is column-major, so the first two parameters specify the two elements of the first column.
      Parameters:
      m00 - the value of m00
      m01 - the value of m01
      m10 - the value of m10
      m11 - the value of m11
      m20 - the value of m20
      m21 - the value of m21
    • Matrix3x2f

      public Matrix3x2f(FloatBuffer buffer)
      Create a new Matrix3x2f by reading its 6 float components from the given FloatBuffer at the buffer's current position.

      That FloatBuffer is expected to hold the values in column-major order.

      The buffer's position will not be changed by this method.

      Parameters:
      buffer - the FloatBuffer to read the matrix values from
  • Method Details

    • m00

      public float m00()
      Description copied from interface: Matrix3x2fc
      Return the value of the matrix element at column 0 and row 0.
      Specified by:
      m00 in interface Matrix3x2fc
      Returns:
      the value of the matrix element
    • m01

      public float m01()
      Description copied from interface: Matrix3x2fc
      Return the value of the matrix element at column 0 and row 1.
      Specified by:
      m01 in interface Matrix3x2fc
      Returns:
      the value of the matrix element
    • m10

      public float m10()
      Description copied from interface: Matrix3x2fc
      Return the value of the matrix element at column 1 and row 0.
      Specified by:
      m10 in interface Matrix3x2fc
      Returns:
      the value of the matrix element
    • m11

      public float m11()
      Description copied from interface: Matrix3x2fc
      Return the value of the matrix element at column 1 and row 1.
      Specified by:
      m11 in interface Matrix3x2fc
      Returns:
      the value of the matrix element
    • m20

      public float m20()
      Description copied from interface: Matrix3x2fc
      Return the value of the matrix element at column 2 and row 0.
      Specified by:
      m20 in interface Matrix3x2fc
      Returns:
      the value of the matrix element
    • m21

      public float m21()
      Description copied from interface: Matrix3x2fc
      Return the value of the matrix element at column 2 and row 1.
      Specified by:
      m21 in interface Matrix3x2fc
      Returns:
      the value of the matrix element
    • set

      public Matrix3x2f set(Matrix3x2fc m)
      Set the elements of this matrix to the ones in m.
      Parameters:
      m - the matrix to copy the elements from
      Returns:
      this
    • set

      public Matrix3x2f set(Matrix2fc m)
      Set the left 2x2 submatrix of this Matrix3x2f to the given Matrix2fc and don't change the other elements.
      Parameters:
      m - the 2x2 matrix
      Returns:
      this
    • mul

      public Matrix3x2f mul(Matrix3x2fc right)
      Multiply this matrix by the supplied right matrix by assuming a third row in both matrices of (0, 0, 1).

      If M is this matrix and R the right matrix, then the new matrix will be M * R. So when transforming a vector v with the new matrix by using M * R * v, the transformation of the right matrix will be applied first!

      Parameters:
      right - the right operand of the matrix multiplication
      Returns:
      this
    • mul

      public Matrix3x2f mul(Matrix3x2fc right, Matrix3x2f dest)
      Multiply this matrix by the supplied right matrix by assuming a third row in both matrices of (0, 0, 1) and store the result in dest.

      If M is this matrix and R the right matrix, then the new matrix will be M * R. So when transforming a vector v with the new matrix by using M * R * v, the transformation of the right matrix will be applied first!

      Specified by:
      mul in interface Matrix3x2fc
      Parameters:
      right - the right operand of the matrix multiplication
      dest - will hold the result
      Returns:
      dest
    • mulLocal

      public Matrix3x2f mulLocal(Matrix3x2fc left)
      Pre-multiply this matrix by the supplied left matrix and store the result in this.

      If M is this matrix and L the left matrix, then the new matrix will be L * M. So when transforming a vector v with the new matrix by using L * M * v, the transformation of this matrix will be applied first!

      Parameters:
      left - the left operand of the matrix multiplication
      Returns:
      this
    • mulLocal

      public Matrix3x2f mulLocal(Matrix3x2fc left, Matrix3x2f dest)
      Description copied from interface: Matrix3x2fc
      Pre-multiply this matrix by the supplied left matrix and store the result in dest.

      If M is this matrix and L the left matrix, then the new matrix will be L * M. So when transforming a vector v with the new matrix by using L * M * v, the transformation of this matrix will be applied first!

      Specified by:
      mulLocal in interface Matrix3x2fc
      Parameters:
      left - the left operand of the matrix multiplication
      dest - the destination matrix, which will hold the result
      Returns:
      dest
    • set

      public Matrix3x2f set(float m00, float m01, float m10, float m11, float m20, float m21)
      Set the values within this matrix to the supplied float values. The result looks like this:

      m00, m10, m20
      m01, m11, m21

      Parameters:
      m00 - the new value of m00
      m01 - the new value of m01
      m10 - the new value of m10
      m11 - the new value of m11
      m20 - the new value of m20
      m21 - the new value of m21
      Returns:
      this
    • set

      public Matrix3x2f set(float[] m)
      Set the values in this matrix based on the supplied float array. The result looks like this:

      0, 2, 4
      1, 3, 5
      This method only uses the first 6 values, all others are ignored.

      Parameters:
      m - the array to read the matrix values from
      Returns:
      this
    • determinant

      public float determinant()
      Return the determinant of this matrix.
      Specified by:
      determinant in interface Matrix3x2fc
      Returns:
      the determinant
    • invert

      public Matrix3x2f invert()
      Invert this matrix by assuming a third row in this matrix of (0, 0, 1).
      Returns:
      this
    • invert

      public Matrix3x2f invert(Matrix3x2f dest)
      Invert the this matrix by assuming a third row in this matrix of (0, 0, 1) and store the result in dest.
      Specified by:
      invert in interface Matrix3x2fc
      Parameters:
      dest - will hold the result
      Returns:
      dest
    • translation

      public Matrix3x2f translation(float x, float y)
      Set this matrix to be a simple translation matrix in a two-dimensional coordinate system.

      The resulting matrix can be multiplied against another transformation matrix to obtain an additional translation.

      In order to apply a translation via to an already existing transformation matrix, use translate() instead.

      Parameters:
      x - the units to translate in x
      y - the units to translate in y
      Returns:
      this
      See Also:
      translate(float, float)
    • translation

      public Matrix3x2f translation(Vector2fc offset)
      Set this matrix to be a simple translation matrix in a two-dimensional coordinate system.

      The resulting matrix can be multiplied against another transformation matrix to obtain an additional translation.

      In order to apply a translation via to an already existing transformation matrix, use translate() instead.

      Parameters:
      offset - the translation
      Returns:
      this
      See Also:
      translate(Vector2fc)
    • setTranslation

      public Matrix3x2f setTranslation(float x, float y)
      Set only the translation components of this matrix (m20, m21) to the given values (x, y).

      To build a translation matrix instead, use translation(float, float). To apply a translation to another matrix, use translate(float, float).

      Parameters:
      x - the offset to translate in x
      y - the offset to translate in y
      Returns:
      this
      See Also:
      translation(float, float), translate(float, float)
    • setTranslation

      public Matrix3x2f setTranslation(Vector2f offset)
      Set only the translation components of this matrix (m20, m21) to the given values (offset.x, offset.y).

      To build a translation matrix instead, use translation(Vector2fc). To apply a translation to another matrix, use translate(Vector2fc).

      Parameters:
      offset - the new translation to set
      Returns:
      this
      See Also:
      translation(Vector2fc), translate(Vector2fc)
    • translate

      public Matrix3x2f translate(float x, float y, Matrix3x2f dest)
      Apply a translation to this matrix by translating by the given number of units in x and y and store the result in dest.

