Package org.joml

Class Matrix4x3d

java.lang.Object
org.joml.Matrix4x3d
All Implemented Interfaces:
Externalizable, Serializable, Cloneable, Matrix4x3dc
Direct Known Subclasses:
Matrix4x3dStack

public class Matrix4x3d extends Object implements Externalizable, Cloneable, Matrix4x3dc
Contains the definition of an affine 4x3 matrix (4 columns, 3 rows) of doubles, and associated functions to transform it. The matrix is column-major to match OpenGL's interpretation, and it looks like this:

m00 m10 m20 m30
m01 m11 m21 m31
m02 m12 m22 m32

Author:
Richard Greenlees, Kai Burjack
See Also:
  • Field Summary

  • Constructor Summary

    Constructors
    Constructor
    Description
    Create a new Matrix4x3d and set it to identity.
    Matrix4x3d(double m00, double m01, double m02, double m10, double m11, double m12, double m20, double m21, double m22, double m30, double m31, double m32)
    Create a new 4x4 matrix using the supplied double values.
    Create a new Matrix4x3d by reading its 12 double components from the given DoubleBuffer at the buffer's current position.
    Create a new Matrix4x3d by setting its left 3x3 submatrix to the values of the given Matrix3dc and the rest to identity.
    Create a new Matrix4x3d by setting its left 3x3 submatrix to the values of the given Matrix3fc and the rest to identity.
    Create a new Matrix4x3d and make it a copy of the given matrix.
    Create a new Matrix4x3d and make it a copy of the given matrix.
  • Method Summary

    Modifier and Type
    Method
    Description
    Component-wise add this and other.
    add(Matrix4x3dc other, Matrix4x3d dest)
    Component-wise add this and other and store the result in dest.
    Component-wise add this and other.
    add(Matrix4x3fc other, Matrix4x3d dest)
    Component-wise add this and other and store the result in dest.
    arcball(double radius, double centerX, double centerY, double centerZ, double angleX, double angleY)
    Apply an arcball view transformation to this matrix with the given radius and center (centerX, centerY, centerZ) position of the arcball and the specified X and Y rotation angles.
    arcball(double radius, double centerX, double centerY, double centerZ, double angleX, double angleY, Matrix4x3d dest)
    Apply an arcball view transformation to this matrix with the given radius and center (centerX, centerY, centerZ) position of the arcball and the specified X and Y rotation angles, and store the result in dest.
    arcball(double radius, Vector3dc center, double angleX, double angleY)
    Apply an arcball view transformation to this matrix with the given radius and center position of the arcball and the specified X and Y rotation angles.
    arcball(double radius, Vector3dc center, double angleX, double angleY, Matrix4x3d dest)
    Apply an arcball view transformation to this matrix with the given radius and center position of the arcball and the specified X and Y rotation angles, and store the result in dest.
    assume(int properties)
    Assume the given properties about this matrix.
    Set this matrix to a cylindrical billboard transformation that rotates the local +Z axis of a given object with position objPos towards a target position at targetPos while constraining a cylindrical rotation around the given up vector.
    Set this matrix to a spherical billboard transformation that rotates the local +Z axis of a given object with position objPos towards a target position at targetPos using a shortest arc rotation by not preserving any up vector of the object.
    Set this matrix to a spherical billboard transformation that rotates the local +Z axis of a given object with position objPos towards a target position at targetPos.
     
    Compute the cofactor matrix of the left 3x3 submatrix of this.
    Compute the cofactor matrix of the left 3x3 submatrix of this and store it into dest.
    Compute the cofactor matrix of the left 3x3 submatrix of this and store it into dest.
    double
    Return the determinant of this matrix.
    Compute and set the matrix properties returned by properties() based on the current matrix element values.
    boolean
     
    boolean
    equals(Matrix4x3dc m, double delta)
    Compare the matrix elements of this matrix with the given matrix using the given delta and return whether all of them are equal within a maximum difference of delta.
    fma(Matrix4x3dc other, double otherFactor)
    Component-wise add this and other by first multiplying each component of other by otherFactor and adding that result to this.
    fma(Matrix4x3dc other, double otherFactor, Matrix4x3d dest)
    Component-wise add this and other by first multiplying each component of other by otherFactor, adding that to this and storing the final result in dest.
    fma(Matrix4x3fc other, double otherFactor)
    Component-wise add this and other by first multiplying each component of other by otherFactor and adding that result to this.
    fma(Matrix4x3fc other, double otherFactor, Matrix4x3d dest)
    Component-wise add this and other by first multiplying each component of other by otherFactor, adding that to this and storing the final result in dest.
    frustumPlane(int which, Vector4d dest)
    Calculate a frustum plane of this matrix, which can be a projection matrix or a combined modelview-projection matrix, and store the result in the given dest.
    double[]
    get(double[] arr)
    Store this matrix into the supplied double array in column-major order.
    double[]
    get(double[] arr, int offset)
    Store this matrix into the supplied double array in column-major order at the given offset.
    float[]
    get(float[] arr)
    Store the elements of this matrix as float values in column-major order into the supplied float array.
    float[]
    get(float[] arr, int offset)
    Store the elements of this matrix as float values in column-major order into the supplied float array at the given offset.
    get(int index, ByteBuffer buffer)
    Store this matrix in column-major order into the supplied ByteBuffer starting at the specified absolute buffer position/index.
    get(int index, DoubleBuffer buffer)
    Store this matrix in column-major order into the supplied DoubleBuffer starting at the specified absolute buffer position/index.
    get(int index, FloatBuffer buffer)
    Store this matrix in column-major order into the supplied FloatBuffer starting at the specified absolute buffer position/index.
    get(ByteBuffer buffer)
    Store this matrix in column-major order into the supplied ByteBuffer at the current buffer position.
    get(DoubleBuffer buffer)
    Store this matrix in column-major order into the supplied DoubleBuffer at the current buffer position.
    get(FloatBuffer buffer)
    Store this matrix in column-major order into the supplied FloatBuffer at the current buffer position.
    get(Matrix4d dest)
    Get the current values of this matrix and store them into the upper 4x3 submatrix of dest.
    Get the current values of this matrix and store them into dest.
    double[]
    get4x4(double[] arr)
    Store a 4x4 matrix in column-major order into the supplied array, where the upper 4x3 submatrix is this and the last row is (0, 0, 0, 1).
    double[]
    get4x4(double[] arr, int offset)
    Store a 4x4 matrix in column-major order into the supplied array at the given offset, where the upper 4x3 submatrix is this and the last row is (0, 0, 0, 1).
    float[]
    get4x4(float[] arr)
    Store a 4x4 matrix in column-major order into the supplied array, where the upper 4x3 submatrix is this and the last row is (0, 0, 0, 1).
    float[]
    get4x4(float[] arr, int offset)
    Store a 4x4 matrix in column-major order into the supplied array at the given offset, where the upper 4x3 submatrix is this and the last row is (0, 0, 0, 1).
    get4x4(int index, ByteBuffer buffer)
    Store a 4x4 matrix in column-major order into the supplied ByteBuffer starting at the specified absolute buffer position/index, where the upper 4x3 submatrix is this and the last row is (0, 0, 0, 1).
    get4x4(int index, DoubleBuffer buffer)
    Store a 4x4 matrix in column-major order into the supplied DoubleBuffer starting at the specified absolute buffer position/index, where the upper 4x3 submatrix is this and the last row is (0, 0, 0, 1).
    Store a 4x4 matrix in column-major order into the supplied ByteBuffer at the current buffer position, where the upper 4x3 submatrix is this and the last row is (0, 0, 0, 1).
    Store a 4x4 matrix in column-major order into the supplied DoubleBuffer at the current buffer position, where the upper 4x3 submatrix is this and the last row is (0, 0, 0, 1).
    getColumn(int column, Vector3d dest)
    Get the column at the given column index, starting with 0.
    Extract the Euler angles from the rotation represented by the left 3x3 submatrix of this and store the extracted Euler angles in dest.
    Extract the Euler angles from the rotation represented by the left 3x3 submatrix of this and store the extracted Euler angles in dest.
    getFloats(int index, ByteBuffer buffer)
    Store the elements of this matrix as float values in column-major order into the supplied ByteBuffer starting at the specified absolute buffer position/index.
    Store the elements of this matrix as float values in column-major order into the supplied ByteBuffer at the current buffer position.
    Get the current values of this matrix and store the represented rotation into the given Quaterniond.
    Get the current values of this matrix and store the represented rotation into the given Quaternionf.
    getRow(int row, Vector4d dest)
    Get the row at the given row index, starting with 0.
    Get the scaling factors of this matrix for the three base axes.
    getToAddress(long address)
    Store this matrix in column-major order at the given off-heap address.
    Get only the translation components (m30, m31, m32) of this matrix and store them in the given vector xyz.
    double[]
    getTransposed(double[] arr)
    Store this matrix into the supplied float array in row-major order.
    double[]
    getTransposed(double[] arr, int offset)
    Store this matrix into the supplied float array in row-major order at the given offset.
    getTransposed(int index, ByteBuffer buffer)
    Store this matrix in row-major order into the supplied ByteBuffer starting at the specified absolute buffer position/index.
    getTransposed(int index, DoubleBuffer buffer)
    Store this matrix in row-major order into the supplied DoubleBuffer starting at the specified absolute buffer position/index.
    getTransposed(int index, FloatBuffer buffer)
    Store this matrix in row-major order into the supplied FloatBuffer starting at the specified absolute buffer position/index.
    Store this matrix in row-major order into the supplied ByteBuffer at the current buffer position.
    Store this matrix in row-major order into the supplied DoubleBuffer at the current buffer position.
    Store this matrix in row-major order into the supplied FloatBuffer at the current buffer position.
    getTransposedFloats(int index, ByteBuffer buffer)
    Store this matrix in row-major order into the supplied ByteBuffer starting at the specified absolute buffer position/index.
    Store this matrix as float values in row-major order into the supplied ByteBuffer at the current buffer position.
    Get the current values of this matrix and store the represented rotation into the given Quaterniond.
    Get the current values of this matrix and store the represented rotation into the given Quaternionf.
    int
     
    Reset this matrix to the identity.
    Invert this matrix.
    Invert this matrix and store the result in dest.
    Invert this orthographic projection matrix.
    Invert this orthographic projection matrix and store the result into the given dest.
    boolean
    Determine whether all matrix elements are finite floating-point values, that is, they are not NaN and not infinity.
    lerp(Matrix4x3dc other, double t)
    Linearly interpolate this and other using the given interpolation factor t and store the result in this.
    lerp(Matrix4x3dc other, double t, Matrix4x3d dest)
    Linearly interpolate this and other using the given interpolation factor t and store the result in dest.
    lookAlong(double dirX, double dirY, double dirZ, double upX, double upY, double upZ)
    Apply a rotation transformation to this matrix to make -z point along dir.
    lookAlong(double dirX, double dirY, double dirZ, double upX, double upY, double upZ, Matrix4x3d dest)
    Apply a rotation transformation to this matrix to make -z point along dir and store the result in dest.
    Apply a rotation transformation to this matrix to make -z point along dir.
    Apply a rotation transformation to this matrix to make -z point along dir and store the result in dest.
    lookAt(double eyeX, double eyeY, double eyeZ, double centerX, double centerY, double centerZ, double upX, double upY, double upZ)
    Apply a "lookat" transformation to this matrix for a right-handed coordinate system, that aligns -z with center - eye.
    lookAt(double eyeX, double eyeY, double eyeZ, double centerX, double centerY, double centerZ, double upX, double upY, double upZ, Matrix4x3d dest)
    Apply a "lookat" transformation to this matrix for a right-handed coordinate system, that aligns -z with center - eye and store the result in dest.
    lookAt(Vector3dc eye, Vector3dc center, Vector3dc up)
    Apply a "lookat" transformation to this matrix for a right-handed coordinate system, that aligns -z with center - eye.
    lookAt(Vector3dc eye, Vector3dc center, Vector3dc up, Matrix4x3d dest)
    Apply a "lookat" transformation to this matrix for a right-handed coordinate system, that aligns -z with center - eye and store the result in dest.
    lookAtLH(double eyeX, double eyeY, double eyeZ, double centerX, double centerY, double centerZ, double upX, double upY, double upZ)
    Apply a "lookat" transformation to this matrix for a left-handed coordinate system, that aligns +z with center - eye.
    lookAtLH(double eyeX, double eyeY, double eyeZ, double centerX, double centerY, double centerZ, double upX, double upY, double upZ, Matrix4x3d dest)
    Apply a "lookat" transformation to this matrix for a left-handed coordinate system, that aligns +z with center - eye and store the result in dest.
    Apply a "lookat" transformation to this matrix for a left-handed coordinate system, that aligns +z with center - eye.
    lookAtLH(Vector3dc eye, Vector3dc center, Vector3dc up, Matrix4x3d dest)
    Apply a "lookat" transformation to this matrix for a left-handed coordinate system, that aligns +z with center - eye and store the result in dest.
    double
    m00()
    Return the value of the matrix element at column 0 and row 0.
    m00(double m00)
    Set the value of the matrix element at column 0 and row 0.
    double
    m01()
    Return the value of the matrix element at column 0 and row 1.
    m01(double m01)
    Set the value of the matrix element at column 0 and row 1.
    double
    m02()
    Return the value of the matrix element at column 0 and row 2.
    m02(double m02)
    Set the value of the matrix element at column 0 and row 2.
    double
    m10()
    Return the value of the matrix element at column 1 and row 0.
    m10(double m10)
    Set the value of the matrix element at column 1 and row 0.
    double
    m11()
    Return the value of the matrix element at column 1 and row 1.
    m11(double m11)
    Set the value of the matrix element at column 1 and row 1.
    double
    m12()
    Return the value of the matrix element at column 1 and row 2.
    m12(double m12)
    Set the value of the matrix element at column 1 and row 2.
    double
    m20()
    Return the value of the matrix element at column 2 and row 0.
    m20(double m20)
    Set the value of the matrix element at column 2 and row 0.
    double
    m21()
    Return the value of the matrix element at column 2 and row 1.
    m21(double m21)
    Set the value of the matrix element at column 2 and row 1.
    double
    m22()
    Return the value of the matrix element at column 2 and row 2.
    m22(double m22)
    Set the value of the matrix element at column 2 and row 2.
    double
    m30()
    Return the value of the matrix element at column 3 and row 0.
    m30(double m30)
    Set the value of the matrix element at column 3 and row 0.
    double
    m31()
    Return the value of the matrix element at column 3 and row 1.
    m31(double m31)
    Set the value of the matrix element at column 3 and row 1.
    double
    m32()
    Return the value of the matrix element at column 3 and row 2.
    m32(double m32)
    Set the value of the matrix element at column 3 and row 2.
    Multiply this by the matrix
    Multiply this by the matrix
    Multiply this by the matrix
    Multiply this by the matrix
    Multiply this by the matrix
    Multiply this by the matrix
    Multiply this by the matrix
    Multiply this by the matrix
    Multiply this by the matrix
    Multiply this by the matrix
    Multiply this by the matrix
    Multiply this by the matrix
    Multiply this by the matrix
    Multiply this by the matrix
    Multiply this by the matrix
    Multiply this by the matrix
    Multiply this by the matrix
    Multiply this by the matrix
    Multiply this by the matrix
    Multiply this by the matrix
    Multiply this by the matrix
    Multiply this by the matrix
    Multiply this by the matrix
    Multiply this by the matrix
    Multiply this by the matrix
    Multiply this by the matrix
    Multiply this by the matrix
    Multiply this by the matrix
    Multiply this by the matrix
    Multiply this by the matrix
    Multiply this by the matrix
    Multiply this by the matrix
    Multiply this by the matrix
    Multiply this by the matrix
    Multiply this by the matrix
    Multiply this by the matrix
    Multiply this by the matrix
    Multiply this by the matrix
    Multiply this by the matrix
    Multiply this by the matrix
    Multiply this by the matrix
    Multiply this by the matrix
    Multiply this by the matrix
    Multiply this by the matrix
    Multiply this by the matrix
    Multiply this by the matrix
    Multiply this by the matrix
    Multiply this by the matrix
    Multiply this by the matrix
    Multiply this by the matrix
    Multiply this by the matrix
    Multiply this by the matrix
    Multiply this by the matrix
    Multiply this by the matrix
    Multiply this by the matrix
    Multiply this by the matrix
    Multiply this by the matrix
    Multiply this by the matrix
    Multiply this by the matrix
    Multiply this by the matrix
    Multiply this by the matrix
    Multiply this by the matrix
    Multiply this by the matrix
    Multiply this by the matrix
    Multiply this by the matrix
    Multiply this by the matrix
    Multiply this by the matrix
    Multiply this by the matrix
    Multiply this by the matrix
    Multiply this by the matrix
    Multiply this by the matrix
    Multiply this by the matrix
    Multiply this by the matrix
    Multiply this by the matrix
    Multiply this by the matrix
    Multiply this by the matrix
    Multiply this by the matrix
    Multiply this by the matrix
    Multiply this by the matrix
    Multiply this by the matrix
    Multiply this by the matrix
    Multiply this by the matrix
    Multiply this by the matrix
    Multiply this by the matrix
    Multiply this by the matrix
    Multiply this by the matrix
    Multiply this by the matrix
    Multiply this by the matrix
    Multiply this matrix by the supplied right matrix.
    mul(Matrix4x3dc right, Matrix4x3d dest)
    Multiply this matrix by the supplied right matrix and store the result in dest.
    Multiply this matrix by the supplied right matrix.
    mul(Matrix4x3fc right, Matrix4x3d dest)
    Multiply this matrix by the supplied right matrix and store the result in dest.
    mul3x3(double rm00, double rm01, double rm02, double rm10, double rm11, double rm12, double rm20, double rm21, double rm22)
    Multiply this by the 4x3 matrix with the column vectors (rm00, rm01, rm02), (rm10, rm11, rm12), (rm20, rm21, rm22) and (0, 0, 0).
    mul3x3(double rm00, double rm01, double rm02, double rm10, double rm11, double rm12, double rm20, double rm21, double rm22, Matrix4x3d dest)
    Multiply this by the 4x3 matrix with the column vectors (rm00, rm01, rm02), (rm10, rm11, rm12), (rm20, rm21, rm22) and (0, 0, 0) and store the result in dest.
    Component-wise multiply this by other.
    Component-wise multiply this by other and store the result in dest.
    Multiply this orthographic projection matrix by the supplied view matrix.
    Multiply this orthographic projection matrix by the supplied view matrix and store the result in dest.
    Multiply this matrix, which is assumed to only contain a translation, by the supplied right matrix and store the result in dest.
    Multiply this matrix, which is assumed to only contain a translation, by the supplied right matrix and store the result in dest.
    Multiply this by the matrix
    Multiply this by the matrix
    Multiply this by the matrix
    Multiply this by the matrix
    Multiply this by the matrix
    Multiply this by the matrix
    Compute a normal matrix from the left 3x3 submatrix of this and store it into the left 3x3 submatrix of this.
    Compute a normal matrix from the left 3x3 submatrix of this and store it into dest.
    Compute a normal matrix from the left 3x3 submatrix of this and store it into the left 3x3 submatrix of dest.
    Normalize the left 3x3 submatrix of this matrix.
    Normalize the left 3x3 submatrix of this matrix and store the result in dest.
    Normalize the left 3x3 submatrix of this matrix and store the result in dest.
    Obtain the direction of +X before the transformation represented by this orthogonal matrix is applied.
    Obtain the direction of +Y before the transformation represented by this orthogonal matrix is applied.
    Obtain the direction of +Z before the transformation represented by this orthogonal matrix is applied.
    obliqueZ(double a, double b)
    Apply an oblique projection transformation to this matrix with the given values for a and b.
    obliqueZ(double a, double b, Matrix4x3d dest)
    Apply an oblique projection transformation to this matrix with the given values for a and b and store the result in dest.
    origin(Vector3d origin)
    Obtain the position that gets transformed to the origin by this matrix.
    ortho(double left, double right, double bottom, double top, double zNear, double zFar)
    Apply an orthographic projection transformation for a right-handed coordinate system using OpenGL's NDC z range of [-1..+1] to this matrix.
    ortho(double left, double right, double bottom, double top, double zNear, double zFar, boolean zZeroToOne)
    Apply an orthographic projection transformation for a right-handed coordinate system using the given NDC z range to this matrix.
    ortho(double left, double right, double bottom, double top, double zNear, double zFar, boolean zZeroToOne, Matrix4x3d dest)
    Apply an orthographic projection transformation for a right-handed coordinate system using the given NDC z range to this matrix and store the result in dest.
    ortho(double left, double right, double bottom, double top, double zNear, double zFar, Matrix4x3d dest)
    Apply an orthographic projection transformation for a right-handed coordinate system using OpenGL's NDC z range of [-1..+1] to this matrix and store the result in dest.
    ortho2D(double left, double right, double bottom, double top)
    Apply an orthographic projection transformation for a right-handed coordinate system to this matrix.
    ortho2D(double left, double right, double bottom, double top, Matrix4x3d dest)
    Apply an orthographic projection transformation for a right-handed coordinate system to this matrix and store the result in dest.
    ortho2DLH(double left, double right, double bottom, double top)
    Apply an orthographic projection transformation for a left-handed coordinate system to this matrix.
    ortho2DLH(double left, double right, double bottom, double top, Matrix4x3d dest)
    Apply an orthographic projection transformation for a left-handed coordinate system to this matrix and store the result in dest.
    orthoLH(double left, double right, double bottom, double top, double zNear, double zFar)
    Apply an orthographic projection transformation for a left-handed coordiante system using OpenGL's NDC z range of [-1..+1] to this matrix.
    orthoLH(double left, double right, double bottom, double top, double zNear, double zFar, boolean zZeroToOne)
    Apply an orthographic projection transformation for a left-handed coordiante system using the given NDC z range to this matrix.
    orthoLH(double left, double right, double bottom, double top, double zNear, double zFar, boolean zZeroToOne, Matrix4x3d dest)
    Apply an orthographic projection transformation for a left-handed coordiante system using the given NDC z range to this matrix and store the result in dest.
    orthoLH(double left, double right, double bottom, double top, double zNear, double zFar, Matrix4x3d dest)
    Apply an orthographic projection transformation for a left-handed coordiante system using OpenGL's NDC z range of [-1..+1] to this matrix and store the result in dest.
    orthoSymmetric(double width, double height, double zNear, double zFar)
    Apply a symmetric orthographic projection transformation for a right-handed coordinate system using OpenGL's NDC z range of [-1..+1] to this matrix.
    orthoSymmetric(double width, double height, double zNear, double zFar, boolean zZeroToOne)
    Apply a symmetric orthographic projection transformation for a right-handed coordinate system using the given NDC z range to this matrix.
    orthoSymmetric(double width, double height, double zNear, double zFar, boolean zZeroToOne, Matrix4x3d dest)
    Apply a symmetric orthographic projection transformation for a right-handed coordinate system using the given NDC z range to this matrix and store the result in dest.
    orthoSymmetric(double width, double height, double zNear, double zFar, Matrix4x3d dest)
    Apply a symmetric orthographic projection transformation for a right-handed coordinate system using OpenGL's NDC z range of [-1..+1] to this matrix and store the result in dest.
    orthoSymmetricLH(double width, double height, double zNear, double zFar)
    Apply a symmetric orthographic projection transformation for a left-handed coordinate system using OpenGL's NDC z range of [-1..+1] to this matrix.
    orthoSymmetricLH(double width, double height, double zNear, double zFar, boolean zZeroToOne)
    Apply a symmetric orthographic projection transformation for a left-handed coordinate system using the given NDC z range to this matrix.
    orthoSymmetricLH(double width, double height, double zNear, double zFar, boolean zZeroToOne, Matrix4x3d dest)
    Apply a symmetric orthographic projection transformation for a left-handed coordinate system using the given NDC z range to this matrix and store the result in dest.
    orthoSymmetricLH(double width, double height, double zNear, double zFar, Matrix4x3d dest)
    Apply a symmetric orthographic projection transformation for a left-handed coordinate system using OpenGL's NDC z range of [-1..+1] to this matrix and store the result in dest.
    pick(double x, double y, double width, double height, int[] viewport)
    Apply a picking transformation to this matrix using the given window coordinates (x, y) as the pick center and the given (width, height) as the size of the picking region in window coordinates.
    pick(double x, double y, double width, double height, int[] viewport, Matrix4x3d dest)
    Apply a picking transformation to this matrix using the given window coordinates (x, y) as the pick center and the given (width, height) as the size of the picking region in window coordinates, and store the result in dest.
    Obtain the direction of +X before the transformation represented by this matrix is applied.
    Obtain the direction of +Y before the transformation represented by this matrix is applied.
    Obtain the direction of +Z before the transformation represented by this matrix is applied.
    int
     
    void
     
    reflect(double a, double b, double c, double d)
    Apply a mirror/reflection transformation to this matrix that reflects about the given plane specified via the equation x*a + y*b + z*c + d = 0.
    reflect(double nx, double ny, double nz, double px, double py, double pz)
    Apply a mirror/reflection transformation to this matrix that reflects about the given plane specified via the plane normal and a point on the plane.
    reflect(double nx, double ny, double nz, double px, double py, double pz, Matrix4x3d dest)
    Apply a mirror/reflection transformation to this matrix that reflects about the given plane specified via the plane normal and a point on the plane, and store the result in dest.
    reflect(double a, double b, double c, double d, Matrix4x3d dest)
    Apply a mirror/reflection transformation to this matrix that reflects about the given plane specified via the equation x*a + y*b + z*c + d = 0 and store the result in dest.
    reflect(Quaterniondc orientation, Vector3dc point)
    Apply a mirror/reflection transformation to this matrix that reflects about a plane specified via the plane orientation and a point on the plane.
    reflect(Quaterniondc orientation, Vector3dc point, Matrix4x3d dest)
    Apply a mirror/reflection transformation to this matrix that reflects about a plane specified via the plane orientation and a point on the plane, and store the result in dest.
    reflect(Vector3dc normal, Vector3dc point)
    Apply a mirror/reflection transformation to this matrix that reflects about the given plane specified via the plane normal and a point on the plane.
    reflect(Vector3dc normal, Vector3dc point, Matrix4x3d dest)
    Apply a mirror/reflection transformation to this matrix that reflects about the given plane specified via the plane normal and a point on the plane, and store the result in dest.
    reflection(double a, double b, double c, double d)
    Set this matrix to a mirror/reflection transformation that reflects about the given plane specified via the equation x*a + y*b + z*c + d = 0.
    reflection(double nx, double ny, double nz, double px, double py, double pz)
    Set this matrix to a mirror/reflection transformation that reflects about the given plane specified via the plane normal and a point on the plane.
    reflection(Quaterniondc orientation, Vector3dc point)
    Set this matrix to a mirror/reflection transformation that reflects about a plane specified via the plane orientation and a point on the plane.
    reflection(Vector3dc normal, Vector3dc point)
    Set this matrix to a mirror/reflection transformation that reflects about the given plane specified via the plane normal and a point on the plane.
    rotate(double ang, double x, double y, double z)
    Apply rotation to this matrix by rotating the given amount of radians about the given axis specified as x, y and z components.
    rotate(double ang, double x, double y, double z, Matrix4x3d dest)
    Apply rotation to this matrix by rotating the given amount of radians about the given axis specified as x, y and z components and store the result in dest.
    rotate(double angle, Vector3dc axis)
    Apply a rotation transformation, rotating the given radians about the specified axis, to this matrix.
    rotate(double angle, Vector3dc axis, Matrix4x3d dest)
    Apply a rotation transformation, rotating the given radians about the specified axis and store the result in dest.
    rotate(double angle, Vector3fc axis)
    Apply a rotation transformation, rotating the given radians about the specified axis, to this matrix.
    rotate(double angle, Vector3fc axis, Matrix4x3d dest)
    Apply a rotation transformation, rotating the given radians about the specified axis and store the result in dest.
    rotate(AxisAngle4d axisAngle)
    Apply a rotation transformation, rotating about the given AxisAngle4d, to this matrix.
    rotate(AxisAngle4d axisAngle, Matrix4x3d dest)
    Apply a rotation transformation, rotating about the given AxisAngle4d and store the result in dest.
    rotate(AxisAngle4f axisAngle)
    Apply a rotation transformation, rotating about the given AxisAngle4f, to this matrix.
    rotate(AxisAngle4f axisAngle, Matrix4x3d dest)
    Apply a rotation transformation, rotating about the given AxisAngle4f and store the result in dest.
    Apply the rotation - and possibly scaling - transformation of the given Quaterniondc to this matrix.
    Apply the rotation - and possibly scaling - transformation of the given Quaterniondc to this matrix and store the result in dest.
    Apply the rotation - and possibly scaling - transformation of the given Quaternionfc to this matrix.
    Apply the rotation - and possibly scaling - transformation of the given Quaternionfc to this matrix and store the result in dest.
    rotateAround(Quaterniondc quat, double ox, double oy, double oz)
    Apply the rotation transformation of the given Quaterniondc to this matrix while using (ox, oy, oz) as the rotation origin.
    rotateAround(Quaterniondc quat, double ox, double oy, double oz, Matrix4x3d dest)
    Apply the rotation - and possibly scaling - transformation of the given Quaterniondc to this matrix while using (ox, oy, oz) as the rotation origin, and store the result in dest.
    rotateLocal(double ang, double x, double y, double z)
    Pre-multiply a rotation to this matrix by rotating the given amount of radians about the specified (x, y, z) axis.
    rotateLocal(double ang, double x, double y, double z, Matrix4x3d dest)
    Pre-multiply a rotation to this matrix by rotating the given amount of radians about the specified (x, y, z) axis and store the result in dest.
    Pre-multiply the rotation transformation of the given Quaterniondc to this matrix.
    Pre-multiply the rotation - and possibly scaling - transformation of the given Quaterniondc to this matrix and store the result in dest.
    Pre-multiply the rotation - and possibly scaling - transformation of the given Quaternionfc to this matrix.
    Pre-multiply the rotation - and possibly scaling - transformation of the given Quaternionfc to this matrix and store the result in dest.
    rotateLocalX(double ang)
    Pre-multiply a rotation to this matrix by rotating the given amount of radians about the X axis.
    rotateLocalX(double ang, Matrix4x3d dest)
    Pre-multiply a rotation around the X axis to this matrix by rotating the given amount of radians about the X axis and store the result in dest.
    rotateLocalY(double ang)
    Pre-multiply a rotation to this matrix by rotating the given amount of radians about the Y axis.
    rotateLocalY(double ang, Matrix4x3d dest)
    Pre-multiply a rotation around the Y axis to this matrix by rotating the given amount of radians about the Y axis and store the result in dest.
    rotateLocalZ(double ang)
    Pre-multiply a rotation to this matrix by rotating the given amount of radians about the Z axis.
    rotateLocalZ(double ang, Matrix4x3d dest)
    Pre-multiply a rotation around the Z axis to this matrix by rotating the given amount of radians about the Z axis and store the result in dest.
    rotateTowards(double dirX, double dirY, double dirZ, double upX, double upY, double upZ)
    Apply a model transformation to this matrix for a right-handed coordinate system, that aligns the local +Z axis with (dirX, dirY, dirZ).
    rotateTowards(double dirX, double dirY, double dirZ, double upX, double upY, double upZ, Matrix4x3d dest)
    Apply a model transformation to this matrix for a right-handed coordinate system, that aligns the local +Z axis with (dirX, dirY, dirZ) and store the result in dest.
    Apply a model transformation to this matrix for a right-handed coordinate system, that aligns the local +Z axis with dir.
    Apply a model transformation to this matrix for a right-handed coordinate system, that aligns the local +Z axis with dir and store the result in dest.
    rotateTranslation(double ang, double x, double y, double z, Matrix4x3d dest)
    Apply rotation to this matrix, which is assumed to only contain a translation, by rotating the given amount of radians about the specified (x, y, z) axis and store the result in dest.
    Apply the rotation - and possibly scaling - transformation of the given Quaterniondc to this matrix, which is assumed to only contain a translation, and store the result in dest.
    Apply the rotation - and possibly scaling - transformation of the given Quaternionfc to this matrix, which is assumed to only contain a translation, and store the result in dest.
    rotateX(double ang)
    Apply rotation about the X axis to this matrix by rotating the given amount of radians.
    rotateX(double ang, Matrix4x3d dest)
    Apply rotation about the X axis to this matrix by rotating the given amount of radians and store the result in dest.
    rotateXYZ(double angleX, double angleY, double angleZ)
    Apply rotation of angleX radians about the X axis, followed by a rotation of angleY radians about the Y axis and followed by a rotation of angleZ radians about the Z axis.
    rotateXYZ(double angleX, double angleY, double angleZ, Matrix4x3d dest)
    Apply rotation of angleX radians about the X axis, followed by a rotation of angleY radians about the Y axis and followed by a rotation of angleZ radians about the Z axis and store the result in dest.
    Apply rotation of angles.x radians about the X axis, followed by a rotation of angles.y radians about the Y axis and followed by a rotation of angles.z radians about the Z axis.
    rotateY(double ang)
    Apply rotation about the Y axis to this matrix by rotating the given amount of radians.
    rotateY(double ang, Matrix4x3d dest)
    Apply rotation about the Y axis to this matrix by rotating the given amount of radians and store the result in dest.
    rotateYXZ(double angleY, double angleX, double angleZ)
    Apply rotation of angleY radians about the Y axis, followed by a rotation of angleX radians about the X axis and followed by a rotation of angleZ radians about the Z axis.
    rotateYXZ(double angleY, double angleX, double angleZ, Matrix4x3d dest)
    Apply rotation of angleY radians about the Y axis, followed by a rotation of angleX radians about the X axis and followed by a rotation of angleZ radians about the Z axis and store the result in dest.
    Apply rotation of angles.y radians about the Y axis, followed by a rotation of angles.x radians about the X axis and followed by a rotation of angles.z radians about the Z axis.
    rotateZ(double ang)
    Apply rotation about the Z axis to this matrix by rotating the given amount of radians.
    rotateZ(double ang, Matrix4x3d dest)
    Apply rotation about the Z axis to this matrix by rotating the given amount of radians and store the result in dest.
    rotateZYX(double angleZ, double angleY, double angleX)
    Apply rotation of angleZ radians about the Z axis, followed by a rotation of angleY radians about the Y axis and followed by a rotation of angleX radians about the X axis.
    rotateZYX(double angleZ, double angleY, double angleX, Matrix4x3d dest)
    Apply rotation of angleZ radians about the Z axis, followed by a rotation of angleY radians about the Y axis and followed by a rotation of angleX radians about the X axis and store the result in dest.
    Apply rotation of angles.z radians about the Z axis, followed by a rotation of angles.y radians about the Y axis and followed by a rotation of angles.x radians about the X axis.
    rotation(double angle, double x, double y, double z)
    Set this matrix to a rotation matrix which rotates the given radians about a given axis.
    rotation(double angle, Vector3dc axis)
    Set this matrix to a rotation matrix which rotates the given radians about a given axis.
    rotation(double angle, Vector3fc axis)
    Set this matrix to a rotation matrix which rotates the given radians about a given axis.
    rotation(AxisAngle4d angleAxis)
    Set this matrix to a rotation transformation using the given AxisAngle4d.
    rotation(AxisAngle4f angleAxis)
    Set this matrix to a rotation transformation using the given AxisAngle4f.
    Set this matrix to the rotation - and possibly scaling - transformation of the given Quaterniondc.
    Set this matrix to the rotation - and possibly scaling - transformation of the given Quaternionfc.
    rotationAround(Quaterniondc quat, double ox, double oy, double oz)
    Set this matrix to a transformation composed of a rotation of the specified Quaterniondc while using (ox, oy, oz) as the rotation origin.
    rotationTowards(double dirX, double dirY, double dirZ, double upX, double upY, double upZ)
    Set this matrix to a model transformation for a right-handed coordinate system, that aligns the local -z axis with (dirX, dirY, dirZ).
    Set this matrix to a model transformation for a right-handed coordinate system, that aligns the local -z axis with dir.
    rotationX(double ang)
    Set this matrix to a rotation transformation about the X axis.
    rotationXYZ(double angleX, double angleY, double angleZ)
    Set this matrix to a rotation of angleX radians about the X axis, followed by a rotation of angleY radians about the Y axis and followed by a rotation of angleZ radians about the Z axis.
    rotationY(double ang)
    Set this matrix to a rotation transformation about the Y axis.
    rotationYXZ(double angleY, double angleX, double angleZ)
    Set this matrix to a rotation of angleY radians about the Y axis, followed by a rotation of angleX radians about the X axis and followed by a rotation of angleZ radians about the Z axis.
    rotationZ(double ang)
    Set this matrix to a rotation transformation about the Z axis.
    rotationZYX(double angleZ, double angleY, double angleX)
    Set this matrix to a rotation of angleZ radians about the Z axis, followed by a rotation of angleY radians about the Y axis and followed by a rotation of angleX radians about the X axis.
    scale(double xyz)
    Apply scaling to this matrix by uniformly scaling all base axes by the given xyz factor.
    scale(double x, double y, double z)
    Apply scaling to this matrix by scaling the base axes by the given x, y and z factors.
    scale(double x, double y, double z, Matrix4x3d dest)
    Apply scaling to this matrix by scaling the base axes by the given x, y and z factors and store the result in dest.
    scale(double xyz, Matrix4x3d dest)
    Apply scaling to this matrix by uniformly scaling all base axes by the given xyz factor and store the result in dest.
    Apply scaling to this matrix by scaling the base axes by the given xyz.x, xyz.y and xyz.z factors, respectively.
    Apply scaling to this matrix by scaling the base axes by the given xyz.x, xyz.y and xyz.z factors, respectively and store the result in dest.
    scaleAround(double factor, double ox, double oy, double oz)
    Apply scaling to this matrix by scaling all three base axes by the given factor while using (ox, oy, oz) as the scaling origin.
    scaleAround(double sx, double sy, double sz, double ox, double oy, double oz)
    Apply scaling to this matrix by scaling the base axes by the given sx, sy and sz factors while using (ox, oy, oz) as the scaling origin.
    scaleAround(double sx, double sy, double sz, double ox, double oy, double oz, Matrix4x3d dest)
    Apply scaling to this matrix by scaling the base axes by the given sx, sy and sz factors while using (ox, oy, oz) as the scaling origin, and store the result in dest.
    scaleAround(double factor, double ox, double oy, double oz, Matrix4x3d dest)
    Apply scaling to this matrix by scaling all three base axes by the given factor while using (ox, oy, oz) as the scaling origin, and store the result in dest.
    scaleLocal(double x, double y, double z)
    Pre-multiply scaling to this matrix by scaling the base axes by the given x, y and z factors.
    scaleLocal(double x, double y, double z, Matrix4x3d dest)
    Pre-multiply scaling to this matrix by scaling the base axes by the given x, y and z factors and store the result in dest.
    scaleXY(double x, double y)
    Apply scaling to this matrix by scaling the X axis by x and the Y axis by y.
    scaleXY(double x, double y, Matrix4x3d dest)
    Apply scaling to this matrix by by scaling the X axis by x and the Y axis by y and store the result in dest.
    scaling(double factor)
    Set this matrix to be a simple scale matrix, which scales all axes uniformly by the given factor.
    scaling(double x, double y, double z)
    Set this matrix to be a simple scale matrix.
    Set this matrix to be a simple scale matrix which scales the base axes by xyz.x, xyz.y and xyz.z, respectively.
    set(double[] m)
    Set the values in the matrix using a double array that contains the matrix elements in column-major order.
    set(double[] m, int off)
    Set the values in the matrix using a double array that contains the matrix elements in column-major order.
    set(double m00, double m01, double m02, double m10, double m11, double m12, double m20, double m21, double m22, double m30, double m31, double m32)
    Set the values within this matrix to the supplied double values.
    set(float[] m)
    Set the values in the matrix using a float array that contains the matrix elements in column-major order.
    set(float[] m, int off)
    Set the values in the matrix using a float array that contains the matrix elements in column-major order.
    set(int index, ByteBuffer buffer)
    Set the values of this matrix by reading 12 double values from the given ByteBuffer in column-major order, starting at the specified absolute buffer position/index.
    set(int index, DoubleBuffer buffer)