      If M is this matrix and T the translation matrix, then the new matrix will be M * T. So when transforming a vector v with the new matrix by using M * T * v, the translation will be applied first!

      In order to set the matrix to a translation transformation without post-multiplying it, use translation(float, float).

      Specified by:
      translate in interface Matrix3x2fc
      Parameters:
      x - the offset to translate in x
      y - the offset to translate in y
      dest - will hold the result
      Returns:
      dest
      See Also:
      translation(float, float)
    • translate

      public Matrix3x2f translate(float x, float y)
      Apply a translation to this matrix by translating by the given number of units in x and y.

      If M is this matrix and T the translation matrix, then the new matrix will be M * T. So when transforming a vector v with the new matrix by using M * T * v, the translation will be applied first!

      In order to set the matrix to a translation transformation without post-multiplying it, use translation(float, float).

      Parameters:
      x - the offset to translate in x
      y - the offset to translate in y
      Returns:
      this
      See Also:
      translation(float, float)
    • translate

      public Matrix3x2f translate(Vector2fc offset, Matrix3x2f dest)
      Apply a translation to this matrix by translating by the given number of units in x and y, and store the result in dest.

      If M is this matrix and T the translation matrix, then the new matrix will be M * T. So when transforming a vector v with the new matrix by using M * T * v, the translation will be applied first!

      In order to set the matrix to a translation transformation without post-multiplying it, use translation(float, float).

      Specified by:
      translate in interface Matrix3x2fc
      Parameters:
      offset - the offset to translate
      dest - will hold the result
      Returns:
      dest
      See Also:
      translation(Vector2fc)
    • translate

      public Matrix3x2f translate(Vector2fc offset)
      Apply a translation to this matrix by translating by the given number of units in x and y.

      If M is this matrix and T the translation matrix, then the new matrix will be M * T. So when transforming a vector v with the new matrix by using M * T * v, the translation will be applied first!

      In order to set the matrix to a translation transformation without post-multiplying it, use translation(float, float).

      Parameters:
      offset - the offset to translate
      Returns:
      this
      See Also:
      translation(Vector2fc)
    • translateLocal

      public Matrix3x2f translateLocal(Vector2fc offset)
      Pre-multiply a translation to this matrix by translating by the given number of units in x and y.

      If M is this matrix and T the translation matrix, then the new matrix will be T * M. So when transforming a vector v with the new matrix by using T * M * v, the translation will be applied last!

      In order to set the matrix to a translation transformation without pre-multiplying it, use translation(Vector2fc).

      Parameters:
      offset - the number of units in x and y by which to translate
      Returns:
      this
      See Also:
      translation(Vector2fc)
    • translateLocal

      public Matrix3x2f translateLocal(Vector2fc offset, Matrix3x2f dest)
      Pre-multiply a translation to this matrix by translating by the given number of units in x and y and store the result in dest.

      If M is this matrix and T the translation matrix, then the new matrix will be T * M. So when transforming a vector v with the new matrix by using T * M * v, the translation will be applied last!

      In order to set the matrix to a translation transformation without pre-multiplying it, use translation(Vector2fc).

      Specified by:
      translateLocal in interface Matrix3x2fc
      Parameters:
      offset - the number of units in x and y by which to translate
      dest - will hold the result
      Returns:
      dest
      See Also:
      translation(Vector2fc)
    • translateLocal

      public Matrix3x2f translateLocal(float x, float y, Matrix3x2f dest)
      Pre-multiply a translation to this matrix by translating by the given number of units in x and y and store the result in dest.

      If M is this matrix and T the translation matrix, then the new matrix will be T * M. So when transforming a vector v with the new matrix by using T * M * v, the translation will be applied last!

      In order to set the matrix to a translation transformation without pre-multiplying it, use translation(float, float).

      Specified by:
      translateLocal in interface Matrix3x2fc
      Parameters:
      x - the offset to translate in x
      y - the offset to translate in y
      dest - will hold the result
      Returns:
      dest
      See Also:
      translation(float, float)
    • translateLocal

      public Matrix3x2f translateLocal(float x, float y)
      Pre-multiply a translation to this matrix by translating by the given number of units in x and y.

      If M is this matrix and T the translation matrix, then the new matrix will be T * M. So when transforming a vector v with the new matrix by using T * M * v, the translation will be applied last!

      In order to set the matrix to a translation transformation without pre-multiplying it, use translation(float, float).

      Parameters:
      x - the offset to translate in x
      y - the offset to translate in y
      Returns:
      this
      See Also:
      translation(float, float)
    • toString

      public String toString()
      Return a string representation of this matrix.

      This method creates a new DecimalFormat on every invocation with the format string "0.000E0;-".

      Overrides:
      toString in class Object
      Returns:
      the string representation
    • toString

      public String toString(NumberFormat formatter)
      Return a string representation of this matrix by formatting the matrix elements with the given NumberFormat.
      Parameters:
      formatter - the NumberFormat used to format the matrix values with
      Returns:
      the string representation
    • get

      public Matrix3x2f get(Matrix3x2f dest)
      Get the current values of this matrix and store them into dest.

      This is the reverse method of set(Matrix3x2fc) and allows to obtain intermediate calculation results when chaining multiple transformations.

      Specified by:
      get in interface Matrix3x2fc
      Parameters:
      dest - the destination matrix
      Returns:
      dest
      See Also:
      set(Matrix3x2fc)
    • get

      public FloatBuffer get(FloatBuffer buffer)
      Store this matrix in column-major order into the supplied FloatBuffer at the current buffer position.

      This method will not increment the position of the given FloatBuffer.

      In order to specify the offset into the FloatBuffer at which the matrix is stored, use get(int, FloatBuffer), taking the absolute position as parameter.

      Specified by:
      get in interface Matrix3x2fc
      Parameters:
      buffer - will receive the values of this matrix in column-major order at its current position
      Returns:
      the passed in buffer
      See Also:
      get(int, FloatBuffer)
    • get

      public FloatBuffer get(int index, FloatBuffer buffer)
      Store this matrix in column-major order into the supplied FloatBuffer starting at the specified absolute buffer position/index.

      This method will not increment the position of the given FloatBuffer.

      Specified by:
      get in interface Matrix3x2fc
      Parameters:
      index - the absolute position into the FloatBuffer
      buffer - will receive the values of this matrix in column-major order
      Returns:
      the passed in buffer
    • get

      public ByteBuffer get(ByteBuffer buffer)
      Store this matrix in column-major order into the supplied ByteBuffer at the current buffer position.

      This method will not increment the position of the given ByteBuffer.

      In order to specify the offset into the ByteBuffer at which the matrix is stored, use get(int, ByteBuffer), taking the absolute position as parameter.

      Specified by:
      get in interface Matrix3x2fc
      Parameters:
      buffer - will receive the values of this matrix in column-major order at its current position
      Returns:
      the passed in buffer
      See Also:
      get(int, ByteBuffer)
    • get

      public ByteBuffer get(int index, ByteBuffer buffer)
      Store this matrix in column-major order into the supplied ByteBuffer starting at the specified absolute buffer position/index.

      This method will not increment the position of the given ByteBuffer.

      Specified by:
      get in interface Matrix3x2fc
      Parameters:
      index - the absolute position into the ByteBuffer
      buffer - will receive the values of this matrix in column-major order
      Returns:
      the passed in buffer
    • get3x3

      public FloatBuffer get3x3(FloatBuffer buffer)
      Store this matrix as an equivalent 3x3 matrix in column-major order into the supplied FloatBuffer at the current buffer position.