    Set the values of this matrix by reading 12 double values from the given DoubleBuffer in column-major order, starting at the specified absolute buffer position/index.
    set(int index, FloatBuffer buffer)
    Set the values of this matrix by reading 12 float values from the given FloatBuffer in column-major order, starting at the specified absolute buffer position/index.
    set(ByteBuffer buffer)
    Set the values of this matrix by reading 12 double values from the given ByteBuffer in column-major order, starting at its current position.
    set(DoubleBuffer buffer)
    Set the values of this matrix by reading 12 double values from the given DoubleBuffer in column-major order, starting at its current position.
    set(FloatBuffer buffer)
    Set the values of this matrix by reading 12 float values from the given FloatBuffer in column-major order, starting at its current position.
    set(AxisAngle4d axisAngle)
    Set this matrix to be equivalent to the rotation specified by the given AxisAngle4d.
    set(AxisAngle4f axisAngle)
    Set this matrix to be equivalent to the rotation specified by the given AxisAngle4f.
    Set the left 3x3 submatrix of this Matrix4x3d to the given Matrix3dc and the rest to identity.
    Set the left 3x3 submatrix of this Matrix4x3d to the given Matrix3fc and the rest to identity.
    Store the values of the upper 4x3 submatrix of m into this matrix.
    Store the values of the given matrix m into this matrix.
    Store the values of the given matrix m into this matrix.
    Set this matrix to be equivalent to the rotation - and possibly scaling - specified by the given Quaterniondc.
    Set this matrix to be equivalent to the rotation - and possibly scaling - specified by the given Quaternionfc.
    set(Vector3dc col0, Vector3dc col1, Vector3dc col2, Vector3dc col3)
    Set the four columns of this matrix to the supplied vectors, respectively.
    Set the left 3x3 submatrix of this Matrix4x3d to the given Matrix3dc and don't change the other elements.
    Set the left 3x3 submatrix of this Matrix4x3d to the given Matrix3fc and don't change the other elements.
    Set the left 3x3 submatrix of this Matrix4x3d to that of the given Matrix4x3dc and don't change the other elements.
    setColumn(int column, Vector3dc src)
    Set the column at the given column index, starting with 0.
    setFloats(int index, ByteBuffer buffer)
    Set the values of this matrix by reading 12 float values from the given ByteBuffer in column-major order, starting at the specified absolute buffer position/index.
    Set the values of this matrix by reading 12 float values from the given ByteBuffer in column-major order, starting at its current position.
    setFromAddress(long address)
    Set the values of this matrix by reading 12 double values from off-heap memory in column-major order, starting at the given address.
    setLookAlong(double dirX, double dirY, double dirZ, double upX, double upY, double upZ)
    Set this matrix to a rotation transformation to make -z point along dir.
    Set this matrix to a rotation transformation to make -z point along dir.
    setLookAt(double eyeX, double eyeY, double eyeZ, double centerX, double centerY, double centerZ, double upX, double upY, double upZ)
    Set this matrix to be a "lookat" transformation for a right-handed coordinate system, that aligns -z with center - eye.
    Set this matrix to be a "lookat" transformation for a right-handed coordinate system, that aligns -z with center - eye.
    setLookAtLH(double eyeX, double eyeY, double eyeZ, double centerX, double centerY, double centerZ, double upX, double upY, double upZ)
    Set this matrix to be a "lookat" transformation for a left-handed coordinate system, that aligns +z with center - eye.
    Set this matrix to be a "lookat" transformation for a left-handed coordinate system, that aligns +z with center - eye.
    setOrtho(double left, double right, double bottom, double top, double zNear, double zFar)
    Set this matrix to be an orthographic projection transformation for a right-handed coordinate system using OpenGL's NDC z range of [-1..+1].
    setOrtho(double left, double right, double bottom, double top, double zNear, double zFar, boolean zZeroToOne)
    Set this matrix to be an orthographic projection transformation for a right-handed coordinate system using the given NDC z range.
    setOrtho2D(double left, double right, double bottom, double top)
    Set this matrix to be an orthographic projection transformation for a right-handed coordinate system.
    setOrtho2DLH(double left, double right, double bottom, double top)
    Set this matrix to be an orthographic projection transformation for a left-handed coordinate system.
    setOrthoLH(double left, double right, double bottom, double top, double zNear, double zFar)
    Set this matrix to be an orthographic projection transformation for a left-handed coordinate system using OpenGL's NDC z range of [-1..+1].
    setOrthoLH(double left, double right, double bottom, double top, double zNear, double zFar, boolean zZeroToOne)
    Set this matrix to be an orthographic projection transformation for a left-handed coordinate system using the given NDC z range.
    setOrthoSymmetric(double width, double height, double zNear, double zFar)
    Set this matrix to be a symmetric orthographic projection transformation for a right-handed coordinate system using OpenGL's NDC z range of [-1..+1].
    setOrthoSymmetric(double width, double height, double zNear, double zFar, boolean zZeroToOne)
    Set this matrix to be a symmetric orthographic projection transformation for a right-handed coordinate system using the given NDC z range.
    setOrthoSymmetricLH(double width, double height, double zNear, double zFar)
    Set this matrix to be a symmetric orthographic projection transformation for a left-handed coordinate system using OpenGL's NDC z range of [-1..+1].
    setOrthoSymmetricLH(double width, double height, double zNear, double zFar, boolean zZeroToOne)
    Set this matrix to be a symmetric orthographic projection transformation for a left-handed coordinate system using the given NDC z range.
    setRotationXYZ(double angleX, double angleY, double angleZ)
    Set only the left 3x3 submatrix of this matrix to a rotation of angleX radians about the X axis, followed by a rotation of angleY radians about the Y axis and followed by a rotation of angleZ radians about the Z axis.
    setRotationYXZ(double angleY, double angleX, double angleZ)
    Set only the left 3x3 submatrix of this matrix to a rotation of angleY radians about the Y axis, followed by a rotation of angleX radians about the X axis and followed by a rotation of angleZ radians about the Z axis.
    setRotationZYX(double angleZ, double angleY, double angleX)
    Set only the left 3x3 submatrix of this matrix to a rotation of angleZ radians about the Z axis, followed by a rotation of angleY radians about the Y axis and followed by a rotation of angleX radians about the X axis.
    setRow(int row, Vector4dc src)
    Set the row at the given row index, starting with 0.
    setTranslation(double x, double y, double z)
    Set only the translation components (m30, m31, m32) of this matrix to the given values (x, y, z).
    Set only the translation components (m30, m31, m32) of this matrix to the given values (xyz.x, xyz.y, xyz.z).
    shadow(double lightX, double lightY, double lightZ, double lightW, double a, double b, double c, double d)
    Apply a projection transformation to this matrix that projects onto the plane specified via the general plane equation x*a + y*b + z*c + d = 0 as if casting a shadow from a given light position/direction (lightX, lightY, lightZ, lightW).
    shadow(double lightX, double lightY, double lightZ, double lightW, double a, double b, double c, double d, Matrix4x3d dest)
    Apply a projection transformation to this matrix that projects onto the plane specified via the general plane equation x*a + y*b + z*c + d = 0 as if casting a shadow from a given light position/direction (lightX, lightY, lightZ, lightW) and store the result in dest.
    shadow(double lightX, double lightY, double lightZ, double lightW, Matrix4x3dc planeTransform)
    Apply a projection transformation to this matrix that projects onto the plane with the general plane equation y = 0 as if casting a shadow from a given light position/direction (lightX, lightY, lightZ, lightW).
    shadow(double lightX, double lightY, double lightZ, double lightW, Matrix4x3dc planeTransform, Matrix4x3d dest)
    Apply a projection transformation to this matrix that projects onto the plane with the general plane equation y = 0 as if casting a shadow from a given light position/direction (lightX, lightY, lightZ, lightW) and store the result in dest.
    shadow(Vector4dc light, double a, double b, double c, double d)
    Apply a projection transformation to this matrix that projects onto the plane specified via the general plane equation x*a + y*b + z*c + d = 0 as if casting a shadow from a given light position/direction light.
    shadow(Vector4dc light, double a, double b, double c, double d, Matrix4x3d dest)
    Apply a projection transformation to this matrix that projects onto the plane specified via the general plane equation x*a + y*b + z*c + d = 0 as if casting a shadow from a given light position/direction light and store the result in dest.
    shadow(Vector4dc light, Matrix4x3dc planeTransform)
    Apply a projection transformation to this matrix that projects onto the plane with the general plane equation y = 0 as if casting a shadow from a given light position/direction light.
    shadow(Vector4dc light, Matrix4x3dc planeTransform, Matrix4x3d dest)
    Apply a projection transformation to this matrix that projects onto the plane with the general plane equation y = 0 as if casting a shadow from a given light position/direction light and store the result in dest.
    sub(Matrix4x3dc subtrahend)
    Component-wise subtract subtrahend from this.
    sub(Matrix4x3dc subtrahend, Matrix4x3d dest)
    Component-wise subtract subtrahend from this and store the result in dest.
    sub(Matrix4x3fc subtrahend)
    Component-wise subtract subtrahend from this.
    sub(Matrix4x3fc subtrahend, Matrix4x3d dest)
    Component-wise subtract subtrahend from this and store the result in dest.
    Exchange the values of this matrix with the given other matrix.
    Return a string representation of this matrix.
    Return a string representation of this matrix by formatting the matrix elements with the given NumberFormat.
    Transform/multiply the given vector by this matrix and store the result in that vector.
    Transform/multiply the given vector by this matrix and store the result in dest.
    transformAab(double minX, double minY, double minZ, double maxX, double maxY, double maxZ, Vector3d outMin, Vector3d outMax)
    Transform the axis-aligned box given as the minimum corner (minX, minY, minZ) and maximum corner (maxX, maxY, maxZ) by this matrix and compute the axis-aligned box of the result whose minimum corner is stored in outMin and maximum corner stored in outMax.
    transformAab(Vector3dc min, Vector3dc max, Vector3d outMin, Vector3d outMax)
    Transform the axis-aligned box given as the minimum corner min and maximum corner max by this matrix and compute the axis-aligned box of the result whose minimum corner is stored in outMin and maximum corner stored in outMax.
    Transform/multiply the given 3D-vector, as if it was a 4D-vector with w=0, by this matrix and store the result in that vector.
    Transform/multiply the given 3D-vector, as if it was a 4D-vector with w=0, by this matrix and store the result in dest.
    Transform/multiply the given 3D-vector, as if it was a 4D-vector with w=1, by this matrix and store the result in that vector.
    Transform/multiply the given 3D-vector, as if it was a 4D-vector with w=1, by this matrix and store the result in dest.
    translate(double x, double y, double z)
    Apply a translation to this matrix by translating by the given number of units in x, y and z.
    translate(double x, double y, double z, Matrix4x3d dest)
    Apply a translation to this matrix by translating by the given number of units in x, y and z and store the result in dest.
    Apply a translation to this matrix by translating by the given number of units in x, y and z.
    Apply a translation to this matrix by translating by the given number of units in x, y and z and store the result in dest.
    Apply a translation to this matrix by translating by the given number of units in x, y and z.
    Apply a translation to this matrix by translating by the given number of units in x, y and z and store the result in dest.
    translateLocal(double x, double y, double z)
    Pre-multiply a translation to this matrix by translating by the given number of units in x, y and z.
    translateLocal(double x, double y, double z, Matrix4x3d dest)
    Pre-multiply a translation to this matrix by translating by the given number of units in x, y and z and store the result in dest.
    Pre-multiply a translation to this matrix by translating by the given number of units in x, y and z.
    Pre-multiply a translation to this matrix by translating by the given number of units in x, y and z and store the result in dest.
    Pre-multiply a translation to this matrix by translating by the given number of units in x, y and z.
    Pre-multiply a translation to this matrix by translating by the given number of units in x, y and z and store the result in dest.
    translation(double x, double y, double z)
    Set this matrix to be a simple translation matrix.
    Set this matrix to be a simple translation matrix.
    Set this matrix to be a simple translation matrix.
    translationRotate(double tx, double ty, double tz, double qx, double qy, double qz, double qw)
    Set this matrix to T * R, where T is a translation by the given (tx, ty, tz) and R is a rotation - and possibly scaling - transformation specified by the quaternion (qx, qy, qz, qw).
    translationRotate(double tx, double ty, double tz, Quaterniondc quat)
    Set this matrix to T * R, where T is a translation by the given (tx, ty, tz) and R is a rotation transformation specified by the given quaternion.
    Set this matrix to T * R, where T is the given translation and R is a rotation transformation specified by the given quaternion.
    translationRotateInvert(double tx, double ty, double tz, double qx, double qy, double qz, double qw)
    Set this matrix to (T * R)-1, where T is a translation by the given (tx, ty, tz) and R is a rotation transformation specified by the quaternion (qx, qy, qz, qw).
    Set this matrix to (T * R)-1, where T is the given translation and R is a rotation transformation specified by the given quaternion.
    translationRotateMul(double tx, double ty, double tz, double qx, double qy, double qz, double qw, Matrix4x3dc mat)
    Set this matrix to T * R * M, where T is a translation by the given (tx, ty, tz), R is a rotation - and possibly scaling - transformation specified by the quaternion (qx, qy, qz, qw) and M is the given matrix mat
    translationRotateMul(double tx, double ty, double tz, Quaternionfc quat, Matrix4x3dc mat)
    Set this matrix to T * R * M, where T is a translation by the given (tx, ty, tz), R is a rotation - and possibly scaling - transformation specified by the given quaternion and M is the given matrix mat.
    translationRotateScale(double tx, double ty, double tz, double qx, double qy, double qz, double qw, double sx, double sy, double sz)
    Set this matrix to T * R * S, where T is a translation by the given (tx, ty, tz), R is a rotation transformation specified by the quaternion (qx, qy, qz, qw), and S is a scaling transformation which scales the three axes x, y and z by (sx, sy, sz).
    Set this matrix to T * R * S, where T is the given translation, R is a rotation transformation specified by the given quaternion, and S is a scaling transformation which scales the axes by scale.
    Set this matrix to T * R * S, where T is the given translation, R is a rotation transformation specified by the given quaternion, and S is a scaling transformation which scales the axes by scale.
    translationRotateScaleMul(double tx, double ty, double tz, double qx, double qy, double qz, double qw, double sx, double sy, double sz, Matrix4x3dc m)
    Set this matrix to T * R * S * M, where T is a translation by the given (tx, ty, tz), R is a rotation transformation specified by the quaternion (qx, qy, qz, qw), S is a scaling transformation which scales the three axes x, y and z by (sx, sy, sz).
    Set this matrix to T * R * S * M, where T is the given translation, R is a rotation transformation specified by the given quaternion, S is a scaling transformation which scales the axes by scale.
    translationRotateTowards(double posX, double posY, double posZ, double dirX, double dirY, double dirZ, double upX, double upY, double upZ)
    Set this matrix to a model transformation for a right-handed coordinate system, that translates to the given (posX, posY, posZ) and aligns the local -z axis with (dirX, dirY, dirZ).
    Set this matrix to a model transformation for a right-handed coordinate system, that translates to the given pos and aligns the local -z axis with dir.
    Transpose only the left 3x3 submatrix of this matrix and set the rest of the matrix elements to identity.
    Transpose only the left 3x3 submatrix of this matrix and store the result in dest.
    Transpose only the left 3x3 submatrix of this matrix and store the result in dest.
    void
     
    Set all the values within this matrix to 0.

    Methods inherited from class java.lang.Object

    finalize, getClass, notify, notifyAll, wait, wait, wait
  • Constructor Details

    • Matrix4x3d

      public Matrix4x3d()
      Create a new Matrix4x3d and set it to identity.
    • Matrix4x3d

      public Matrix4x3d(Matrix4x3dc mat)
      Create a new Matrix4x3d and make it a copy of the given matrix.
      Parameters:
      mat - the Matrix4x3dc to copy the values from
    • Matrix4x3d

      public Matrix4x3d(Matrix4x3fc mat)
      Create a new Matrix4x3d and make it a copy of the given matrix.
      Parameters:
      mat - the Matrix4x3fc to copy the values from
    • Matrix4x3d

      public Matrix4x3d(Matrix3dc mat)
      Create a new Matrix4x3d by setting its left 3x3 submatrix to the values of the given Matrix3dc and the rest to identity.
      Parameters:
      mat - the Matrix3dc
    • Matrix4x3d

      public Matrix4x3d(Matrix3fc mat)
      Create a new Matrix4x3d by setting its left 3x3 submatrix to the values of the given Matrix3fc and the rest to identity.
      Parameters:
      mat - the Matrix3dc
    • Matrix4x3d

      public Matrix4x3d(double m00, double m01, double m02, double m10, double m11, double m12, double m20, double m21, double m22, double m30, double m31, double m32)
      Create a new 4x4 matrix using the supplied double values.
      Parameters:
      m00 - the value of m00
      m01 - the value of m01
      m02 - the value of m02
      m10 - the value of m10
      m11 - the value of m11
      m12 - the value of m12
      m20 - the value of m20
      m21 - the value of m21
      m22 - the value of m22
      m30 - the value of m30
      m31 - the value of m31
      m32 - the value of m32
    • Matrix4x3d

      public Matrix4x3d(DoubleBuffer buffer)
      Create a new Matrix4x3d by reading its 12 double components from the given DoubleBuffer at the buffer's current position.

      That DoubleBuffer is expected to hold the values in column-major order.

      The buffer's position will not be changed by this method.

      Parameters:
      buffer - the DoubleBuffer to read the matrix values from
  • Method Details

    • assume

      public Matrix4x3d assume(int properties)
      Assume the given properties about this matrix.

      Use one or multiple of 0, Matrix4x3dc.PROPERTY_IDENTITY, Matrix4x3dc.PROPERTY_TRANSLATION, Matrix4x3dc.PROPERTY_ORTHONORMAL.

      Parameters:
      properties - bitset of the properties to assume about this matrix
      Returns:
      this
    • determineProperties

      public Matrix4x3d determineProperties()
      Compute and set the matrix properties returned by properties() based on the current matrix element values.
      Returns:
      this
    • properties

      public int properties()
      Specified by:
      properties in interface Matrix4x3dc
      Returns:
      the properties of the matrix
    • m00

      public double m00()
      Description copied from interface: Matrix4x3dc
      Return the value of the matrix element at column 0 and row 0.
      Specified by:
      m00 in interface Matrix4x3dc
      Returns:
      the value of the matrix element
    • m01

      public double m01()
      Description copied from interface: Matrix4x3dc
      Return the value of the matrix element at column 0 and row 1.
      Specified by:
      m01 in interface Matrix4x3dc
      Returns:
      the value of the matrix element
    • m02

      public double m02()
      Description copied from interface: Matrix4x3dc
      Return the value of the matrix element at column 0 and row 2.
      Specified by:
      m02 in interface Matrix4x3dc
      Returns:
      the value of the matrix element
    • m10

      public double m10()
      Description copied from interface: Matrix4x3dc
      Return the value of the matrix element at column 1 and row 0.
      Specified by:
      m10 in interface Matrix4x3dc
      Returns:
      the value of the matrix element
    • m11

      public double m11()
      Description copied from interface: Matrix4x3dc
      Return the value of the matrix element at column 1 and row 1.
      Specified by:
      m11 in interface Matrix4x3dc
      Returns:
      the value of the matrix element
    • m12

      public double m12()
      Description copied from interface: Matrix4x3dc
      Return the value of the matrix element at column 1 and row 2.
      Specified by:
      m12 in interface Matrix4x3dc
      Returns:
      the value of the matrix element
    • m20

      public double m20()
      Description copied from interface: Matrix4x3dc
      Return the value of the matrix element at column 2 and row 0.
      Specified by:
      m20 in interface Matrix4x3dc
      Returns:
      the value of the matrix element
    • m21

      public double m21()
      Description copied from interface: Matrix4x3dc
      Return the value of the matrix element at column 2 and row 1.
      Specified by:
      m21 in interface Matrix4x3dc
      Returns:
      the value of the matrix element
    • m22

      public double m22()
      Description copied from interface: Matrix4x3dc
      Return the value of the matrix element at column 2 and row 2.
      Specified by:
      m22 in interface Matrix4x3dc
      Returns:
      the value of the matrix element
    • m30

      public double m30()
      Description copied from interface: Matrix4x3dc
      Return the value of the matrix element at column 3 and row 0.
      Specified by:
      m30 in interface Matrix4x3dc
      Returns:
      the value of the matrix element
    • m31

      public double m31()
      Description copied from interface: Matrix4x3dc
      Return the value of the matrix element at column 3 and row 1.
      Specified by:
      m31 in interface Matrix4x3dc
      Returns:
      the value of the matrix element
    • m32

      public double m32()
      Description copied from interface: Matrix4x3dc
      Return the value of the matrix element at column 3 and row 2.
      Specified by:
      m32 in interface Matrix4x3dc
      Returns:
      the value of the matrix element
    • m00

      public Matrix4x3d m00(double m00)
      Set the value of the matrix element at column 0 and row 0.
      Parameters:
      m00 - the new value
      Returns:
      this
    • m01

      public Matrix4x3d m01(double m01)
      Set the value of the matrix element at column 0 and row 1.
      Parameters:
      m01 - the new value
      Returns:
      this
    • m02

      public Matrix4x3d m02(double m02)
      Set the value of the matrix element at column 0 and row 2.
      Parameters:
      m02 - the new value
      Returns:
      this
    • m10

      public Matrix4x3d m10(double m10)
      Set the value of the matrix element at column 1 and row 0.
      Parameters:
      m10 - the new value
      Returns:
      this
    • m11

      public Matrix4x3d m11(double m11)
      Set the value of the matrix element at column 1 and row 1.
      Parameters:
      m11 - the new value
      Returns:
      this
    • m12

      public Matrix4x3d m12(double m12)
      Set the value of the matrix element at column 1 and row 2.
      Parameters:
      m12 - the new value
      Returns:
      this
    • m20

      public Matrix4x3d m20(double m20)
      Set the value of the matrix element at column 2 and row 0.
      Parameters:
      m20 - the new value
      Returns:
      this
    • m21

      public Matrix4x3d m21(double m21)
      Set the value of the matrix element at column 2 and row 1.
      Parameters:
      m21 - the new value
      Returns:
      this
    • m22

      public Matrix4x3d m22(double m22)
      Set the value of the matrix element at column 2 and row 2.
      Parameters:
      m22 - the new value
      Returns:
      this
    • m30

      public Matrix4x3d m30(double m30)
      Set the value of the matrix element at column 3 and row 0.
      Parameters:
      m30 - the new value
      Returns:
      this
    • m31

      public Matrix4x3d m31(double m31)
      Set the value of the matrix element at column 3 and row 1.
      Parameters:
      m31 - the new value
      Returns:
      this
    • m32

      public Matrix4x3d m32(double m32)
      Set the value of the matrix element at column 3 and row 2.
      Parameters:
      m32 - the new value
      Returns:
      this
    • identity

      public Matrix4x3d identity()
      Reset this matrix to the identity.

      Please note that if a call to identity() is immediately followed by a call to: translate, rotate, scale, ortho, ortho2D, lookAt, lookAlong, or any of their overloads, then the call to identity() can be omitted and the subsequent call replaced with: translation, rotation, scaling, setOrtho, setOrtho2D, setLookAt, setLookAlong, or any of their overloads.

      Returns:
      this
    • set

      public Matrix4x3d set(Matrix4x3dc m)
      Store the values of the given matrix m into this matrix.
      Parameters:
      m - the matrix to copy the values from
      Returns:
      this
    • set

      public Matrix4x3d set(Matrix4x3fc m)
      Store the values of the given matrix m into this matrix.
      Parameters:
      m - the matrix to copy the values from
      Returns:
      this
    • set

      public Matrix4x3d set(Matrix4dc m)
      Store the values of the upper 4x3 submatrix of m into this matrix.
      Parameters:
      m - the matrix to copy the values from
      Returns:
      this
      See Also:
    • get

      public Matrix4d get(Matrix4d dest)
      Description copied from interface: Matrix4x3dc
      Get the current values of this matrix and store them into the upper 4x3 submatrix of dest.

      The other elements of dest will not be modified.

      Specified by:
      get in interface Matrix4x3dc
      Parameters:
      dest - the destination matrix
      Returns:
      dest
      See Also:
    • set

      public Matrix4x3d set(Matrix3dc mat)
      Set the left 3x3 submatrix of this Matrix4x3d to the given Matrix3dc and the rest to identity.
      Parameters:
      mat - the Matrix3dc
      Returns:
      this
      See Also:
    • set

      public Matrix4x3d set(Matrix3fc mat)
      Set the left 3x3 submatrix of this Matrix4x3d to the given Matrix3fc and the rest to identity.
      Parameters:
      mat - the Matrix3fc
      Returns:
      this
      See Also:
    • set

      public Matrix4x3d set(Vector3dc col0, Vector3dc col1, Vector3dc col2, Vector3dc col3)
      Set the four columns of this matrix to the supplied vectors, respectively.
      Parameters:
      col0 - the first column
      col1 - the second column
      col2 - the third column
      col3 - the fourth column
      Returns:
      this
    • set3x3

      public Matrix4x3d set3x3(Matrix4x3dc mat)
      Set the left 3x3 submatrix of this Matrix4x3d to that of the given Matrix4x3dc and don't change the other elements.
      Parameters:
      mat - the Matrix4x3dc
      Returns:
      this
    • set

      public Matrix4x3d set(AxisAngle4f axisAngle)
      Set this matrix to be equivalent to the rotation specified by the given AxisAngle4f.
      Parameters:
      axisAngle - the AxisAngle4f
      Returns:
      this
    • set

      public Matrix4x3d set(AxisAngle4d axisAngle)
      Set this matrix to be equivalent to the rotation specified by the given AxisAngle4d.
      Parameters:
      axisAngle - the AxisAngle4d
      Returns:
      this
    • set

      public Matrix4x3d set(Quaternionfc q)
      Set this matrix to be equivalent to the rotation - and possibly scaling - specified by the given Quaternionfc.

      This method is equivalent to calling: rotation(q)

      Parameters:
      q - the Quaternionfc
      Returns:
      this
      See Also:
    • set

      public Matrix4x3d set(Quaterniondc q)
      Set this matrix to be equivalent to the rotation - and possibly scaling - specified by the given Quaterniondc.

      This method is equivalent to calling: rotation(q)

      Parameters:
      q - the Quaterniondc
      Returns:
      this
    • mul

      public Matrix4x3d mul(Matrix4x3dc right)
      Multiply this matrix by the supplied right matrix.

      If M is this matrix and R the right matrix, then the new matrix will be M * R. So when transforming a vector v with the new matrix by using M * R * v, the transformation of the right matrix will be applied first!

      Parameters:
      right - the right operand of the multiplication
      Returns:
      this
    • mul

      public Matrix4x3d mul(Matrix4x3dc right, Matrix4x3d dest)
      Description copied from interface: Matrix4x3dc
      Multiply this matrix by the supplied right matrix and store the result in dest.

      If M is this matrix and R the right matrix, then the new matrix will be M * R. So when transforming a vector v with the new matrix by using M * R * v, the transformation of the right matrix will be applied first!

      Specified by:
      mul in interface Matrix4x3dc
      Parameters:
      right - the right operand of the multiplication
      dest - will hold the result
      Returns:
      dest
    • mul

      public Matrix4x3d mul(Matrix4x3fc right)
      Multiply this matrix by the supplied right matrix.

      If M is this matrix and R the right matrix, then the new matrix will be M * R. So when transforming a vector v with the new matrix by using M * R * v, the transformation of the right matrix will be applied first!

      Parameters:
      right - the right operand of the multiplication
      Returns:
      this
    • mul

      public Matrix4x3d mul(Matrix4x3fc right, Matrix4x3d dest)
      Description copied from interface: Matrix4x3dc
      Multiply this matrix by the supplied right matrix and store the result in dest.

      If M is this matrix and R the right matrix, then the new matrix will be M * R. So when transforming a vector v with the new matrix by using M * R * v, the transformation of the right matrix will be applied first!

      Specified by:
      mul in interface Matrix4x3dc
      Parameters:
      right - the right operand of the multiplication
      dest - will hold the result
      Returns:
      dest
    • mulTranslation

      public Matrix4x3d mulTranslation(Matrix4x3dc right, Matrix4x3d dest)
      Description copied from interface: Matrix4x3dc
      Multiply this matrix, which is assumed to only contain a translation, by the supplied right matrix and store the result in dest.

      This method assumes that this matrix only contains a translation.

      This method will not modify either the last row of this or the last row of right.

      If M is this matrix and R the right matrix, then the new matrix will be M * R. So when transforming a vector v with the new matrix by using M * R * v, the transformation of the right matrix will be applied first!

      Specified by:
      mulTranslation in interface Matrix4x3dc
      Parameters:
      right - the right operand of the matrix multiplication
      dest - the destination matrix, which will hold the result
      Returns:
      dest
    • mulTranslation

      public Matrix4x3d mulTranslation(Matrix4x3fc right, Matrix4x3d dest)
      Description copied from interface: Matrix4x3dc
      Multiply this matrix, which is assumed to only contain a translation, by the supplied right matrix and store the result in dest.

      This method assumes that this matrix only contains a translation.

      This method will not modify either the last row of this or the last row of right.

      If M is this matrix and R the right matrix, then the new matrix will be M * R. So when transforming a vector v with the new matrix by using M * R * v, the transformation of the right matrix will be applied first!

      Specified by:
      mulTranslation in interface Matrix4x3dc
      Parameters:
      right - the right operand of the matrix multiplication
      dest - the destination matrix, which will hold the result
      Returns:
      dest
    • mulOrtho

      public Matrix4x3d mulOrtho(Matrix4x3dc view)
      Multiply this orthographic projection matrix by the supplied view matrix.

      If M is this matrix and V the view matrix, then the new matrix will be M * V. So when transforming a vector v with the new matrix by using M * V * v, the transformation of the view matrix will be applied first!

      Parameters:
      view - the matrix which to multiply this with
      Returns:
      this
    • mulOrtho

      public Matrix4x3d mulOrtho(Matrix4x3dc view, Matrix4x3d dest)
      Description copied from interface: Matrix4x3dc
      Multiply this orthographic projection matrix by the supplied view matrix and store the result in dest.

      If M is this matrix and V the view matrix, then the new matrix will be M * V. So when transforming a vector v with the new matrix by using M * V * v, the transformation of the view matrix will be applied first!

      Specified by:
      mulOrtho in interface Matrix4x3dc
      Parameters:
      view - the matrix which to multiply this with
      dest - the destination matrix, which will hold the result
      Returns:
      dest
    • mul3x3

      public Matrix4x3d mul3x3(double rm00, double rm01, double rm02, double rm10, double rm11, double rm12, double rm20, double rm21, double rm22)
      Multiply this by the 4x3 matrix with the column vectors (rm00, rm01, rm02), (rm10, rm11, rm12), (rm20, rm21, rm22) and (0, 0, 0).

      If M is this matrix and R the specified matrix, then the new matrix will be M * R. So when transforming a vector v with the new matrix by using M * R * v, the transformation of the R matrix will be applied first!

      Parameters:
      rm00 - the value of the m00 element
      rm01 - the value of the m01 element
      rm02 - the value of the m02 element
      rm10 - the value of the m10 element
      rm11 - the value of the m11 element
      rm12 - the value of the m12 element
      rm20 - the value of the m20 element
      rm21 - the value of the m21 element
      rm22 - the value of the m22 element
      Returns:
      this
    • mul3x3

      public Matrix4x3d mul3x3(double rm00, double rm01, double rm02, double rm10, double rm11, double rm12, double rm20, double rm21, double rm22, Matrix4x3d dest)
      Description copied from interface: Matrix4x3dc
      Multiply this by the 4x3 matrix with the column vectors (rm00, rm01, rm02), (rm10, rm11, rm12), (rm20, rm21, rm22) and (0, 0, 0) and store the result in dest.

      If M is this matrix and R the specified matrix, then the new matrix will be M * R. So when transforming a vector v with the new matrix by using M * R * v, the transformation of the R matrix will be applied first!

      Specified by:
      mul3x3 in interface Matrix4x3dc
      Parameters:
      rm00 - the value of the m00 element
      rm01 - the value of the m01 element
      rm02 - the value of the m02 element
      rm10 - the value of the m10 element
      rm11 - the value of the m11 element
      rm12 - the value of the m12 element
      rm20 - the value of the m20 element
      rm21 - the value of the m21 element
      rm22 - the value of the m22 element
      dest - will hold the result
      Returns:
      dest
    • fma

      public Matrix4x3d fma(Matrix4x3dc other, double otherFactor)
      Component-wise add this and other by first multiplying each component of other by otherFactor and adding that result to this.

      The matrix other will not be changed.

      Parameters:
      other - the other matrix
      otherFactor - the factor to multiply each of the other matrix's components
      Returns:
      this
    • fma

      public Matrix4x3d fma(Matrix4x3dc other, double otherFactor, Matrix4x3d dest)
      Description copied from interface: Matrix4x3dc
      Component-wise add this and other by first multiplying each component of other by otherFactor, adding that to this and storing the final result in dest.

      The other components of dest will be set to the ones of this.

      The matrices this and other will not be changed.

      Specified by:
      fma in interface Matrix4x3dc
      Parameters:
      other - the other matrix
      otherFactor - the factor to multiply each of the other matrix's components
      dest - will hold the result
      Returns:
      dest
    • fma

      public Matrix4x3d fma(Matrix4x3fc other, double otherFactor)
      Component-wise add this and other by first multiplying each component of other by otherFactor and adding that result to this.