      This method will not increment the position of the given FloatBuffer.

      In order to specify the offset into the FloatBuffer at which the matrix is stored, use get3x3(int, FloatBuffer), taking the absolute position as parameter.

      Specified by:
      get3x3 in interface Matrix3x2fc
      Parameters:
      buffer - will receive the values of this matrix in column-major order at its current position
      Returns:
      the passed in buffer
      See Also:
      get3x3(int, FloatBuffer)
    • get3x3

      public FloatBuffer get3x3(int index, FloatBuffer buffer)
      Store this matrix as an equivalent 3x3 matrix in column-major order into the supplied FloatBuffer starting at the specified absolute buffer position/index.

      This method will not increment the position of the given FloatBuffer.

      Specified by:
      get3x3 in interface Matrix3x2fc
      Parameters:
      index - the absolute position into the FloatBuffer
      buffer - will receive the values of this matrix in column-major order
      Returns:
      the passed in buffer
    • get3x3

      public ByteBuffer get3x3(ByteBuffer buffer)
      Store this matrix as an equivalent 3x3 matrix in column-major order into the supplied ByteBuffer at the current buffer position.

      This method will not increment the position of the given ByteBuffer.

      In order to specify the offset into the ByteBuffer at which the matrix is stored, use get3x3(int, ByteBuffer), taking the absolute position as parameter.

      Specified by:
      get3x3 in interface Matrix3x2fc
      Parameters:
      buffer - will receive the values of this matrix in column-major order at its current position
      Returns:
      the passed in buffer
      See Also:
      get3x3(int, ByteBuffer)
    • get3x3

      public ByteBuffer get3x3(int index, ByteBuffer buffer)
      Store this matrix as an equivalent 3x3 matrix in column-major order into the supplied ByteBuffer starting at the specified absolute buffer position/index.

      This method will not increment the position of the given ByteBuffer.

      Specified by:
      get3x3 in interface Matrix3x2fc
      Parameters:
      index - the absolute position into the ByteBuffer
      buffer - will receive the values of this matrix in column-major order
      Returns:
      the passed in buffer
    • get4x4

      public FloatBuffer get4x4(FloatBuffer buffer)
      Store this matrix as an equivalent 4x4 matrix in column-major order into the supplied FloatBuffer at the current buffer position.

      This method will not increment the position of the given FloatBuffer.

      In order to specify the offset into the FloatBuffer at which the matrix is stored, use get4x4(int, FloatBuffer), taking the absolute position as parameter.

      Specified by:
      get4x4 in interface Matrix3x2fc
      Parameters:
      buffer - will receive the values of this matrix in column-major order at its current position
      Returns:
      the passed in buffer
      See Also:
      get4x4(int, FloatBuffer)
    • get4x4

      public FloatBuffer get4x4(int index, FloatBuffer buffer)
      Store this matrix as an equivalent 4x4 matrix in column-major order into the supplied FloatBuffer starting at the specified absolute buffer position/index.

      This method will not increment the position of the given FloatBuffer.

      Specified by:
      get4x4 in interface Matrix3x2fc
      Parameters:
      index - the absolute position into the FloatBuffer
      buffer - will receive the values of this matrix in column-major order
      Returns:
      the passed in buffer
    • get4x4

      public ByteBuffer get4x4(ByteBuffer buffer)
      Store this matrix as an equivalent 4x4 matrix in column-major order into the supplied ByteBuffer at the current buffer position.

      This method will not increment the position of the given ByteBuffer.

      In order to specify the offset into the ByteBuffer at which the matrix is stored, use get4x4(int, ByteBuffer), taking the absolute position as parameter.

      Specified by:
      get4x4 in interface Matrix3x2fc
      Parameters:
      buffer - will receive the values of this matrix in column-major order at its current position
      Returns:
      the passed in buffer
      See Also:
      get4x4(int, ByteBuffer)
    • get4x4

      public ByteBuffer get4x4(int index, ByteBuffer buffer)
      Store this matrix as an equivalent 4x4 matrix in column-major order into the supplied ByteBuffer starting at the specified absolute buffer position/index.

      This method will not increment the position of the given ByteBuffer.

      Specified by:
      get4x4 in interface Matrix3x2fc
      Parameters:
      index - the absolute position into the ByteBuffer
      buffer - will receive the values of this matrix in column-major order
      Returns:
      the passed in buffer
    • getToAddress

      public Matrix3x2fc getToAddress(long address)
      Description copied from interface: Matrix3x2fc
      Store this matrix in column-major order at the given off-heap address.

      This method will throw an UnsupportedOperationException when JOML is used with `-Djoml.nounsafe`.

      This method is unsafe as it can result in a crash of the JVM process when the specified address range does not belong to this process.

      Specified by:
      getToAddress in interface Matrix3x2fc
      Parameters:
      address - the off-heap address where to store this matrix
      Returns:
      this
    • get

      public float[] get(float[] arr, int offset)
      Store this matrix into the supplied float array in column-major order at the given offset.
      Specified by:
      get in interface Matrix3x2fc
      Parameters:
      arr - the array to write the matrix values into
      offset - the offset into the array
      Returns:
      the passed in array
    • get

      public float[] get(float[] arr)
      Store this matrix into the supplied float array in column-major order.

      In order to specify an explicit offset into the array, use the method get(float[], int).

      Specified by:
      get in interface Matrix3x2fc
      Parameters:
      arr - the array to write the matrix values into
      Returns:
      the passed in array
      See Also:
      get(float[], int)
    • get3x3

      public float[] get3x3(float[] arr, int offset)
      Store this matrix as an equivalent 3x3 matrix in column-major order into the supplied float array at the given offset.
      Specified by:
      get3x3 in interface Matrix3x2fc
      Parameters:
      arr - the array to write the matrix values into
      offset - the offset into the array
      Returns:
      the passed in array
    • get3x3

      public float[] get3x3(float[] arr)
      Store this matrix as an equivalent 3x3 matrix in column-major order into the supplied float array.

      In order to specify an explicit offset into the array, use the method get3x3(float[], int).

      Specified by:
      get3x3 in interface Matrix3x2fc
      Parameters:
      arr - the array to write the matrix values into
      Returns:
      the passed in array
      See Also:
      get3x3(float[], int)
    • get4x4

      public float[] get4x4(float[] arr, int offset)
      Store this matrix as an equivalent 4x4 matrix in column-major order into the supplied float array at the given offset.
      Specified by:
      get4x4 in interface Matrix3x2fc
      Parameters:
      arr - the array to write the matrix values into
      offset - the offset into the array
      Returns:
      the passed in array
    • get4x4

      public float[] get4x4(float[] arr)
      Store this matrix as an equivalent 4x4 matrix in column-major order into the supplied float array.

      In order to specify an explicit offset into the array, use the method get4x4(float[], int).

      Specified by:
      get4x4 in interface Matrix3x2fc
      Parameters:
      arr - the array to write the matrix values into
      Returns:
      the passed in array
      See Also:
      get4x4(float[], int)
    • set

      public Matrix3x2f set(FloatBuffer buffer)
      Set the values of this matrix by reading 6 float values from the given FloatBuffer in column-major order, starting at its current position.

      The FloatBuffer is expected to contain the values in column-major order.

      The position of the FloatBuffer will not be changed by this method.

      Parameters:
      buffer - the FloatBuffer to read the matrix values from in column-major order
      Returns:
      this
    • set

      public Matrix3x2f set(ByteBuffer buffer)
      Set the values of this matrix by reading 6 float values from the given ByteBuffer in column-major order, starting at its current position.

      The ByteBuffer is expected to contain the values in column-major order.

      The position of the ByteBuffer will not be changed by this method.

      Parameters:
      buffer - the ByteBuffer to read the matrix values from in column-major order
      Returns:
      this
    • set

      public Matrix3x2f set(int index, FloatBuffer buffer)
      Set the values of this matrix by reading 6 float values from the given FloatBuffer in column-major order, starting at the specified absolute buffer position/index.

      The FloatBuffer is expected to contain the values in column-major order.

      The position of the FloatBuffer will not be changed by this method.

      Parameters:
      index - the absolute position into the FloatBuffer
      buffer - the FloatBuffer to read the matrix values from in column-major order
      Returns:
      this
    • set

      public Matrix3x2f set(int index, ByteBuffer buffer)
      Set the values of this matrix by reading 6 float values from the given ByteBuffer in column-major order, starting at the specified absolute buffer position/index.

      The ByteBuffer is expected to contain the values in column-major order.

      The position of the ByteBuffer will not be changed by this method.

      Parameters:
      index - the absolute position into the ByteBuffer
      buffer - the ByteBuffer to read the matrix values from in column-major order
      Returns:
      this
    • setFromAddress

      public Matrix3x2f setFromAddress(long address)
      Set the values of this matrix by reading 6 float values from off-heap memory in column-major order, starting at the given address.

      This method will throw an UnsupportedOperationException when JOML is used with `-Djoml.nounsafe`.

      This method is unsafe as it can result in a crash of the JVM process when the specified address range does not belong to this process.

      Parameters:
      address - the off-heap memory address to read the matrix values from in column-major order
      Returns:
      this
    • zero

      public Matrix3x2f zero()
      Set all values within this matrix to zero.
      Returns:
      this
    • identity

      public Matrix3x2f identity()
      Set this matrix to the identity.
      Returns:
      this
    • scale

      public Matrix3x2f scale(float x, float y, Matrix3x2f dest)
      Apply scaling to this matrix by scaling the unit axes by the given x and y and store the result in dest.

      If M is this matrix and S the scaling matrix, then the new matrix will be M * S. So when transforming a vector v with the new matrix by using M * S * v, the scaling will be applied first!

      Specified by:
      scale in interface Matrix3x2fc
      Parameters:
      x - the factor of the x component
      y - the factor of the y component
      dest - will hold the result
      Returns:
      dest
    • scale

      public Matrix3x2f scale(float x, float y)
      Apply scaling to this matrix by scaling the base axes by the given x and y factors.

      If M is this matrix and S the scaling matrix, then the new matrix will be M * S. So when transforming a vector v with the new matrix by using M * S * v, the scaling will be applied first!

      Parameters:
      x - the factor of the x component
      y - the factor of the y component
      Returns:
      this
    • scale

      public Matrix3x2f scale(Vector2fc xy)
      Apply scaling to this matrix by scaling the base axes by the given xy factors.

      If M is this matrix and S the scaling matrix, then the new matrix will be M * S. So when transforming a vector v with the new matrix by using M * S * v, the scaling will be applied first!

      Parameters:
      xy - the factors of the x and y component, respectively
      Returns:
      this
    • scale

      public Matrix3x2f scale(Vector2fc xy, Matrix3x2f dest)
      Apply scaling to this matrix by scaling the base axes by the given xy factors and store the result in dest.

      If M is this matrix and S the scaling matrix, then the new matrix will be M * S. So when transforming a vector v with the new matrix by using M * S * v, the scaling will be applied first!

      Specified by:
      scale in interface Matrix3x2fc
      Parameters:
      xy - the factors of the x and y component, respectively
      dest - will hold the result
      Returns:
      dest
    • scale

      public Matrix3x2f scale(float xy, Matrix3x2f dest)
      Apply scaling to this matrix by uniformly scaling the two base axes by the given xy factor and store the result in dest.

      If M is this matrix and S the scaling matrix, then the new matrix will be M * S. So when transforming a vector v with the new matrix by using M * S * v, the scaling will be applied first!

      Specified by:
      scale in interface Matrix3x2fc
      Parameters:
      xy - the factor for the two components
      dest - will hold the result
      Returns:
      dest
      See Also:
      scale(float, float, Matrix3x2f)
    • scale

      public Matrix3x2f scale(float xy)
      Apply scaling to this matrix by uniformly scaling the two base axes by the given xyz factor.

      If M is this matrix and S the scaling matrix, then the new matrix will be M * S. So when transforming a vector v with the new matrix by using M * S * v, the scaling will be applied first!

      Parameters:
      xy - the factor for the two components
      Returns:
      this
      See Also:
      scale(float, float)
    • scaleLocal

      public Matrix3x2f scaleLocal(float x, float y, Matrix3x2f dest)
      Description copied from interface: Matrix3x2fc
      Pre-multiply scaling to this matrix by scaling the base axes by the given x and y factors and store the result in dest.

      If M is this matrix and S the scaling matrix, then the new matrix will be S * M. So when transforming a vector v with the new matrix by using S * M * v , the scaling will be applied last!

      Specified by:
      scaleLocal in interface Matrix3x2fc
      Parameters:
      x - the factor of the x component
      y - the factor of the y component
      dest - will hold the result
      Returns:
      dest
    • scaleLocal

      public Matrix3x2f scaleLocal(float x, float y)
      Pre-multiply scaling to this matrix by scaling the base axes by the given x and y factors.

      If M is this matrix and S the scaling matrix, then the new matrix will be S * M. So when transforming a vector v with the new matrix by using S * M * v, the scaling will be applied last!

      Parameters:
      x - the factor of the x component
      y - the factor of the y component
      Returns:
      this
    • scaleLocal

      public Matrix3x2f scaleLocal(float xy, Matrix3x2f dest)
      Description copied from interface: Matrix3x2fc
      Pre-multiply scaling to this matrix by scaling the two base axes by the given xy factor, and store the result in dest.

      If M is this matrix and S the scaling matrix, then the new matrix will be S * M. So when transforming a vector v with the new matrix by using S * M * v , the scaling will be applied last!

      Specified by:
      scaleLocal in interface Matrix3x2fc
      Parameters:
      xy - the factor to scale all two base axes by
      dest - will hold the result
      Returns:
      dest
    • scaleLocal

      public Matrix3x2f scaleLocal(float xy)
      Pre-multiply scaling to this matrix by scaling the base axes by the given xy factor.

      If M is this matrix and S the scaling matrix, then the new matrix will be S * M. So when transforming a vector v with the new matrix by using S * M * v, the scaling will be applied last!

      Parameters:
      xy - the factor of the x and y component
      Returns:
      this
    • scaleAround

      public Matrix3x2f scaleAround(float sx, float sy, float ox, float oy, Matrix3x2f dest)
      Apply scaling to this matrix by scaling the base axes by the given sx and sy factors while using (ox, oy) as the scaling origin, and store the result in dest.

      If M is this matrix and S the scaling matrix, then the new matrix will be M * S. So when transforming a vector v with the new matrix by using M * S * v , the scaling will be applied first!