      The matrix other will not be changed.

      Parameters:
      other - the other matrix
      otherFactor - the factor to multiply each of the other matrix's components
      Returns:
      this
    • fma

      public Matrix4x3d fma(Matrix4x3fc other, double otherFactor, Matrix4x3d dest)
      Description copied from interface: Matrix4x3dc
      Component-wise add this and other by first multiplying each component of other by otherFactor, adding that to this and storing the final result in dest.

      The other components of dest will be set to the ones of this.

      The matrices this and other will not be changed.

      Specified by:
      fma in interface Matrix4x3dc
      Parameters:
      other - the other matrix
      otherFactor - the factor to multiply each of the other matrix's components
      dest - will hold the result
      Returns:
      dest
    • add

      public Matrix4x3d add(Matrix4x3dc other)
      Component-wise add this and other.
      Parameters:
      other - the other addend
      Returns:
      this
    • add

      public Matrix4x3d add(Matrix4x3dc other, Matrix4x3d dest)
      Description copied from interface: Matrix4x3dc
      Component-wise add this and other and store the result in dest.
      Specified by:
      add in interface Matrix4x3dc
      Parameters:
      other - the other addend
      dest - will hold the result
      Returns:
      dest
    • add

      public Matrix4x3d add(Matrix4x3fc other)
      Component-wise add this and other.
      Parameters:
      other - the other addend
      Returns:
      this
    • add

      public Matrix4x3d add(Matrix4x3fc other, Matrix4x3d dest)
      Description copied from interface: Matrix4x3dc
      Component-wise add this and other and store the result in dest.
      Specified by:
      add in interface Matrix4x3dc
      Parameters:
      other - the other addend
      dest - will hold the result
      Returns:
      dest
    • sub

      public Matrix4x3d sub(Matrix4x3dc subtrahend)
      Component-wise subtract subtrahend from this.
      Parameters:
      subtrahend - the subtrahend
      Returns:
      this
    • sub

      public Matrix4x3d sub(Matrix4x3dc subtrahend, Matrix4x3d dest)
      Description copied from interface: Matrix4x3dc
      Component-wise subtract subtrahend from this and store the result in dest.
      Specified by:
      sub in interface Matrix4x3dc
      Parameters:
      subtrahend - the subtrahend
      dest - will hold the result
      Returns:
      dest
    • sub

      public Matrix4x3d sub(Matrix4x3fc subtrahend)
      Component-wise subtract subtrahend from this.
      Parameters:
      subtrahend - the subtrahend
      Returns:
      this
    • sub

      public Matrix4x3d sub(Matrix4x3fc subtrahend, Matrix4x3d dest)
      Description copied from interface: Matrix4x3dc
      Component-wise subtract subtrahend from this and store the result in dest.
      Specified by:
      sub in interface Matrix4x3dc
      Parameters:
      subtrahend - the subtrahend
      dest - will hold the result
      Returns:
      dest
    • mulComponentWise

      public Matrix4x3d mulComponentWise(Matrix4x3dc other)
      Component-wise multiply this by other.
      Parameters:
      other - the other matrix
      Returns:
      this
    • mulComponentWise

      public Matrix4x3d mulComponentWise(Matrix4x3dc other, Matrix4x3d dest)
      Description copied from interface: Matrix4x3dc
      Component-wise multiply this by other and store the result in dest.
      Specified by:
      mulComponentWise in interface Matrix4x3dc
      Parameters:
      other - the other matrix
      dest - will hold the result
      Returns:
      dest
    • set

      public Matrix4x3d set(double m00, double m01, double m02, double m10, double m11, double m12, double m20, double m21, double m22, double m30, double m31, double m32)
      Set the values within this matrix to the supplied double values. The matrix will look like this:

      m00, m10, m20, m30
      m01, m11, m21, m31
      m02, m12, m22, m32
      Parameters:
      m00 - the new value of m00
      m01 - the new value of m01
      m02 - the new value of m02
      m10 - the new value of m10
      m11 - the new value of m11
      m12 - the new value of m12
      m20 - the new value of m20
      m21 - the new value of m21
      m22 - the new value of m22
      m30 - the new value of m30
      m31 - the new value of m31
      m32 - the new value of m32
      Returns:
      this
    • set

      public Matrix4x3d set(double[] m, int off)
      Set the values in the matrix using a double array that contains the matrix elements in column-major order.

      The results will look like this:

      0, 3, 6, 9
      1, 4, 7, 10
      2, 5, 8, 11

      Parameters:
      m - the array to read the matrix values from
      off - the offset into the array
      Returns:
      this
      See Also:
    • set

      public Matrix4x3d set(double[] m)
      Set the values in the matrix using a double array that contains the matrix elements in column-major order.

      The results will look like this:

      0, 3, 6, 9
      1, 4, 7, 10
      2, 5, 8, 11

      Parameters:
      m - the array to read the matrix values from
      Returns:
      this
      See Also:
    • set

      public Matrix4x3d set(float[] m, int off)
      Set the values in the matrix using a float array that contains the matrix elements in column-major order.

      The results will look like this:

      0, 3, 6, 9
      1, 4, 7, 10
      2, 5, 8, 11

      Parameters:
      m - the array to read the matrix values from
      off - the offset into the array
      Returns:
      this
      See Also:
    • set

      public Matrix4x3d set(float[] m)
      Set the values in the matrix using a float array that contains the matrix elements in column-major order.

      The results will look like this:

      0, 3, 6, 9
      1, 4, 7, 10
      2, 5, 8, 11

      Parameters:
      m - the array to read the matrix values from
      Returns:
      this
      See Also:
    • set

      public Matrix4x3d set(DoubleBuffer buffer)
      Set the values of this matrix by reading 12 double values from the given DoubleBuffer in column-major order, starting at its current position.

      The DoubleBuffer is expected to contain the values in column-major order.

      The position of the DoubleBuffer will not be changed by this method.

      Parameters:
      buffer - the DoubleBuffer to read the matrix values from in column-major order
      Returns:
      this
    • set

      public Matrix4x3d set(FloatBuffer buffer)
      Set the values of this matrix by reading 12 float values from the given FloatBuffer in column-major order, starting at its current position.

      The FloatBuffer is expected to contain the values in column-major order.

      The position of the FloatBuffer will not be changed by this method.

      Parameters:
      buffer - the FloatBuffer to read the matrix values from in column-major order
      Returns:
      this
    • set

      public Matrix4x3d set(ByteBuffer buffer)
      Set the values of this matrix by reading 12 double values from the given ByteBuffer in column-major order, starting at its current position.

      The ByteBuffer is expected to contain the values in column-major order.

      The position of the ByteBuffer will not be changed by this method.

      Parameters:
      buffer - the ByteBuffer to read the matrix values from in column-major order
      Returns:
      this
    • set

      public Matrix4x3d set(int index, DoubleBuffer buffer)
      Set the values of this matrix by reading 12 double values from the given DoubleBuffer in column-major order, starting at the specified absolute buffer position/index.

      The DoubleBuffer is expected to contain the values in column-major order.

      The position of the DoubleBuffer will not be changed by this method.

      Parameters:
      index - the absolute position into the DoubleBuffer
      buffer - the DoubleBuffer to read the matrix values from in column-major order
      Returns:
      this
    • set

      public Matrix4x3d set(int index, FloatBuffer buffer)
      Set the values of this matrix by reading 12 float values from the given FloatBuffer in column-major order, starting at the specified absolute buffer position/index.

      The FloatBuffer is expected to contain the values in column-major order.

      The position of the FloatBuffer will not be changed by this method.

      Parameters:
      index - the absolute position into the FloatBuffer
      buffer - the FloatBuffer to read the matrix values from in column-major order
      Returns:
      this
    • set

      public Matrix4x3d set(int index, ByteBuffer buffer)
      Set the values of this matrix by reading 12 double values from the given ByteBuffer in column-major order, starting at the specified absolute buffer position/index.

      The ByteBuffer is expected to contain the values in column-major order.

      The position of the ByteBuffer will not be changed by this method.

      Parameters:
      index - the absolute position into the ByteBuffer
      buffer - the ByteBuffer to read the matrix values from in column-major order
      Returns:
      this
    • setFloats

      public Matrix4x3d setFloats(ByteBuffer buffer)
      Set the values of this matrix by reading 12 float values from the given ByteBuffer in column-major order, starting at its current position.

      The ByteBuffer is expected to contain the values in column-major order.

      The position of the ByteBuffer will not be changed by this method.

      Parameters:
      buffer - the ByteBuffer to read the matrix values from in column-major order
      Returns:
      this
    • setFloats

      public Matrix4x3d setFloats(int index, ByteBuffer buffer)
      Set the values of this matrix by reading 12 float values from the given ByteBuffer in column-major order, starting at the specified absolute buffer position/index.

      The ByteBuffer is expected to contain the values in column-major order.

      The position of the ByteBuffer will not be changed by this method.

      Parameters:
      index - the absolute position into the ByteBuffer
      buffer - the ByteBuffer to read the matrix values from in column-major order
      Returns:
      this
    • setFromAddress

      public Matrix4x3d setFromAddress(long address)
      Set the values of this matrix by reading 12 double values from off-heap memory in column-major order, starting at the given address.

      This method will throw an UnsupportedOperationException when JOML is used with `-Djoml.nounsafe`.

      This method is unsafe as it can result in a crash of the JVM process when the specified address range does not belong to this process.

      Parameters:
      address - the off-heap memory address to read the matrix values from in column-major order
      Returns:
      this
    • determinant

      public double determinant()
      Description copied from interface: Matrix4x3dc
      Return the determinant of this matrix.
      Specified by:
      determinant in interface Matrix4x3dc
      Returns:
      the determinant
    • invert

      public Matrix4x3d invert()
      Invert this matrix.
      Returns:
      this
    • invert

      public Matrix4x3d invert(Matrix4x3d dest)
      Description copied from interface: Matrix4x3dc
      Invert this matrix and store the result in dest.
      Specified by:
      invert in interface Matrix4x3dc
      Parameters:
      dest - will hold the result
      Returns:
      dest
    • invertOrtho

      public Matrix4x3d invertOrtho(Matrix4x3d dest)
      Description copied from interface: Matrix4x3dc
      Invert this orthographic projection matrix and store the result into the given dest.

      This method can be used to quickly obtain the inverse of an orthographic projection matrix.

      Specified by:
      invertOrtho in interface Matrix4x3dc
      Parameters:
      dest - will hold the inverse of this
      Returns:
      dest
    • invertOrtho

      public Matrix4x3d invertOrtho()
      Invert this orthographic projection matrix.

      This method can be used to quickly obtain the inverse of an orthographic projection matrix.

      Returns:
      this
    • transpose3x3

      public Matrix4x3d transpose3x3()
      Transpose only the left 3x3 submatrix of this matrix and set the rest of the matrix elements to identity.
      Returns:
      this
    • transpose3x3

      public Matrix4x3d transpose3x3(Matrix4x3d dest)
      Description copied from interface: Matrix4x3dc
      Transpose only the left 3x3 submatrix of this matrix and store the result in dest.

      All other matrix elements are left unchanged.

      Specified by:
      transpose3x3 in interface Matrix4x3dc
      Parameters:
      dest - will hold the result
      Returns:
      dest
    • transpose3x3

      public Matrix3d transpose3x3(Matrix3d dest)
      Description copied from interface: Matrix4x3dc
      Transpose only the left 3x3 submatrix of this matrix and store the result in dest.
      Specified by:
      transpose3x3 in interface Matrix4x3dc
      Parameters:
      dest - will hold the result
      Returns:
      dest
    • translation

      public Matrix4x3d translation(double x, double y, double z)
      Set this matrix to be a simple translation matrix.

      The resulting matrix can be multiplied against another transformation matrix to obtain an additional translation.

      Parameters:
      x - the offset to translate in x
      y - the offset to translate in y
      z - the offset to translate in z
      Returns:
      this
    • translation

      public Matrix4x3d translation(Vector3fc offset)
      Set this matrix to be a simple translation matrix.

      The resulting matrix can be multiplied against another transformation matrix to obtain an additional translation.

      Parameters:
      offset - the offsets in x, y and z to translate
      Returns:
      this
    • translation

      public Matrix4x3d translation(Vector3dc offset)
      Set this matrix to be a simple translation matrix.

      The resulting matrix can be multiplied against another transformation matrix to obtain an additional translation.

      Parameters:
      offset - the offsets in x, y and z to translate
      Returns:
      this
    • setTranslation

      public Matrix4x3d setTranslation(double x, double y, double z)
      Set only the translation components (m30, m31, m32) of this matrix to the given values (x, y, z).

      To build a translation matrix instead, use translation(double, double, double). To apply a translation, use translate(double, double, double).

      Parameters:
      x - the units to translate in x
      y - the units to translate in y
      z - the units to translate in z
      Returns:
      this
      See Also:
    • setTranslation

      public Matrix4x3d setTranslation(Vector3dc xyz)
      Set only the translation components (m30, m31, m32) of this matrix to the given values (xyz.x, xyz.y, xyz.z).

      To build a translation matrix instead, use translation(Vector3dc). To apply a translation, use translate(Vector3dc).

      Parameters:
      xyz - the units to translate in (x, y, z)
      Returns:
      this
      See Also:
    • getTranslation

      public Vector3d getTranslation(Vector3d dest)
      Description copied from interface: Matrix4x3dc
      Get only the translation components (m30, m31, m32) of this matrix and store them in the given vector xyz.
      Specified by:
      getTranslation in interface Matrix4x3dc
      Parameters:
      dest - will hold the translation components of this matrix
      Returns:
      dest
    • getScale

      public Vector3d getScale(Vector3d dest)
      Description copied from interface: Matrix4x3dc
      Get the scaling factors of this matrix for the three base axes.
      Specified by:
      getScale in interface Matrix4x3dc
      Parameters:
      dest - will hold the scaling factors for x, y and z
      Returns:
      dest
    • toString

      public String toString()
      Return a string representation of this matrix.

      This method creates a new DecimalFormat on every invocation with the format string "0.000E0;-".

      Overrides:
      toString in class Object
      Returns:
      the string representation
    • toString

      public String toString(NumberFormat formatter)
      Return a string representation of this matrix by formatting the matrix elements with the given NumberFormat.
      Parameters:
      formatter - the NumberFormat used to format the matrix values with
      Returns:
      the string representation
    • get

      public Matrix4x3d get(Matrix4x3d dest)
      Get the current values of this matrix and store them into dest.

      This is the reverse method of set(Matrix4x3dc) and allows to obtain intermediate calculation results when chaining multiple transformations.

      Specified by:
      get in interface Matrix4x3dc
      Parameters:
      dest - the destination matrix
      Returns:
      the passed in destination
      See Also:
    • getUnnormalizedRotation

      public Quaternionf getUnnormalizedRotation(Quaternionf dest)
      Description copied from interface: Matrix4x3dc
      Get the current values of this matrix and store the represented rotation into the given Quaternionf.

      This method assumes that the first three column vectors of the left 3x3 submatrix are not normalized and thus allows to ignore any additional scaling factor that is applied to the matrix.

      Specified by:
      getUnnormalizedRotation in interface Matrix4x3dc
      Parameters:
      dest - the destination Quaternionf
      Returns:
      the passed in destination
      See Also:
    • getNormalizedRotation

      public Quaternionf getNormalizedRotation(Quaternionf dest)
      Description copied from interface: Matrix4x3dc
      Get the current values of this matrix and store the represented rotation into the given Quaternionf.

      This method assumes that the first three column vectors of the left 3x3 submatrix are normalized.

      Specified by:
      getNormalizedRotation in interface Matrix4x3dc
      Parameters:
      dest - the destination Quaternionf
      Returns:
      the passed in destination
      See Also:
    • getUnnormalizedRotation

      public Quaterniond getUnnormalizedRotation(Quaterniond dest)
      Description copied from interface: Matrix4x3dc
      Get the current values of this matrix and store the represented rotation into the given Quaterniond.

      This method assumes that the first three column vectors of the left 3x3 submatrix are not normalized and thus allows to ignore any additional scaling factor that is applied to the matrix.

      Specified by:
      getUnnormalizedRotation in interface Matrix4x3dc
      Parameters:
      dest - the destination Quaterniond
      Returns:
      the passed in destination
      See Also:
    • getNormalizedRotation

      public Quaterniond getNormalizedRotation(Quaterniond dest)
      Description copied from interface: Matrix4x3dc
      Get the current values of this matrix and store the represented rotation into the given Quaterniond.

      This method assumes that the first three column vectors of the left 3x3 submatrix are normalized.

      Specified by:
      getNormalizedRotation in interface Matrix4x3dc
      Parameters:
      dest - the destination Quaterniond
      Returns:
      the passed in destination
      See Also:
    • get

      public DoubleBuffer get(DoubleBuffer buffer)
      Description copied from interface: Matrix4x3dc
      Store this matrix in column-major order into the supplied DoubleBuffer at the current buffer position.

      This method will not increment the position of the given DoubleBuffer.

      In order to specify the offset into the DoubleBuffer at which the matrix is stored, use Matrix4x3dc.get(int, DoubleBuffer), taking the absolute position as parameter.

      Specified by:
      get in interface Matrix4x3dc
      Parameters:
      buffer - will receive the values of this matrix in column-major order at its current position
      Returns:
      the passed in buffer
      See Also:
    • get

      public DoubleBuffer get(int index, DoubleBuffer buffer)
      Description copied from interface: Matrix4x3dc
      Store this matrix in column-major order into the supplied DoubleBuffer starting at the specified absolute buffer position/index.

      This method will not increment the position of the given DoubleBuffer.

      Specified by:
      get in interface Matrix4x3dc
      Parameters:
      index - the absolute position into the DoubleBuffer
      buffer - will receive the values of this matrix in column-major order
      Returns:
      the passed in buffer
    • get

      public FloatBuffer get(FloatBuffer buffer)
      Description copied from interface: Matrix4x3dc
      Store this matrix in column-major order into the supplied FloatBuffer at the current buffer position.

      This method will not increment the position of the given FloatBuffer.

      In order to specify the offset into the FloatBuffer at which the matrix is stored, use Matrix4x3dc.get(int, FloatBuffer), taking the absolute position as parameter.

      Please note that due to this matrix storing double values those values will potentially lose precision when they are converted to float values before being put into the given FloatBuffer.

      Specified by:
      get in interface Matrix4x3dc
      Parameters:
      buffer - will receive the values of this matrix in column-major order at its current position
      Returns:
      the passed in buffer
      See Also:
    • get

      public FloatBuffer get(int index, FloatBuffer buffer)
      Description copied from interface: Matrix4x3dc
      Store this matrix in column-major order into the supplied FloatBuffer starting at the specified absolute buffer position/index.