      This method is equivalent to calling: translate(ox, oy, dest).scale(sx, sy).translate(-ox, -oy)

      Specified by:
      scaleAround in interface Matrix3x2fc
      Parameters:
      sx - the scaling factor of the x component
      sy - the scaling factor of the y component
      ox - the x coordinate of the scaling origin
      oy - the y coordinate of the scaling origin
      dest - will hold the result
      Returns:
      dest
    • scaleAround

      public Matrix3x2f scaleAround(float sx, float sy, float ox, float oy)
      Apply scaling to this matrix by scaling the base axes by the given sx and sy factors while using (ox, oy) as the scaling origin.

      If M is this matrix and S the scaling matrix, then the new matrix will be M * S. So when transforming a vector v with the new matrix by using M * S * v, the scaling will be applied first!

      This method is equivalent to calling: translate(ox, oy).scale(sx, sy).translate(-ox, -oy)

      Parameters:
      sx - the scaling factor of the x component
      sy - the scaling factor of the y component
      ox - the x coordinate of the scaling origin
      oy - the y coordinate of the scaling origin
      Returns:
      this
    • scaleAround

      public Matrix3x2f scaleAround(float factor, float ox, float oy, Matrix3x2f dest)
      Apply scaling to this matrix by scaling the base axes by the given factor while using (ox, oy) as the scaling origin, and store the result in dest.

      If M is this matrix and S the scaling matrix, then the new matrix will be M * S. So when transforming a vector v with the new matrix by using M * S * v, the scaling will be applied first!

      This method is equivalent to calling: translate(ox, oy, dest).scale(factor).translate(-ox, -oy)

      Specified by:
      scaleAround in interface Matrix3x2fc
      Parameters:
      factor - the scaling factor for all three axes
      ox - the x coordinate of the scaling origin
      oy - the y coordinate of the scaling origin
      dest - will hold the result
      Returns:
      this
    • scaleAround

      public Matrix3x2f scaleAround(float factor, float ox, float oy)
      Apply scaling to this matrix by scaling the base axes by the given factor while using (ox, oy) as the scaling origin.

      If M is this matrix and S the scaling matrix, then the new matrix will be M * S. So when transforming a vector v with the new matrix by using M * S * v, the scaling will be applied first!

      This method is equivalent to calling: translate(ox, oy).scale(factor).translate(-ox, -oy)

      Parameters:
      factor - the scaling factor for all axes
      ox - the x coordinate of the scaling origin
      oy - the y coordinate of the scaling origin
      Returns:
      this
    • scaleAroundLocal

      public Matrix3x2f scaleAroundLocal(float sx, float sy, float ox, float oy, Matrix3x2f dest)
      Description copied from interface: Matrix3x2fc
      Pre-multiply scaling to this matrix by scaling the base axes by the given sx and sy factors while using the given (ox, oy) as the scaling origin, and store the result in dest.

      If M is this matrix and S the scaling matrix, then the new matrix will be S * M. So when transforming a vector v with the new matrix by using S * M * v , the scaling will be applied last!

      This method is equivalent to calling: new Matrix3x2f().translate(ox, oy).scale(sx, sy).translate(-ox, -oy).mul(this, dest)

      Specified by:
      scaleAroundLocal in interface Matrix3x2fc
      Parameters:
      sx - the scaling factor of the x component
      sy - the scaling factor of the y component
      ox - the x coordinate of the scaling origin
      oy - the y coordinate of the scaling origin
      dest - will hold the result
      Returns:
      dest
    • scaleAroundLocal

      public Matrix3x2f scaleAroundLocal(float factor, float ox, float oy, Matrix3x2f dest)
      Description copied from interface: Matrix3x2fc
      Pre-multiply scaling to this matrix by scaling the base axes by the given factor while using (ox, oy) as the scaling origin, and store the result in dest.

      If M is this matrix and S the scaling matrix, then the new matrix will be S * M. So when transforming a vector v with the new matrix by using S * M * v, the scaling will be applied last!

      This method is equivalent to calling: new Matrix3x2f().translate(ox, oy).scale(factor).translate(-ox, -oy).mul(this, dest)

      Specified by:
      scaleAroundLocal in interface Matrix3x2fc
      Parameters:
      factor - the scaling factor for all three axes
      ox - the x coordinate of the scaling origin
      oy - the y coordinate of the scaling origin
      dest - will hold the result
      Returns:
      this
    • scaleAroundLocal

      public Matrix3x2f scaleAroundLocal(float sx, float sy, float sz, float ox, float oy, float oz)
      Pre-multiply scaling to this matrix by scaling the base axes by the given sx and sy factors while using (ox, oy) as the scaling origin.

      If M is this matrix and S the scaling matrix, then the new matrix will be S * M. So when transforming a vector v with the new matrix by using S * M * v, the scaling will be applied last!

      This method is equivalent to calling: new Matrix3x2f().translate(ox, oy).scale(sx, sy).translate(-ox, -oy).mul(this, this)

      Parameters:
      sx - the scaling factor of the x component
      sy - the scaling factor of the y component
      sz - the scaling factor of the z component
      ox - the x coordinate of the scaling origin
      oy - the y coordinate of the scaling origin
      oz - the z coordinate of the scaling origin
      Returns:
      this
    • scaleAroundLocal

      public Matrix3x2f scaleAroundLocal(float factor, float ox, float oy)
      Pre-multiply scaling to this matrix by scaling the base axes by the given factor while using (ox, oy) as the scaling origin.

      If M is this matrix and S the scaling matrix, then the new matrix will be S * M. So when transforming a vector v with the new matrix by using S * M * v, the scaling will be applied last!

      This method is equivalent to calling: new Matrix3x2f().translate(ox, oy).scale(factor).translate(-ox, -oy).mul(this, this)

      Parameters:
      factor - the scaling factor for all three axes
      ox - the x coordinate of the scaling origin
      oy - the y coordinate of the scaling origin
      Returns:
      this
    • scaling

      public Matrix3x2f scaling(float factor)
      Set this matrix to be a simple scale matrix, which scales the two base axes uniformly by the given factor.

      The resulting matrix can be multiplied against another transformation matrix to obtain an additional scaling.

      In order to post-multiply a scaling transformation directly to a matrix, use scale() instead.

      Parameters:
      factor - the scale factor in x and y
      Returns:
      this
      See Also:
      scale(float)
    • scaling

      public Matrix3x2f scaling(float x, float y)
      Set this matrix to be a simple scale matrix.
      Parameters:
      x - the scale in x
      y - the scale in y
      Returns:
      this
    • rotation

      public Matrix3x2f rotation(float angle)
      Set this matrix to a rotation matrix which rotates the given radians.

      The resulting matrix can be multiplied against another transformation matrix to obtain an additional rotation.

      In order to apply the rotation transformation to an existing transformation, use rotate() instead.

      Parameters:
      angle - the angle in radians
      Returns:
      this
      See Also:
      rotate(float)
    • transform

      public Vector3f transform(Vector3f v)
      Transform/multiply the given vector by this matrix by assuming a third row in this matrix of (0, 0, 1) and store the result in that vector.
      Specified by:
      transform in interface Matrix3x2fc
      Parameters:
      v - the vector to transform and to hold the final result
      Returns:
      v
      See Also:
      Vector3f.mul(Matrix3x2fc)
    • transform

      public Vector3f transform(Vector3f v, Vector3f dest)
      Transform/multiply the given vector by this matrix by assuming a third row in this matrix of (0, 0, 1) and store the result in dest.
      Specified by:
      transform in interface Matrix3x2fc
      Parameters:
      v - the vector to transform
      dest - will contain the result
      Returns:
      dest
      See Also:
      Vector3f.mul(Matrix3x2fc, Vector3f)
    • transform

      public Vector3f transform(float x, float y, float z, Vector3f dest)
      Transform/multiply the given vector (x, y, z) by this matrix and store the result in dest.
      Specified by:
      transform in interface Matrix3x2fc
      Parameters:
      x - the x component of the vector to transform
      y - the y component of the vector to transform
      z - the z component of the vector to transform
      dest - will contain the result
      Returns:
      dest
    • transformPosition

      public Vector2f transformPosition(Vector2f v)
      Transform/multiply the given 2D-vector, as if it was a 3D-vector with z=1, by this matrix and store the result in that vector.

      The given 2D-vector is treated as a 3D-vector with its z-component being 1.0, so it will represent a position/location in 2D-space rather than a direction.

      In order to store the result in another vector, use transformPosition(Vector2fc, Vector2f).

      Specified by:
      transformPosition in interface Matrix3x2fc
      Parameters:
      v - the vector to transform and to hold the final result
      Returns:
      v
      See Also:
      transformPosition(Vector2fc, Vector2f), transform(Vector3f)
    • transformPosition

      public Vector2f transformPosition(Vector2fc v, Vector2f dest)
      Transform/multiply the given 2D-vector, as if it was a 3D-vector with z=1, by this matrix and store the result in dest.

      The given 2D-vector is treated as a 3D-vector with its z-component being 1.0, so it will represent a position/location in 2D-space rather than a direction.

      In order to store the result in the same vector, use transformPosition(Vector2f).

      Specified by:
      transformPosition in interface Matrix3x2fc
      Parameters:
      v - the vector to transform
      dest - will hold the result
      Returns:
      dest
      See Also:
      transformPosition(Vector2f), transform(Vector3f, Vector3f)
    • transformPosition

      public Vector2f transformPosition(float x, float y, Vector2f dest)
      Transform/multiply the given 2D-vector (x, y), as if it was a 3D-vector with z=1, by this matrix and store the result in dest.

      The given 2D-vector is treated as a 3D-vector with its z-component being 1.0, so it will represent a position/location in 2D-space rather than a direction.

      In order to store the result in the same vector, use transformPosition(Vector2f).

      Specified by:
      transformPosition in interface Matrix3x2fc
      Parameters:
      x - the x component of the vector to transform
      y - the y component of the vector to transform
      dest - will hold the result
      Returns:
      dest
      See Also:
      transformPosition(Vector2f), transform(Vector3f, Vector3f)
    • transformDirection

      public Vector2f transformDirection(Vector2f v)
      Transform/multiply the given 2D-vector, as if it was a 3D-vector with z=0, by this matrix and store the result in that vector.

      The given 2D-vector is treated as a 3D-vector with its z-component being 0.0, so it will represent a direction in 2D-space rather than a position. This method will therefore not take the translation part of the matrix into account.

      In order to store the result in another vector, use transformDirection(Vector2fc, Vector2f).

      Specified by:
      transformDirection in interface Matrix3x2fc
      Parameters:
      v - the vector to transform and to hold the final result
      Returns:
      v
      See Also:
      transformDirection(Vector2fc, Vector2f)
    • transformDirection

      public Vector2f transformDirection(Vector2fc v, Vector2f dest)
      Transform/multiply the given 2D-vector, as if it was a 3D-vector with z=0, by this matrix and store the result in dest.

      The given 2D-vector is treated as a 3D-vector with its z-component being 0.0, so it will represent a direction in 2D-space rather than a position. This method will therefore not take the translation part of the matrix into account.

      In order to store the result in the same vector, use transformDirection(Vector2f).

      Specified by:
      transformDirection in interface Matrix3x2fc
      Parameters:
      v - the vector to transform
      dest - will hold the result
      Returns:
      dest
      See Also:
      transformDirection(Vector2f)
    • transformDirection

      public Vector2f transformDirection(float x, float y, Vector2f dest)
      Transform/multiply the given 2D-vector (x, y), as if it was a 3D-vector with z=0, by this matrix and store the result in dest.

      The given 2D-vector is treated as a 3D-vector with its z-component being 0.0, so it will represent a direction in 2D-space rather than a position. This method will therefore not take the translation part of the matrix into account.

      In order to store the result in the same vector, use transformDirection(Vector2f).

      Specified by:
      transformDirection in interface Matrix3x2fc
      Parameters:
      x - the x component of the vector to transform
      y - the y component of the vector to transform
      dest - will hold the result
      Returns:
      dest
      See Also:
      transformDirection(Vector2f)
    • writeExternal

      public void writeExternal(ObjectOutput out) throws IOException
      Specified by:
      writeExternal in interface Externalizable
      Throws:
      IOException
    • readExternal

      public void readExternal(ObjectInput in) throws IOException
      Specified by:
      readExternal in interface Externalizable
      Throws:
      IOException
    • rotate

      public Matrix3x2f rotate(float ang)
      Apply a rotation transformation to this matrix by rotating the given amount of radians.

      If M is this matrix and R the rotation matrix, then the new matrix will be M * R. So when transforming a vector v with the new matrix by using M * R * v , the rotation will be applied first!

      Parameters:
      ang - the angle in radians
      Returns:
      this
    • rotate

      public Matrix3x2f rotate(float ang, Matrix3x2f dest)
      Apply a rotation transformation to this matrix by rotating the given amount of radians and store the result in dest.

      If M is this matrix and R the rotation matrix, then the new matrix will be M * R. So when transforming a vector v with the new matrix by using M * R * v, the rotation will be applied first!

      Specified by:
      rotate in interface Matrix3x2fc
      Parameters:
      ang - the angle in radians
      dest - will hold the result
      Returns:
      dest
    • rotateLocal

      public Matrix3x2f rotateLocal(float ang, Matrix3x2f dest)
      Pre-multiply a rotation to this matrix by rotating the given amount of radians and store the result in dest.

      If M is this matrix and R the rotation matrix, then the new matrix will be R * M. So when transforming a vector v with the new matrix by using R * M * v, the rotation will be applied last!

      In order to set the matrix to a rotation matrix without pre-multiplying the rotation transformation, use rotation().

      Reference: http://en.wikipedia.org

      Specified by:
      rotateLocal in interface Matrix3x2fc
      Parameters:
      ang - the angle in radians to rotate
      dest - will hold the result
      Returns:
      dest
      See Also:
      rotation(float)
    • rotateLocal

      public Matrix3x2f rotateLocal(float ang)
      Pre-multiply a rotation to this matrix by rotating the given amount of radians.

      If M is this matrix and R the rotation matrix, then the new matrix will be R * M. So when transforming a vector v with the new matrix by using R * M * v, the rotation will be applied last!

      In order to set the matrix to a rotation matrix without pre-multiplying the rotation transformation, use rotation().

      Reference: http://en.wikipedia.org

      Parameters:
      ang - the angle in radians to rotate
      Returns:
      this
      See Also:
      rotation(float)
    • rotateAbout

      public Matrix3x2f rotateAbout(float ang, float x, float y)
      Apply a rotation transformation to this matrix by rotating the given amount of radians about the specified rotation center (x, y).

      This method is equivalent to calling: translate(x, y).rotate(ang).translate(-x, -y)

      If M is this matrix and R the rotation matrix, then the new matrix will be M * R. So when transforming a vector v with the new matrix by using M * R * v, the rotation will be applied first!

      Parameters:
      ang - the angle in radians
      x - the x component of the rotation center
      y - the y component of the rotation center
      Returns:
      this
      See Also:
      translate(float, float), rotate(float)
    • rotateAbout

      public Matrix3x2f rotateAbout(float ang, float x, float y, Matrix3x2f dest)
      Apply a rotation transformation to this matrix by rotating the given amount of radians about the specified rotation center (x, y) and store the result in dest.