      This method will not increment the position of the given FloatBuffer.

      Please note that due to this matrix storing double values those values will potentially lose precision when they are converted to float values before being put into the given FloatBuffer.

      Specified by:
      get in interface Matrix4x3dc
      Parameters:
      index - the absolute position into the FloatBuffer
      buffer - will receive the values of this matrix in column-major order
      Returns:
      the passed in buffer
    • get

      public ByteBuffer get(ByteBuffer buffer)
      Description copied from interface: Matrix4x3dc
      Store this matrix in column-major order into the supplied ByteBuffer at the current buffer position.

      This method will not increment the position of the given ByteBuffer.

      In order to specify the offset into the ByteBuffer at which the matrix is stored, use Matrix4x3dc.get(int, ByteBuffer), taking the absolute position as parameter.

      Specified by:
      get in interface Matrix4x3dc
      Parameters:
      buffer - will receive the values of this matrix in column-major order at its current position
      Returns:
      the passed in buffer
      See Also:
    • get

      public ByteBuffer get(int index, ByteBuffer buffer)
      Description copied from interface: Matrix4x3dc
      Store this matrix in column-major order into the supplied ByteBuffer starting at the specified absolute buffer position/index.

      This method will not increment the position of the given ByteBuffer.

      Specified by:
      get in interface Matrix4x3dc
      Parameters:
      index - the absolute position into the ByteBuffer
      buffer - will receive the values of this matrix in column-major order
      Returns:
      the passed in buffer
    • getFloats

      public ByteBuffer getFloats(ByteBuffer buffer)
      Description copied from interface: Matrix4x3dc
      Store the elements of this matrix as float values in column-major order into the supplied ByteBuffer at the current buffer position.

      This method will not increment the position of the given ByteBuffer.

      Please note that due to this matrix storing double values those values will potentially lose precision when they are converted to float values before being put into the given ByteBuffer.

      In order to specify the offset into the ByteBuffer at which the matrix is stored, use Matrix4x3dc.getFloats(int, ByteBuffer), taking the absolute position as parameter.

      Specified by:
      getFloats in interface Matrix4x3dc
      Parameters:
      buffer - will receive the elements of this matrix as float values in column-major order at its current position
      Returns:
      the passed in buffer
      See Also:
    • getFloats

      public ByteBuffer getFloats(int index, ByteBuffer buffer)
      Description copied from interface: Matrix4x3dc
      Store the elements of this matrix as float values in column-major order into the supplied ByteBuffer starting at the specified absolute buffer position/index.

      This method will not increment the position of the given ByteBuffer.

      Please note that due to this matrix storing double values those values will potentially lose precision when they are converted to float values before being put into the given ByteBuffer.

      Specified by:
      getFloats in interface Matrix4x3dc
      Parameters:
      index - the absolute position into the ByteBuffer
      buffer - will receive the elements of this matrix as float values in column-major order
      Returns:
      the passed in buffer
    • getToAddress

      public Matrix4x3dc getToAddress(long address)
      Description copied from interface: Matrix4x3dc
      Store this matrix in column-major order at the given off-heap address.

      This method will throw an UnsupportedOperationException when JOML is used with `-Djoml.nounsafe`.

      This method is unsafe as it can result in a crash of the JVM process when the specified address range does not belong to this process.

      Specified by:
      getToAddress in interface Matrix4x3dc
      Parameters:
      address - the off-heap address where to store this matrix
      Returns:
      this
    • get

      public double[] get(double[] arr, int offset)
      Description copied from interface: Matrix4x3dc
      Store this matrix into the supplied double array in column-major order at the given offset.
      Specified by:
      get in interface Matrix4x3dc
      Parameters:
      arr - the array to write the matrix values into
      offset - the offset into the array
      Returns:
      the passed in array
    • get

      public double[] get(double[] arr)
      Description copied from interface: Matrix4x3dc
      Store this matrix into the supplied double array in column-major order.

      In order to specify an explicit offset into the array, use the method Matrix4x3dc.get(double[], int).

      Specified by:
      get in interface Matrix4x3dc
      Parameters:
      arr - the array to write the matrix values into
      Returns:
      the passed in array
      See Also:
    • get

      public float[] get(float[] arr, int offset)
      Description copied from interface: Matrix4x3dc
      Store the elements of this matrix as float values in column-major order into the supplied float array at the given offset.

      Please note that due to this matrix storing double values those values will potentially lose precision when they are converted to float values before being put into the given float array.

      Specified by:
      get in interface Matrix4x3dc
      Parameters:
      arr - the array to write the matrix values into
      offset - the offset into the array
      Returns:
      the passed in array
    • get

      public float[] get(float[] arr)
      Description copied from interface: Matrix4x3dc
      Store the elements of this matrix as float values in column-major order into the supplied float array.

      Please note that due to this matrix storing double values those values will potentially lose precision when they are converted to float values before being put into the given float array.

      In order to specify an explicit offset into the array, use the method Matrix4x3dc.get(float[], int).

      Specified by:
      get in interface Matrix4x3dc
      Parameters:
      arr - the array to write the matrix values into
      Returns:
      the passed in array
      See Also:
    • get4x4

      public float[] get4x4(float[] arr, int offset)
      Description copied from interface: Matrix4x3dc
      Store a 4x4 matrix in column-major order into the supplied array at the given offset, where the upper 4x3 submatrix is this and the last row is (0, 0, 0, 1).

      Please note that due to this matrix storing double values those values will potentially lose precision when they are converted to float values before being put into the given float array.

      Specified by:
      get4x4 in interface Matrix4x3dc
      Parameters:
      arr - the array to write the matrix values into
      offset - the offset into the array
      Returns:
      the passed in array
    • get4x4

      public float[] get4x4(float[] arr)
      Description copied from interface: Matrix4x3dc
      Store a 4x4 matrix in column-major order into the supplied array, where the upper 4x3 submatrix is this and the last row is (0, 0, 0, 1).

      Please note that due to this matrix storing double values those values will potentially lose precision when they are converted to float values before being put into the given float array.

      In order to specify an explicit offset into the array, use the method Matrix4x3dc.get4x4(float[], int).

      Specified by:
      get4x4 in interface Matrix4x3dc
      Parameters:
      arr - the array to write the matrix values into
      Returns:
      the passed in array
      See Also:
    • get4x4

      public double[] get4x4(double[] arr, int offset)
      Description copied from interface: Matrix4x3dc
      Store a 4x4 matrix in column-major order into the supplied array at the given offset, where the upper 4x3 submatrix is this and the last row is (0, 0, 0, 1).
      Specified by:
      get4x4 in interface Matrix4x3dc
      Parameters:
      arr - the array to write the matrix values into
      offset - the offset into the array
      Returns:
      the passed in array
    • get4x4

      public double[] get4x4(double[] arr)
      Description copied from interface: Matrix4x3dc
      Store a 4x4 matrix in column-major order into the supplied array, where the upper 4x3 submatrix is this and the last row is (0, 0, 0, 1).

      In order to specify an explicit offset into the array, use the method Matrix4x3dc.get4x4(double[], int).

      Specified by:
      get4x4 in interface Matrix4x3dc
      Parameters:
      arr - the array to write the matrix values into
      Returns:
      the passed in array
      See Also:
    • get4x4

      public DoubleBuffer get4x4(DoubleBuffer buffer)
      Description copied from interface: Matrix4x3dc
      Store a 4x4 matrix in column-major order into the supplied DoubleBuffer at the current buffer position, where the upper 4x3 submatrix is this and the last row is (0, 0, 0, 1).

      This method will not increment the position of the given DoubleBuffer.

      In order to specify the offset into the DoubleBuffer at which the matrix is stored, use Matrix4x3dc.get4x4(int, DoubleBuffer), taking the absolute position as parameter.

      Specified by:
      get4x4 in interface Matrix4x3dc
      Parameters:
      buffer - will receive the values of this matrix in column-major order at its current position
      Returns:
      the passed in buffer
      See Also:
    • get4x4

      public DoubleBuffer get4x4(int index, DoubleBuffer buffer)
      Description copied from interface: Matrix4x3dc
      Store a 4x4 matrix in column-major order into the supplied DoubleBuffer starting at the specified absolute buffer position/index, where the upper 4x3 submatrix is this and the last row is (0, 0, 0, 1).

      This method will not increment the position of the given DoubleBuffer.

      Specified by:
      get4x4 in interface Matrix4x3dc
      Parameters:
      index - the absolute position into the DoubleBuffer
      buffer - will receive the values of this matrix in column-major order
      Returns:
      the passed in buffer
    • get4x4

      public ByteBuffer get4x4(ByteBuffer buffer)
      Description copied from interface: Matrix4x3dc
      Store a 4x4 matrix in column-major order into the supplied ByteBuffer at the current buffer position, where the upper 4x3 submatrix is this and the last row is (0, 0, 0, 1).

      This method will not increment the position of the given ByteBuffer.

      In order to specify the offset into the ByteBuffer at which the matrix is stored, use Matrix4x3dc.get4x4(int, ByteBuffer), taking the absolute position as parameter.

      Specified by:
      get4x4 in interface Matrix4x3dc
      Parameters:
      buffer - will receive the values of this matrix in column-major order at its current position
      Returns:
      the passed in buffer
      See Also:
    • get4x4

      public ByteBuffer get4x4(int index, ByteBuffer buffer)
      Description copied from interface: Matrix4x3dc
      Store a 4x4 matrix in column-major order into the supplied ByteBuffer starting at the specified absolute buffer position/index, where the upper 4x3 submatrix is this and the last row is (0, 0, 0, 1).

      This method will not increment the position of the given ByteBuffer.

      Specified by:
      get4x4 in interface Matrix4x3dc
      Parameters:
      index - the absolute position into the ByteBuffer
      buffer - will receive the values of this matrix in column-major order
      Returns:
      the passed in buffer
    • getTransposed

      public DoubleBuffer getTransposed(DoubleBuffer buffer)
      Description copied from interface: Matrix4x3dc
      Store this matrix in row-major order into the supplied DoubleBuffer at the current buffer position.

      This method will not increment the position of the given DoubleBuffer.

      In order to specify the offset into the DoubleBuffer at which the matrix is stored, use Matrix4x3dc.getTransposed(int, DoubleBuffer), taking the absolute position as parameter.

      Specified by:
      getTransposed in interface Matrix4x3dc
      Parameters:
      buffer - will receive the values of this matrix in row-major order at its current position
      Returns:
      the passed in buffer
      See Also:
    • getTransposed

      public DoubleBuffer getTransposed(int index, DoubleBuffer buffer)
      Description copied from interface: Matrix4x3dc
      Store this matrix in row-major order into the supplied DoubleBuffer starting at the specified absolute buffer position/index.

      This method will not increment the position of the given DoubleBuffer.

      Specified by:
      getTransposed in interface Matrix4x3dc
      Parameters:
      index - the absolute position into the DoubleBuffer
      buffer - will receive the values of this matrix in row-major order
      Returns:
      the passed in buffer
    • getTransposed

      public ByteBuffer getTransposed(ByteBuffer buffer)
      Description copied from interface: Matrix4x3dc
      Store this matrix in row-major order into the supplied ByteBuffer at the current buffer position.

      This method will not increment the position of the given ByteBuffer.

      In order to specify the offset into the ByteBuffer at which the matrix is stored, use Matrix4x3dc.getTransposed(int, ByteBuffer), taking the absolute position as parameter.

      Specified by:
      getTransposed in interface Matrix4x3dc
      Parameters:
      buffer - will receive the values of this matrix in row-major order at its current position
      Returns:
      the passed in buffer
      See Also:
    • getTransposed

      public ByteBuffer getTransposed(int index, ByteBuffer buffer)
      Description copied from interface: Matrix4x3dc
      Store this matrix in row-major order into the supplied ByteBuffer starting at the specified absolute buffer position/index.

      This method will not increment the position of the given ByteBuffer.

      Specified by:
      getTransposed in interface Matrix4x3dc
      Parameters:
      index - the absolute position into the ByteBuffer
      buffer - will receive the values of this matrix in row-major order
      Returns:
      the passed in buffer
    • getTransposed

      public FloatBuffer getTransposed(FloatBuffer buffer)
      Description copied from interface: Matrix4x3dc
      Store this matrix in row-major order into the supplied FloatBuffer at the current buffer position.

      This method will not increment the position of the given FloatBuffer.

      Please note that due to this matrix storing double values those values will potentially lose precision when they are converted to float values before being put into the given FloatBuffer.

      In order to specify the offset into the FloatBuffer at which the matrix is stored, use Matrix4x3dc.getTransposed(int, FloatBuffer), taking the absolute position as parameter.

      Specified by:
      getTransposed in interface Matrix4x3dc
      Parameters:
      buffer - will receive the values of this matrix in row-major order at its current position
      Returns:
      the passed in buffer
      See Also:
    • getTransposed

      public FloatBuffer getTransposed(int index, FloatBuffer buffer)
      Description copied from interface: Matrix4x3dc
      Store this matrix in row-major order into the supplied FloatBuffer starting at the specified absolute buffer position/index.

      This method will not increment the position of the given FloatBuffer.

      Please note that due to this matrix storing double values those values will potentially lose precision when they are converted to float values before being put into the given FloatBuffer.

      Specified by:
      getTransposed in interface Matrix4x3dc
      Parameters:
      index - the absolute position into the FloatBuffer
      buffer - will receive the values of this matrix in row-major order
      Returns:
      the passed in buffer
    • getTransposedFloats

      public ByteBuffer getTransposedFloats(ByteBuffer buffer)
      Description copied from interface: Matrix4x3dc
      Store this matrix as float values in row-major order into the supplied ByteBuffer at the current buffer position.

      This method will not increment the position of the given ByteBuffer.

      Please note that due to this matrix storing double values those values will potentially lose precision when they are converted to float values before being put into the given FloatBuffer.

      In order to specify the offset into the ByteBuffer at which the matrix is stored, use Matrix4x3dc.getTransposedFloats(int, ByteBuffer), taking the absolute position as parameter.

      Specified by:
      getTransposedFloats in interface Matrix4x3dc
      Parameters:
      buffer - will receive the values of this matrix as float values in row-major order at its current position
      Returns:
      the passed in buffer
      See Also:
    • getTransposedFloats

      public ByteBuffer getTransposedFloats(int index, ByteBuffer buffer)
      Description copied from interface: Matrix4x3dc
      Store this matrix in row-major order into the supplied ByteBuffer starting at the specified absolute buffer position/index.

      This method will not increment the position of the given ByteBuffer.

      Please note that due to this matrix storing double values those values will potentially lose precision when they are converted to float values before being put into the given FloatBuffer.

      Specified by:
      getTransposedFloats in interface Matrix4x3dc
      Parameters:
      index - the absolute position into the ByteBuffer
      buffer - will receive the values of this matrix as float values in row-major order
      Returns:
      the passed in buffer
    • getTransposed

      public double[] getTransposed(double[] arr, int offset)
      Description copied from interface: Matrix4x3dc
      Store this matrix into the supplied float array in row-major order at the given offset.
      Specified by:
      getTransposed in interface Matrix4x3dc
      Parameters:
      arr - the array to write the matrix values into
      offset - the offset into the array
      Returns:
      the passed in array
    • getTransposed

      public double[] getTransposed(double[] arr)
      Description copied from interface: Matrix4x3dc
      Store this matrix into the supplied float array in row-major order.

      In order to specify an explicit offset into the array, use the method Matrix4x3dc.getTransposed(double[], int).

      Specified by:
      getTransposed in interface Matrix4x3dc
      Parameters:
      arr - the array to write the matrix values into
      Returns:
      the passed in array
      See Also:
    • zero

      public Matrix4x3d zero()
      Set all the values within this matrix to 0.
      Returns:
      this
    • scaling

      public Matrix4x3d scaling(double factor)
      Set this matrix to be a simple scale matrix, which scales all axes uniformly by the given factor.

      The resulting matrix can be multiplied against another transformation matrix to obtain an additional scaling.

      In order to post-multiply a scaling transformation directly to a matrix, use scale() instead.

      Parameters:
      factor - the scale factor in x, y and z
      Returns:
      this
      See Also:
    • scaling

      public Matrix4x3d scaling(double x, double y, double z)
      Set this matrix to be a simple scale matrix.
      Parameters:
      x - the scale in x
      y - the scale in y
      z - the scale in z
      Returns:
      this
    • scaling

      public Matrix4x3d scaling(Vector3dc xyz)
      Set this matrix to be a simple scale matrix which scales the base axes by xyz.x, xyz.y and xyz.z, respectively.

      The resulting matrix can be multiplied against another transformation matrix to obtain an additional scaling.

      In order to post-multiply a scaling transformation directly to a matrix use scale() instead.

      Parameters:
      xyz - the scale in x, y and z, respectively
      Returns:
      this
      See Also:
    • rotation

      public Matrix4x3d rotation(double angle, double x, double y, double z)
      Set this matrix to a rotation matrix which rotates the given radians about a given axis.

      When used with a right-handed coordinate system, the produced rotation will rotate a vector counter-clockwise around the rotation axis, when viewing along the negative axis direction towards the origin. When used with a left-handed coordinate system, the rotation is clockwise.

      From Wikipedia

      Parameters:
      angle - the angle in radians
      x - the x-coordinate of the axis to rotate about
      y - the y-coordinate of the axis to rotate about
      z - the z-coordinate of the axis to rotate about
      Returns:
      this
    • rotationX

      public Matrix4x3d rotationX(double ang)
      Set this matrix to a rotation transformation about the X axis.

      When used with a right-handed coordinate system, the produced rotation will rotate a vector counter-clockwise around the rotation axis, when viewing along the negative axis direction towards the origin. When used with a left-handed coordinate system, the rotation is clockwise.

      Reference: http://en.wikipedia.org

      Parameters:
      ang - the angle in radians
      Returns:
      this
    • rotationY

      public Matrix4x3d rotationY(double ang)
      Set this matrix to a rotation transformation about the Y axis.

      When used with a right-handed coordinate system, the produced rotation will rotate a vector counter-clockwise around the rotation axis, when viewing along the negative axis direction towards the origin. When used with a left-handed coordinate system, the rotation is clockwise.

      Reference: http://en.wikipedia.org

      Parameters:
      ang - the angle in radians
      Returns:
      this
    • rotationZ

      public Matrix4x3d rotationZ(double ang)
      Set this matrix to a rotation transformation about the Z axis.