      This method is equivalent to calling: translate(x, y, dest).rotate(ang).translate(-x, -y)

      If M is this matrix and R the rotation matrix, then the new matrix will be M * R. So when transforming a vector v with the new matrix by using M * R * v, the rotation will be applied first!

      Specified by:
      rotateAbout in interface Matrix3x2fc
      Parameters:
      ang - the angle in radians
      x - the x component of the rotation center
      y - the y component of the rotation center
      dest - will hold the result
      Returns:
      dest
      See Also:
      translate(float, float, Matrix3x2f), rotate(float, Matrix3x2f)
    • rotateTo

      public Matrix3x2f rotateTo(Vector2fc fromDir, Vector2fc toDir, Matrix3x2f dest)
      Apply a rotation transformation to this matrix that rotates the given normalized fromDir direction vector to point along the normalized toDir, and store the result in dest.

      If M is this matrix and R the rotation matrix, then the new matrix will be M * R. So when transforming a vector v with the new matrix by using M * R * v, the rotation will be applied first!

      Specified by:
      rotateTo in interface Matrix3x2fc
      Parameters:
      fromDir - the normalized direction which should be rotate to point along toDir
      toDir - the normalized destination direction
      dest - will hold the result
      Returns:
      dest
    • rotateTo

      public Matrix3x2f rotateTo(Vector2fc fromDir, Vector2fc toDir)
      Apply a rotation transformation to this matrix that rotates the given normalized fromDir direction vector to point along the normalized toDir.

      If M is this matrix and R the rotation matrix, then the new matrix will be M * R. So when transforming a vector v with the new matrix by using M * R * v, the rotation will be applied first!

      Parameters:
      fromDir - the normalized direction which should be rotate to point along toDir
      toDir - the normalized destination direction
      Returns:
      this
    • view

      public Matrix3x2f view(float left, float right, float bottom, float top, Matrix3x2f dest)
      Apply a "view" transformation to this matrix that maps the given (left, bottom) and (right, top) corners to (-1, -1) and (1, 1) respectively and store the result in dest.

      If M is this matrix and O the orthographic projection matrix, then the new matrix will be M * O. So when transforming a vector v with the new matrix by using M * O * v, the orthographic projection transformation will be applied first!

      Specified by:
      view in interface Matrix3x2fc
      Parameters:
      left - the distance from the center to the left view edge
      right - the distance from the center to the right view edge
      bottom - the distance from the center to the bottom view edge
      top - the distance from the center to the top view edge
      dest - will hold the result
      Returns:
      dest
      See Also:
      setView(float, float, float, float)
    • view

      public Matrix3x2f view(float left, float right, float bottom, float top)
      Apply a "view" transformation to this matrix that maps the given (left, bottom) and (right, top) corners to (-1, -1) and (1, 1) respectively.

      If M is this matrix and O the orthographic projection matrix, then the new matrix will be M * O. So when transforming a vector v with the new matrix by using M * O * v, the orthographic projection transformation will be applied first!

      Parameters:
      left - the distance from the center to the left view edge
      right - the distance from the center to the right view edge
      bottom - the distance from the center to the bottom view edge
      top - the distance from the center to the top view edge
      Returns:
      this
      See Also:
      setView(float, float, float, float)
    • setView

      public Matrix3x2f setView(float left, float right, float bottom, float top)
      Set this matrix to define a "view" transformation that maps the given (left, bottom) and (right, top) corners to (-1, -1) and (1, 1) respectively.
      Parameters:
      left - the distance from the center to the left view edge
      right - the distance from the center to the right view edge
      bottom - the distance from the center to the bottom view edge
      top - the distance from the center to the top view edge
      Returns:
      this
      See Also:
      view(float, float, float, float)
    • origin

      public Vector2f origin(Vector2f origin)
      Obtain the position that gets transformed to the origin by this matrix. This can be used to get the position of the "camera" from a given view transformation matrix.

      This method is equivalent to the following code:

       Matrix3x2f inv = new Matrix3x2f(this).invert();
       inv.transform(origin.set(0, 0));
       
      Specified by:
      origin in interface Matrix3x2fc
      Parameters:
      origin - will hold the position transformed to the origin
      Returns:
      origin
    • viewArea

      public float[] viewArea(float[] area)
      Obtain the extents of the view transformation of this matrix and store it in area. This can be used to determine which region of the screen (i.e. the NDC space) is covered by the view.
      Specified by:
      viewArea in interface Matrix3x2fc
      Parameters:
      area - will hold the view area as [minX, minY, maxX, maxY]
      Returns:
      area
    • positiveX

      public Vector2f positiveX(Vector2f dir)
      Description copied from interface: Matrix3x2fc
      Obtain the direction of +X before the transformation represented by this matrix is applied.

      This method uses the rotation component of the left 2x2 submatrix to obtain the direction that is transformed to +X by this matrix.

      This method is equivalent to the following code:

       Matrix3x2f inv = new Matrix3x2f(this).invert();
       inv.transformDirection(dir.set(1, 0)).normalize();
       
      If this is already an orthogonal matrix, then consider using Matrix3x2fc.normalizedPositiveX(Vector2f) instead.

      Reference: http://www.euclideanspace.com

      Specified by:
      positiveX in interface Matrix3x2fc
      Parameters:
      dir - will hold the direction of +X
      Returns:
      dir
    • normalizedPositiveX

      public Vector2f normalizedPositiveX(Vector2f dir)
      Description copied from interface: Matrix3x2fc
      Obtain the direction of +X before the transformation represented by this orthogonal matrix is applied. This method only produces correct results if this is an orthogonal matrix.

      This method uses the rotation component of the left 2x2 submatrix to obtain the direction that is transformed to +X by this matrix.

      This method is equivalent to the following code:

       Matrix3x2f inv = new Matrix3x2f(this).transpose();
       inv.transformDirection(dir.set(1, 0));
       

      Reference: http://www.euclideanspace.com

      Specified by:
      normalizedPositiveX in interface Matrix3x2fc
      Parameters:
      dir - will hold the direction of +X
      Returns:
      dir
    • positiveY

      public Vector2f positiveY(Vector2f dir)
      Description copied from interface: Matrix3x2fc
      Obtain the direction of +Y before the transformation represented by this matrix is applied.

      This method uses the rotation component of the left 2x2 submatrix to obtain the direction that is transformed to +Y by this matrix.

      This method is equivalent to the following code:

       Matrix3x2f inv = new Matrix3x2f(this).invert();
       inv.transformDirection(dir.set(0, 1)).normalize();
       
      If this is already an orthogonal matrix, then consider using Matrix3x2fc.normalizedPositiveY(Vector2f) instead.

      Reference: http://www.euclideanspace.com

      Specified by:
      positiveY in interface Matrix3x2fc
      Parameters:
      dir - will hold the direction of +Y
      Returns:
      dir
    • normalizedPositiveY

      public Vector2f normalizedPositiveY(Vector2f dir)
      Description copied from interface: Matrix3x2fc
      Obtain the direction of +Y before the transformation represented by this orthogonal matrix is applied. This method only produces correct results if this is an orthogonal matrix.

      This method uses the rotation component of the left 2x2 submatrix to obtain the direction that is transformed to +Y by this matrix.

      This method is equivalent to the following code:

       Matrix3x2f inv = new Matrix3x2f(this).transpose();
       inv.transformDirection(dir.set(0, 1));
       

      Reference: http://www.euclideanspace.com

      Specified by:
      normalizedPositiveY in interface Matrix3x2fc
      Parameters:
      dir - will hold the direction of +Y
      Returns:
      dir
    • unproject

      public Vector2f unproject(float winX, float winY, int[] viewport, Vector2f dest)
      Unproject the given window coordinates (winX, winY) by this matrix using the specified viewport.

      This method first converts the given window coordinates to normalized device coordinates in the range [-1..1] and then transforms those NDC coordinates by the inverse of this matrix.

      As a necessary computation step for unprojecting, this method computes the inverse of this matrix. In order to avoid computing the matrix inverse with every invocation, the inverse of this matrix can be built once outside using invert(Matrix3x2f) and then the method unprojectInv() can be invoked on it.

      Specified by:
      unproject in interface Matrix3x2fc
      Parameters:
      winX - the x-coordinate in window coordinates (pixels)
      winY - the y-coordinate in window coordinates (pixels)
      viewport - the viewport described by [x, y, width, height]
      dest - will hold the unprojected position
      Returns:
      dest
      See Also:
      unprojectInv(float, float, int[], Vector2f), invert(Matrix3x2f)
    • unprojectInv

      public Vector2f unprojectInv(float winX, float winY, int[] viewport, Vector2f dest)
      Unproject the given window coordinates (winX, winY) by this matrix using the specified viewport.

      This method differs from unproject() in that it assumes that this is already the inverse matrix of the original projection matrix. It exists to avoid recomputing the matrix inverse with every invocation.

      Specified by:
      unprojectInv in interface Matrix3x2fc
      Parameters:
      winX - the x-coordinate in window coordinates (pixels)
      winY - the y-coordinate in window coordinates (pixels)
      viewport - the viewport described by [x, y, width, height]
      dest - will hold the unprojected position
      Returns:
      dest
      See Also:
      unproject(float, float, int[], Vector2f)
    • shearX

      public Matrix3x2f shearX(float yFactor)
      Apply shearing to this matrix by shearing along the X axis using the Y axis factor yFactor.
      Parameters:
      yFactor - the factor for the Y component to shear along the X axis
      Returns:
      this
    • shearX

      public Matrix3x2f shearX(float yFactor, Matrix3x2f dest)
      Apply shearing to this matrix by shearing along the X axis using the Y axis factor yFactor, and store the result in dest.
      Parameters:
      yFactor - the factor for the Y component to shear along the X axis
      dest - will hold the result
      Returns:
      dest
    • shearY

      public Matrix3x2f shearY(float xFactor)
      Apply shearing to this matrix by shearing along the Y axis using the X axis factor xFactor.
      Parameters:
      xFactor - the factor for the X component to shear along the Y axis
      Returns:
      this
    • shearY

      public Matrix3x2f shearY(float xFactor, Matrix3x2f dest)
      Apply shearing to this matrix by shearing along the Y axis using the X axis factor xFactor, and store the result in dest.
      Parameters:
      xFactor - the factor for the X component to shear along the Y axis
      dest - will hold the result
      Returns:
      dest
    • span

      public Matrix3x2f span(Vector2f corner, Vector2f xDir, Vector2f yDir)
      Compute the extents of the coordinate system before this transformation was applied and store the resulting corner coordinates in corner and the span vectors in xDir and yDir.

      That means, given the maximum extents of the coordinate system between [-1..+1] in all dimensions, this method returns one corner and the length and direction of the two base axis vectors in the coordinate system before this transformation is applied, which transforms into the corner coordinates [-1, +1].

      Parameters:
      corner - will hold one corner of the span
      xDir - will hold the direction and length of the span along the positive X axis
      yDir - will hold the direction and length of the span along the positive Y axis
      Returns:
      this
    • testPoint

      public boolean testPoint(float x, float y)
      Description copied from interface: Matrix3x2fc
      Test whether the given point (x, y) is within the frustum defined by this matrix.

      This method assumes this matrix to be a transformation from any arbitrary coordinate system/space M into standard OpenGL clip space and tests whether the given point with the coordinates (x, y, z) given in space M is within the clip space.

      Reference: Fast Extraction of Viewing Frustum Planes from the World-View-Projection Matrix

      Specified by:
      testPoint in interface Matrix3x2fc
      Parameters:
      x - the x-coordinate of the point
      y - the y-coordinate of the point
      Returns:
      true if the given point is inside the frustum; false otherwise
    • testCircle

      public boolean testCircle(float x, float y, float r)
      Description copied from interface: Matrix3x2fc
      Test whether the given circle is partly or completely within or outside of the frustum defined by this matrix.

      This method assumes this matrix to be a transformation from any arbitrary coordinate system/space M into standard OpenGL clip space and tests whether the given sphere with the coordinates (x, y, z) given in space M is within the clip space.

      Reference: Fast Extraction of Viewing Frustum Planes from the World-View-Projection Matrix

      Specified by:
      testCircle in interface Matrix3x2fc
      Parameters:
      x - the x-coordinate of the circle's center
      y - the y-coordinate of the circle's center
      r - the circle's radius
      Returns:
      true if the given circle is partly or completely inside the frustum; false otherwise
    • testAar

      public boolean testAar(float minX, float minY, float maxX, float maxY)
      Description copied from interface: Matrix3x2fc
      Test whether the given axis-aligned rectangle is partly or completely within or outside of the frustum defined by this matrix. The rectangle is specified via its min and max corner coordinates.

      This method assumes this matrix to be a transformation from any arbitrary coordinate system/space M into standard OpenGL clip space and tests whether the given axis-aligned rectangle with its minimum corner coordinates (minX, minY, minZ) and maximum corner coordinates (maxX, maxY, maxZ) given in space M is within the clip space.

      Reference: Efficient View Frustum Culling
      Reference: Fast Extraction of Viewing Frustum Planes from the World-View-Projection Matrix

      Specified by:
      testAar in interface Matrix3x2fc
      Parameters:
      minX - the x-coordinate of the minimum corner
      minY - the y-coordinate of the minimum corner
      maxX - the x-coordinate of the maximum corner
      maxY - the y-coordinate of the maximum corner
      Returns:
      true if the axis-aligned box is completely or partly inside of the frustum; false otherwise
    • hashCode

      public int hashCode()
      Overrides:
      hashCode in class Object
    • equals

      public boolean equals(Object obj)
      Overrides:
      equals in class Object
    • equals

      public boolean equals(Matrix3x2fc m, float delta)
      Description copied from interface: Matrix3x2fc
      Compare the matrix elements of this matrix with the given matrix using the given delta and return whether all of them are equal within a maximum difference of delta.

      Please note that this method is not used by any data structure such as ArrayList HashSet or HashMap and their operations, such as ArrayList.contains(Object) or HashSet.remove(Object), since those data structures only use the Object.equals(Object) and Object.hashCode() methods.

      Specified by:
      equals in interface Matrix3x2fc
      Parameters:
      m - the other matrix
      delta - the allowed maximum difference
      Returns:
      true whether all of the matrix elements are equal; false otherwise
    • isFinite

      public boolean isFinite()
      Description copied from interface: Matrix3x2fc
      Determine whether all matrix elements are finite floating-point values, that is, they are not NaN and not infinity.
      Specified by:
      isFinite in interface Matrix3x2fc
      Returns:
      true if all components are finite floating-point values; false otherwise
    • clone

      public Object clone() throws CloneNotSupportedException
      Overrides:
      clone in class Object
      Throws:
      CloneNotSupportedException