      When used with a right-handed coordinate system, the produced rotation will rotate a vector counter-clockwise around the rotation axis, when viewing along the negative axis direction towards the origin. When used with a left-handed coordinate system, the rotation is clockwise.

      Reference: http://en.wikipedia.org

      Parameters:
      ang - the angle in radians
      Returns:
      this
    • rotationXYZ

      public Matrix4x3d rotationXYZ(double angleX, double angleY, double angleZ)
      Set this matrix to a rotation of angleX radians about the X axis, followed by a rotation of angleY radians about the Y axis and followed by a rotation of angleZ radians about the Z axis.

      When used with a right-handed coordinate system, the produced rotation will rotate a vector counter-clockwise around the rotation axis, when viewing along the negative axis direction towards the origin. When used with a left-handed coordinate system, the rotation is clockwise.

      This method is equivalent to calling: rotationX(angleX).rotateY(angleY).rotateZ(angleZ)

      Parameters:
      angleX - the angle to rotate about X
      angleY - the angle to rotate about Y
      angleZ - the angle to rotate about Z
      Returns:
      this
    • rotationZYX

      public Matrix4x3d rotationZYX(double angleZ, double angleY, double angleX)
      Set this matrix to a rotation of angleZ radians about the Z axis, followed by a rotation of angleY radians about the Y axis and followed by a rotation of angleX radians about the X axis.

      When used with a right-handed coordinate system, the produced rotation will rotate a vector counter-clockwise around the rotation axis, when viewing along the negative axis direction towards the origin. When used with a left-handed coordinate system, the rotation is clockwise.

      This method is equivalent to calling: rotationZ(angleZ).rotateY(angleY).rotateX(angleX)

      Parameters:
      angleZ - the angle to rotate about Z
      angleY - the angle to rotate about Y
      angleX - the angle to rotate about X
      Returns:
      this
    • rotationYXZ

      public Matrix4x3d rotationYXZ(double angleY, double angleX, double angleZ)
      Set this matrix to a rotation of angleY radians about the Y axis, followed by a rotation of angleX radians about the X axis and followed by a rotation of angleZ radians about the Z axis.

      When used with a right-handed coordinate system, the produced rotation will rotate a vector counter-clockwise around the rotation axis, when viewing along the negative axis direction towards the origin. When used with a left-handed coordinate system, the rotation is clockwise.

      This method is equivalent to calling: rotationY(angleY).rotateX(angleX).rotateZ(angleZ)

      Parameters:
      angleY - the angle to rotate about Y
      angleX - the angle to rotate about X
      angleZ - the angle to rotate about Z
      Returns:
      this
    • setRotationXYZ

      public Matrix4x3d setRotationXYZ(double angleX, double angleY, double angleZ)
      Set only the left 3x3 submatrix of this matrix to a rotation of angleX radians about the X axis, followed by a rotation of angleY radians about the Y axis and followed by a rotation of angleZ radians about the Z axis.

      When used with a right-handed coordinate system, the produced rotation will rotate a vector counter-clockwise around the rotation axis, when viewing along the negative axis direction towards the origin. When used with a left-handed coordinate system, the rotation is clockwise.

      Parameters:
      angleX - the angle to rotate about X
      angleY - the angle to rotate about Y
      angleZ - the angle to rotate about Z
      Returns:
      this
    • setRotationZYX

      public Matrix4x3d setRotationZYX(double angleZ, double angleY, double angleX)
      Set only the left 3x3 submatrix of this matrix to a rotation of angleZ radians about the Z axis, followed by a rotation of angleY radians about the Y axis and followed by a rotation of angleX radians about the X axis.

      When used with a right-handed coordinate system, the produced rotation will rotate a vector counter-clockwise around the rotation axis, when viewing along the negative axis direction towards the origin. When used with a left-handed coordinate system, the rotation is clockwise.

      Parameters:
      angleZ - the angle to rotate about Z
      angleY - the angle to rotate about Y
      angleX - the angle to rotate about X
      Returns:
      this
    • setRotationYXZ

      public Matrix4x3d setRotationYXZ(double angleY, double angleX, double angleZ)
      Set only the left 3x3 submatrix of this matrix to a rotation of angleY radians about the Y axis, followed by a rotation of angleX radians about the X axis and followed by a rotation of angleZ radians about the Z axis.

      When used with a right-handed coordinate system, the produced rotation will rotate a vector counter-clockwise around the rotation axis, when viewing along the negative axis direction towards the origin. When used with a left-handed coordinate system, the rotation is clockwise.

      Parameters:
      angleY - the angle to rotate about Y
      angleX - the angle to rotate about X
      angleZ - the angle to rotate about Z
      Returns:
      this
    • rotation

      public Matrix4x3d rotation(double angle, Vector3dc axis)
      Set this matrix to a rotation matrix which rotates the given radians about a given axis.

      The axis described by the axis vector needs to be a unit vector.

      When used with a right-handed coordinate system, the produced rotation will rotate a vector counter-clockwise around the rotation axis, when viewing along the negative axis direction towards the origin. When used with a left-handed coordinate system, the rotation is clockwise.

      Parameters:
      angle - the angle in radians
      axis - the axis to rotate about
      Returns:
      this
    • rotation

      public Matrix4x3d rotation(double angle, Vector3fc axis)
      Set this matrix to a rotation matrix which rotates the given radians about a given axis.

      The axis described by the axis vector needs to be a unit vector.

      When used with a right-handed coordinate system, the produced rotation will rotate a vector counter-clockwise around the rotation axis, when viewing along the negative axis direction towards the origin. When used with a left-handed coordinate system, the rotation is clockwise.

      Parameters:
      angle - the angle in radians
      axis - the axis to rotate about
      Returns:
      this
    • transform

      public Vector4d transform(Vector4d v)
      Description copied from interface: Matrix4x3dc
      Transform/multiply the given vector by this matrix and store the result in that vector.
      Specified by:
      transform in interface Matrix4x3dc
      Parameters:
      v - the vector to transform and to hold the final result
      Returns:
      v
      See Also:
    • transform

      public Vector4d transform(Vector4dc v, Vector4d dest)
      Description copied from interface: Matrix4x3dc
      Transform/multiply the given vector by this matrix and store the result in dest.
      Specified by:
      transform in interface Matrix4x3dc
      Parameters:
      v - the vector to transform
      dest - will contain the result
      Returns:
      dest
      See Also:
    • transformPosition

      public Vector3d transformPosition(Vector3d v)
      Description copied from interface: Matrix4x3dc
      Transform/multiply the given 3D-vector, as if it was a 4D-vector with w=1, by this matrix and store the result in that vector.

      The given 3D-vector is treated as a 4D-vector with its w-component being 1.0, so it will represent a position/location in 3D-space rather than a direction.

      In order to store the result in another vector, use Matrix4x3dc.transformPosition(Vector3dc, Vector3d).

      Specified by:
      transformPosition in interface Matrix4x3dc
      Parameters:
      v - the vector to transform and to hold the final result
      Returns:
      v
      See Also:
    • transformPosition

      public Vector3d transformPosition(Vector3dc v, Vector3d dest)
      Description copied from interface: Matrix4x3dc
      Transform/multiply the given 3D-vector, as if it was a 4D-vector with w=1, by this matrix and store the result in dest.

      The given 3D-vector is treated as a 4D-vector with its w-component being 1.0, so it will represent a position/location in 3D-space rather than a direction.

      In order to store the result in the same vector, use Matrix4x3dc.transformPosition(Vector3d).

      Specified by:
      transformPosition in interface Matrix4x3dc
      Parameters:
      v - the vector to transform
      dest - will hold the result
      Returns:
      dest
      See Also:
    • transformDirection

      public Vector3d transformDirection(Vector3d v)
      Description copied from interface: Matrix4x3dc
      Transform/multiply the given 3D-vector, as if it was a 4D-vector with w=0, by this matrix and store the result in that vector.

      The given 3D-vector is treated as a 4D-vector with its w-component being 0.0, so it will represent a direction in 3D-space rather than a position. This method will therefore not take the translation part of the matrix into account.

      In order to store the result in another vector, use Matrix4x3dc.transformDirection(Vector3dc, Vector3d).

      Specified by:
      transformDirection in interface Matrix4x3dc
      Parameters:
      v - the vector to transform and to hold the final result
      Returns:
      v
    • transformDirection

      public Vector3d transformDirection(Vector3dc v, Vector3d dest)
      Description copied from interface: Matrix4x3dc
      Transform/multiply the given 3D-vector, as if it was a 4D-vector with w=0, by this matrix and store the result in dest.

      The given 3D-vector is treated as a 4D-vector with its w-component being 0.0, so it will represent a direction in 3D-space rather than a position. This method will therefore not take the translation part of the matrix into account.

      In order to store the result in the same vector, use Matrix4x3dc.transformDirection(Vector3d).

      Specified by:
      transformDirection in interface Matrix4x3dc
      Parameters:
      v - the vector to transform and to hold the final result
      dest - will hold the result
      Returns:
      dest
    • set3x3

      public Matrix4x3d set3x3(Matrix3dc mat)
      Set the left 3x3 submatrix of this Matrix4x3d to the given Matrix3dc and don't change the other elements.
      Parameters:
      mat - the 3x3 matrix
      Returns:
      this
    • set3x3

      public Matrix4x3d set3x3(Matrix3fc mat)
      Set the left 3x3 submatrix of this Matrix4x3d to the given Matrix3fc and don't change the other elements.
      Parameters:
      mat - the 3x3 matrix
      Returns:
      this
    • scale

      public Matrix4x3d scale(Vector3dc xyz, Matrix4x3d dest)
      Description copied from interface: Matrix4x3dc
      Apply scaling to this matrix by scaling the base axes by the given xyz.x, xyz.y and xyz.z factors, respectively and store the result in dest.

      If M is this matrix and S the scaling matrix, then the new matrix will be M * S. So when transforming a vector v with the new matrix by using M * S * v , the scaling will be applied first!

      Specified by:
      scale in interface Matrix4x3dc
      Parameters:
      xyz - the factors of the x, y and z component, respectively
      dest - will hold the result
      Returns:
      dest
    • scale

      public Matrix4x3d scale(Vector3dc xyz)
      Apply scaling to this matrix by scaling the base axes by the given xyz.x, xyz.y and xyz.z factors, respectively.

      If M is this matrix and S the scaling matrix, then the new matrix will be M * S. So when transforming a vector v with the new matrix by using M * S * v, the scaling will be applied first!

      Parameters:
      xyz - the factors of the x, y and z component, respectively
      Returns:
      this
    • scale

      public Matrix4x3d scale(double x, double y, double z, Matrix4x3d dest)
      Description copied from interface: Matrix4x3dc
      Apply scaling to this matrix by scaling the base axes by the given x, y and z factors and store the result in dest.

      If M is this matrix and S the scaling matrix, then the new matrix will be M * S. So when transforming a vector v with the new matrix by using M * S * v , the scaling will be applied first!

      Specified by:
      scale in interface Matrix4x3dc
      Parameters:
      x - the factor of the x component
      y - the factor of the y component
      z - the factor of the z component
      dest - will hold the result
      Returns:
      dest
    • scale

      public Matrix4x3d scale(double x, double y, double z)
      Apply scaling to this matrix by scaling the base axes by the given x, y and z factors.

      If M is this matrix and S the scaling matrix, then the new matrix will be M * S. So when transforming a vector v with the new matrix by using M * S * v , the scaling will be applied first!

      Parameters:
      x - the factor of the x component
      y - the factor of the y component
      z - the factor of the z component
      Returns:
      this
    • scale

      public Matrix4x3d scale(double xyz, Matrix4x3d dest)
      Description copied from interface: Matrix4x3dc
      Apply scaling to this matrix by uniformly scaling all base axes by the given xyz factor and store the result in dest.

      If M is this matrix and S the scaling matrix, then the new matrix will be M * S. So when transforming a vector v with the new matrix by using M * S * v , the scaling will be applied first!

      Specified by:
      scale in interface Matrix4x3dc
      Parameters:
      xyz - the factor for all components
      dest - will hold the result
      Returns:
      dest
      See Also:
    • scale

      public Matrix4x3d scale(double xyz)
      Apply scaling to this matrix by uniformly scaling all base axes by the given xyz factor.

      If M is this matrix and S the scaling matrix, then the new matrix will be M * S. So when transforming a vector v with the new matrix by using M * S * v , the scaling will be applied first!

      Parameters:
      xyz - the factor for all components
      Returns:
      this
      See Also:
    • scaleXY

      public Matrix4x3d scaleXY(double x, double y, Matrix4x3d dest)
      Description copied from interface: Matrix4x3dc
      Apply scaling to this matrix by by scaling the X axis by x and the Y axis by y and store the result in dest.

      If M is this matrix and S the scaling matrix, then the new matrix will be M * S. So when transforming a vector v with the new matrix by using M * S * v, the scaling will be applied first!

      Specified by:
      scaleXY in interface Matrix4x3dc
      Parameters:
      x - the factor of the x component
      y - the factor of the y component
      dest - will hold the result
      Returns:
      dest
    • scaleXY

      public Matrix4x3d scaleXY(double x, double y)
      Apply scaling to this matrix by scaling the X axis by x and the Y axis by y.

      If M is this matrix and S the scaling matrix, then the new matrix will be M * S. So when transforming a vector v with the new matrix by using M * S * v, the scaling will be applied first!

      Parameters:
      x - the factor of the x component
      y - the factor of the y component
      Returns:
      this
    • scaleAround

      public Matrix4x3d scaleAround(double sx, double sy, double sz, double ox, double oy, double oz, Matrix4x3d dest)
      Description copied from interface: Matrix4x3dc
      Apply scaling to this matrix by scaling the base axes by the given sx, sy and sz factors while using (ox, oy, oz) as the scaling origin, and store the result in dest.

      If M is this matrix and S the scaling matrix, then the new matrix will be M * S. So when transforming a vector v with the new matrix by using M * S * v , the scaling will be applied first!

      This method is equivalent to calling: translate(ox, oy, oz, dest).scale(sx, sy, sz).translate(-ox, -oy, -oz)

      Specified by:
      scaleAround in interface Matrix4x3dc
      Parameters:
      sx - the scaling factor of the x component
      sy - the scaling factor of the y component
      sz - the scaling factor of the z component
      ox - the x coordinate of the scaling origin
      oy - the y coordinate of the scaling origin
      oz - the z coordinate of the scaling origin
      dest - will hold the result
      Returns:
      dest
    • scaleAround

      public Matrix4x3d scaleAround(double sx, double sy, double sz, double ox, double oy, double oz)
      Apply scaling to this matrix by scaling the base axes by the given sx, sy and sz factors while using (ox, oy, oz) as the scaling origin.

      If M is this matrix and S the scaling matrix, then the new matrix will be M * S. So when transforming a vector v with the new matrix by using M * S * v, the scaling will be applied first!

      This method is equivalent to calling: translate(ox, oy, oz).scale(sx, sy, sz).translate(-ox, -oy, -oz)

      Parameters:
      sx - the scaling factor of the x component
      sy - the scaling factor of the y component
      sz - the scaling factor of the z component
      ox - the x coordinate of the scaling origin
      oy - the y coordinate of the scaling origin
      oz - the z coordinate of the scaling origin
      Returns:
      this
    • scaleAround

      public Matrix4x3d scaleAround(double factor, double ox, double oy, double oz)
      Apply scaling to this matrix by scaling all three base axes by the given factor while using (ox, oy, oz) as the scaling origin.

      If M is this matrix and S the scaling matrix, then the new matrix will be M * S. So when transforming a vector v with the new matrix by using M * S * v, the scaling will be applied first!

      This method is equivalent to calling: translate(ox, oy, oz).scale(factor).translate(-ox, -oy, -oz)

      Parameters:
      factor - the scaling factor for all three axes
      ox - the x coordinate of the scaling origin
      oy - the y coordinate of the scaling origin
      oz - the z coordinate of the scaling origin
      Returns:
      this
    • scaleAround

      public Matrix4x3d scaleAround(double factor, double ox, double oy, double oz, Matrix4x3d dest)
      Description copied from interface: Matrix4x3dc
      Apply scaling to this matrix by scaling all three base axes by the given factor while using (ox, oy, oz) as the scaling origin, and store the result in dest.

      If M is this matrix and S the scaling matrix, then the new matrix will be M * S. So when transforming a vector v with the new matrix by using M * S * v, the scaling will be applied first!

      This method is equivalent to calling: translate(ox, oy, oz, dest).scale(factor).translate(-ox, -oy, -oz)

      Specified by:
      scaleAround in interface Matrix4x3dc
      Parameters:
      factor - the scaling factor for all three axes
      ox - the x coordinate of the scaling origin
      oy - the y coordinate of the scaling origin
      oz - the z coordinate of the scaling origin
      dest - will hold the result
      Returns:
      this
    • scaleLocal

      public Matrix4x3d scaleLocal(double x, double y, double z, Matrix4x3d dest)
      Description copied from interface: Matrix4x3dc
      Pre-multiply scaling to this matrix by scaling the base axes by the given x, y and z factors and store the result in dest.

      If M is this matrix and S the scaling matrix, then the new matrix will be S * M. So when transforming a vector v with the new matrix by using S * M * v , the scaling will be applied last!

      Specified by:
      scaleLocal in interface Matrix4x3dc
      Parameters:
      x - the factor of the x component
      y - the factor of the y component
      z - the factor of the z component
      dest - will hold the result
      Returns:
      dest
    • scaleLocal

      public Matrix4x3d scaleLocal(double x, double y, double z)
      Pre-multiply scaling to this matrix by scaling the base axes by the given x, y and z factors.

      If M is this matrix and S the scaling matrix, then the new matrix will be S * M. So when transforming a vector v with the new matrix by using S * M * v, the scaling will be applied last!

      Parameters:
      x - the factor of the x component
      y - the factor of the y component
      z - the factor of the z component
      Returns:
      this
    • rotate

      public Matrix4x3d rotate(double ang, double x, double y, double z, Matrix4x3d dest)
      Description copied from interface: Matrix4x3dc
      Apply rotation to this matrix by rotating the given amount of radians about the given axis specified as x, y and z components and store the result in dest.

      When used with a right-handed coordinate system, the produced rotation will rotate a vector counter-clockwise around the rotation axis, when viewing along the negative axis direction towards the origin. When used with a left-handed coordinate system, the rotation is clockwise.

      If M is this matrix and R the rotation matrix, then the new matrix will be M * R. So when transforming a vector v with the new matrix by using M * R * v , the rotation will be applied first!

      Specified by:
      rotate in interface Matrix4x3dc
      Parameters:
      ang - the angle is in radians
      x - the x component of the axis
      y - the y component of the axis
      z - the z component of the axis
      dest - will hold the result
      Returns:
      dest
    • rotate

      public Matrix4x3d rotate(double ang, double x, double y, double z)
      Apply rotation to this matrix by rotating the given amount of radians about the given axis specified as x, y and z components.

      When used with a right-handed coordinate system, the produced rotation will rotate a vector counter-clockwise around the rotation axis, when viewing along the negative axis direction towards the origin. When used with a left-handed coordinate system, the rotation is clockwise.

      If M is this matrix and R the rotation matrix, then the new matrix will be M * R. So when transforming a vector v with the new matrix by using M * R * v , the rotation will be applied first!

      In order to set the matrix to a rotation matrix without post-multiplying the rotation transformation, use rotation().

      Parameters:
      ang - the angle is in radians
      x - the x component of the axis
      y - the y component of the axis
      z - the z component of the axis
      Returns:
      this
      See Also:
    • rotateTranslation

      public Matrix4x3d rotateTranslation(double ang, double x, double y, double z, Matrix4x3d dest)
      Apply rotation to this matrix, which is assumed to only contain a translation, by rotating the given amount of radians about the specified (x, y, z) axis and store the result in dest.

      This method assumes this to only contain a translation.

      The axis described by the three components needs to be a unit vector.

      When used with a right-handed coordinate system, the produced rotation will rotate a vector counter-clockwise around the rotation axis, when viewing along the negative axis direction towards the origin. When used with a left-handed coordinate system, the rotation is clockwise.

      If M is this matrix and R the rotation matrix, then the new matrix will be M * R. So when transforming a vector v with the new matrix by using M * R * v, the rotation will be applied first!

      In order to set the matrix to a rotation matrix without post-multiplying the rotation transformation, use rotation().

      Reference: http://en.wikipedia.org

      Specified by:
      rotateTranslation in interface Matrix4x3dc
      Parameters:
      ang - the angle in radians
      x - the x component of the axis
      y - the y component of the axis
      z - the z component of the axis
      dest - will hold the result
      Returns:
      dest
      See Also:
    • rotateAround

      public Matrix4x3d rotateAround(Quaterniondc quat, double ox, double oy, double oz)
      Apply the rotation transformation of the given Quaterniondc to this matrix while using (ox, oy, oz) as the rotation origin.

      When used with a right-handed coordinate system, the produced rotation will rotate a vector counter-clockwise around the rotation axis, when viewing along the negative axis direction towards the origin. When used with a left-handed coordinate system, the rotation is clockwise.

      If M is this matrix and Q the rotation matrix obtained from the given quaternion, then the new matrix will be M * Q. So when transforming a vector v with the new matrix by using M * Q * v, the quaternion rotation will be applied first!

      This method is equivalent to calling: translate(ox, oy, oz).rotate(quat).translate(-ox, -oy, -oz)

      Reference: http://en.wikipedia.org

      Parameters:
      quat - the Quaterniondc
      ox - the x coordinate of the rotation origin
      oy - the y coordinate of the rotation origin
      oz - the z coordinate of the rotation origin
      Returns:
      this
    • rotateAround

      public Matrix4x3d rotateAround(Quaterniondc quat, double ox, double oy, double oz, Matrix4x3d dest)
      Description copied from interface: Matrix4x3dc
      Apply the rotation - and possibly scaling - transformation of the given Quaterniondc to this matrix while using (ox, oy, oz) as the rotation origin, and store the result in dest.

      When used with a right-handed coordinate system, the produced rotation will rotate a vector counter-clockwise around the rotation axis, when viewing along the negative axis direction towards the origin. When used with a left-handed coordinate system, the rotation is clockwise.

      If M is this matrix and Q the rotation matrix obtained from the given quaternion, then the new matrix will be M * Q. So when transforming a vector v with the new matrix by using M * Q * v, the quaternion rotation will be applied first!

      This method is equivalent to calling: translate(ox, oy, oz, dest).rotate(quat).translate(-ox, -oy, -oz)

      Reference: http://en.wikipedia.org

      Specified by:
      rotateAround in interface Matrix4x3dc
      Parameters:
      quat - the Quaterniondc
      ox - the x coordinate of the rotation origin
      oy - the y coordinate of the rotation origin
      oz - the z coordinate of the rotation origin
      dest - will hold the result
      Returns:
      dest
    • rotationAround

      public Matrix4x3d rotationAround(Quaterniondc quat, double ox, double oy, double oz)
      Set this matrix to a transformation composed of a rotation of the specified Quaterniondc while using (ox, oy, oz) as the rotation origin.

      When used with a right-handed coordinate system, the produced rotation will rotate a vector counter-clockwise around the rotation axis, when viewing along the negative axis direction towards the origin. When used with a left-handed coordinate system, the rotation is clockwise.

      This method is equivalent to calling: translation(ox, oy, oz).rotate(quat).translate(-ox, -oy, -oz)

      Reference: http://en.wikipedia.org

      Parameters:
      quat - the Quaterniondc
      ox - the x coordinate of the rotation origin
      oy - the y coordinate of the rotation origin
      oz - the z coordinate of the rotation origin
      Returns:
      this
    • rotateLocal

      public Matrix4x3d rotateLocal(double ang, double x, double y, double z, Matrix4x3d dest)
      Pre-multiply a rotation to this matrix by rotating the given amount of radians about the specified (x, y, z) axis and store the result in dest.

      The axis described by the three components needs to be a unit vector.

      When used with a right-handed coordinate system, the produced rotation will rotate a vector counter-clockwise around the rotation axis, when viewing along the negative axis direction towards the origin. When used with a left-handed coordinate system, the rotation is clockwise.

      If M is this matrix and R the rotation matrix, then the new matrix will be R * M. So when transforming a vector v with the new matrix by using R * M * v, the rotation will be applied last!

      In order to set the matrix to a rotation matrix without pre-multiplying the rotation transformation, use rotation().

      Reference: http://en.wikipedia.org

      Specified by:
      rotateLocal in interface Matrix4x3dc
      Parameters:
      ang - the angle in radians
      x - the x component of the axis
      y - the y component of the axis
      z - the z component of the axis
      dest - will hold the result
      Returns:
      dest
      See Also:
    • rotateLocal

      public Matrix4x3d rotateLocal(double ang, double x, double y, double z)
      Pre-multiply a rotation to this matrix by rotating the given amount of radians about the specified (x, y, z) axis.

      The axis described by the three components needs to be a unit vector.

      When used with a right-handed coordinate system, the produced rotation will rotate a vector counter-clockwise around the rotation axis, when viewing along the negative axis direction towards the origin. When used with a left-handed coordinate system, the rotation is clockwise.

      If M is this matrix and R the rotation matrix, then the new matrix will be R * M. So when transforming a vector v with the new matrix by using R * M * v, the rotation will be applied last!

      In order to set the matrix to a rotation matrix without pre-multiplying the rotation transformation, use rotation().

      Reference: http://en.wikipedia.org

      Parameters:
      ang - the angle in radians
      x - the x component of the axis
      y - the y component of the axis
      z - the z component of the axis
      Returns:
      this
      See Also:
    • rotateLocalX

      public Matrix4x3d rotateLocalX(double ang, Matrix4x3d dest)
      Pre-multiply a rotation around the X axis to this matrix by rotating the given amount of radians about the X axis and store the result in dest.

      When used with a right-handed coordinate system, the produced rotation will rotate a vector counter-clockwise around the rotation axis, when viewing along the negative axis direction towards the origin. When used with a left-handed coordinate system, the rotation is clockwise.

      If M is this matrix and R the rotation matrix, then the new matrix will be R * M. So when transforming a vector v with the new matrix by using R * M * v, the rotation will be applied last!

      In order to set the matrix to a rotation matrix without pre-multiplying the rotation transformation, use rotationX().

      Reference: http://en.wikipedia.org

      Parameters:
      ang - the angle in radians to rotate about the X axis
      dest - will hold the result
      Returns:
      dest
      See Also:
    • rotateLocalX

      public Matrix4x3d rotateLocalX(double ang)
      Pre-multiply a rotation to this matrix by rotating the given amount of radians about the X axis.

      When used with a right-handed coordinate system, the produced rotation will rotate a vector counter-clockwise around the rotation axis, when viewing along the negative axis direction towards the origin. When used with a left-handed coordinate system, the rotation is clockwise.

      If M is this matrix and R the rotation matrix, then the new matrix will be R * M. So when transforming a vector v with the new matrix by using R * M * v, the rotation will be applied last!

      In order to set the matrix to a rotation matrix without pre-multiplying the rotation transformation, use rotationX().

      Reference: http://en.wikipedia.org

      Parameters:
      ang - the angle in radians to rotate about the X axis
      Returns:
      this
      See Also:
    • rotateLocalY

      public Matrix4x3d rotateLocalY(double ang, Matrix4x3d dest)
      Pre-multiply a rotation around the Y axis to this matrix by rotating the given amount of radians about the Y axis and store the result in dest.

      When used with a right-handed coordinate system, the produced rotation will rotate a vector counter-clockwise around the rotation axis, when viewing along the negative axis direction towards the origin. When used with a left-handed coordinate system, the rotation is clockwise.

      If M is this matrix and R the rotation matrix, then the new matrix will be R * M. So when transforming a vector v with the new matrix by using R * M * v, the rotation will be applied last!

      In order to set the matrix to a rotation matrix without pre-multiplying the rotation transformation, use rotationY().

      Reference: http://en.wikipedia.org

      Parameters:
      ang - the angle in radians to rotate about the Y axis
      dest - will hold the result
      Returns:
      dest
      See Also:
    • rotateLocalY

      public Matrix4x3d rotateLocalY(double ang)
      Pre-multiply a rotation to this matrix by rotating the given amount of radians about the Y axis.

      When used with a right-handed coordinate system, the produced rotation will rotate a vector counter-clockwise around the rotation axis, when viewing along the negative axis direction towards the origin. When used with a left-handed coordinate system, the rotation is clockwise.

      If M is this matrix and R the rotation matrix, then the new matrix will be R * M. So when transforming a vector v with the new matrix by using R * M * v, the rotation will be applied last!

      In order to set the matrix to a rotation matrix without pre-multiplying the rotation transformation, use rotationY().

      Reference: http://en.wikipedia.org

      Parameters:
      ang - the angle in radians to rotate about the Y axis
      Returns:
      this
      See Also:
    • rotateLocalZ

      public Matrix4x3d rotateLocalZ(double ang, Matrix4x3d dest)
      Pre-multiply a rotation around the Z axis to this matrix by rotating the given amount of radians about the Z axis and store the result in dest.

      When used with a right-handed coordinate system, the produced rotation will rotate a vector counter-clockwise around the rotation axis, when viewing along the negative axis direction towards the origin. When used with a left-handed coordinate system, the rotation is clockwise.

      If M is this matrix and R the rotation matrix, then the new matrix will be R * M. So when transforming a vector v with the new matrix by using R * M * v, the rotation will be applied last!

      In order to set the matrix to a rotation matrix without pre-multiplying the rotation transformation, use rotationZ().

      Reference: http://en.wikipedia.org

      Parameters:
      ang - the angle in radians to rotate about the Z axis
      dest - will hold the result
      Returns:
      dest
      See Also:
    • rotateLocalZ

      public Matrix4x3d rotateLocalZ(double ang)
      Pre-multiply a rotation to this matrix by rotating the given amount of radians about the Z axis.

      When used with a right-handed coordinate system, the produced rotation will rotate a vector counter-clockwise around the rotation axis, when viewing along the negative axis direction towards the origin. When used with a left-handed coordinate system, the rotation is clockwise.

      If M is this matrix and R the rotation matrix, then the new matrix will be R * M. So when transforming a vector v with the new matrix by using R * M * v, the rotation will be applied last!

      In order to set the matrix to a rotation matrix without pre-multiplying the rotation transformation, use rotationY().

      Reference: http://en.wikipedia.org

      Parameters:
      ang - the angle in radians to rotate about the Z axis
      Returns:
      this
      See Also:
    • translate

      public Matrix4x3d translate(Vector3dc offset)
      Apply a translation to this matrix by translating by the given number of units in x, y and z.

      If M is this matrix and T the translation matrix, then the new matrix will be M * T. So when transforming a vector v with the new matrix by using M * T * v, the translation will be applied first!

      In order to set the matrix to a translation transformation without post-multiplying it, use translation(Vector3dc).

      Parameters:
      offset - the number of units in x, y and z by which to translate
      Returns:
      this
      See Also:
    • translate

      public Matrix4x3d translate(Vector3dc offset, Matrix4x3d dest)
      Apply a translation to this matrix by translating by the given number of units in x, y and z and store the result in dest.

      If M is this matrix and T the translation matrix, then the new matrix will be M * T. So when transforming a vector v with the new matrix by using M * T * v, the translation will be applied first!

      In order to set the matrix to a translation transformation without post-multiplying it, use translation(Vector3dc).

      Specified by:
      translate in interface Matrix4x3dc
      Parameters:
      offset - the number of units in x, y and z by which to translate
      dest - will hold the result
      Returns:
      dest
      See Also:
    • translate

      public Matrix4x3d translate(Vector3fc offset)
      Apply a translation to this matrix by translating by the given number of units in x, y and z.

      If M is this matrix and T the translation matrix, then the new matrix will be M * T. So when transforming a vector v with the new matrix by using M * T * v, the translation will be applied first!

      In order to set the matrix to a translation transformation without post-multiplying it, use translation(Vector3fc).

      Parameters:
      offset - the number of units in x, y and z by which to translate
      Returns:
      this
      See Also:
    • translate

      public Matrix4x3d translate(Vector3fc offset, Matrix4x3d dest)
      Apply a translation to this matrix by translating by the given number of units in x, y and z and store the result in dest.

      If M is this matrix and T the translation matrix, then the new matrix will be M * T. So when transforming a vector v with the new matrix by using M * T * v, the translation will be applied first!

      In order to set the matrix to a translation transformation without post-multiplying it, use translation(Vector3fc).

      Specified by:
      translate in interface Matrix4x3dc
      Parameters:
      offset - the number of units in x, y and z by which to translate
      dest - will hold the result
      Returns:
      dest
      See Also:
    • translate

      public Matrix4x3d translate(double x, double y, double z, Matrix4x3d dest)
      Apply a translation to this matrix by translating by the given number of units in x, y and z and store the result in dest.

      If M is this matrix and T the translation matrix, then the new matrix will be M * T. So when transforming a vector v with the new matrix by using M * T * v, the translation will be applied first!

      In order to set the matrix to a translation transformation without post-multiplying it, use translation(double, double, double).

      Specified by:
      translate in interface Matrix4x3dc
      Parameters:
      x - the offset to translate in x
      y - the offset to translate in y
      z - the offset to translate in z
      dest - will hold the result
      Returns:
      dest
      See Also:
    • translate

      public Matrix4x3d translate(double x, double y, double z)
      Apply a translation to this matrix by translating by the given number of units in x, y and z.

      If M is this matrix and T the translation matrix, then the new matrix will be M * T. So when transforming a vector v with the new matrix by using M * T * v, the translation will be applied first!

      In order to set the matrix to a translation transformation without post-multiplying it, use translation(double, double, double).

      Parameters:
      x - the offset to translate in x
      y - the offset to translate in y
      z - the offset to translate in z
      Returns:
      this
      See Also:
    • translateLocal

      public Matrix4x3d translateLocal(Vector3fc offset)
      Pre-multiply a translation to this matrix by translating by the given number of units in x, y and z.

      If M is this matrix and T the translation matrix, then the new matrix will be T * M. So when transforming a vector v with the new matrix by using T * M * v, the translation will be applied last!

      In order to set the matrix to a translation transformation without pre-multiplying it, use translation(Vector3fc).

      Parameters:
      offset - the number of units in x, y and z by which to translate
      Returns:
      this
      See Also:
    • translateLocal

      public Matrix4x3d translateLocal(Vector3fc offset, Matrix4x3d dest)
      Pre-multiply a translation to this matrix by translating by the given number of units in x, y and z and store the result in dest.

      If M is this matrix and T the translation matrix, then the new matrix will be T * M. So when transforming a vector v with the new matrix by using T * M * v, the translation will be applied last!

      In order to set the matrix to a translation transformation without pre-multiplying it, use translation(Vector3fc).

      Specified by:
      translateLocal in interface Matrix4x3dc
      Parameters:
      offset - the number of units in x, y and z by which to translate
      dest - will hold the result
      Returns:
      dest
      See Also:
    • translateLocal

      public Matrix4x3d translateLocal(Vector3dc offset)
      Pre-multiply a translation to this matrix by translating by the given number of units in x, y and z.

      If M is this matrix and T the translation matrix, then the new matrix will be T * M. So when transforming a vector v with the new matrix by using T * M * v, the translation will be applied last!

      In order to set the matrix to a translation transformation without pre-multiplying it, use translation(Vector3dc).

      Parameters:
      offset - the number of units in x, y and z by which to translate
      Returns:
      this
      See Also:
    • translateLocal

      public Matrix4x3d translateLocal(Vector3dc offset, Matrix4x3d dest)
      Pre-multiply a translation to this matrix by translating by the given number of units in x, y and z and store the result in dest.

      If M is this matrix and T the translation matrix, then the new matrix will be T * M. So when transforming a vector v with the new matrix by using T * M * v, the translation will be applied last!

      In order to set the matrix to a translation transformation without pre-multiplying it, use translation(Vector3dc).

      Specified by:
      translateLocal in interface Matrix4x3dc
      Parameters:
      offset - the number of units in x, y and z by which to translate
      dest - will hold the result
      Returns:
      dest
      See Also:
    • translateLocal

      public Matrix4x3d translateLocal(double x, double y, double z, Matrix4x3d dest)
      Pre-multiply a translation to this matrix by translating by the given number of units in x, y and z and store the result in dest.

      If M is this matrix and T the translation matrix, then the new matrix will be T * M. So when transforming a vector v with the new matrix by using T * M * v, the translation will be applied last!

      In order to set the matrix to a translation transformation without pre-multiplying it, use translation(double, double, double).

      Specified by:
      translateLocal in interface Matrix4x3dc
      Parameters:
      x - the offset to translate in x
      y - the offset to translate in y
      z - the offset to translate in z
      dest - will hold the result
      Returns:
      dest
      See Also:
    • translateLocal

      public Matrix4x3d translateLocal(double x, double y, double z)
      Pre-multiply a translation to this matrix by translating by the given number of units in x, y and z.

      If M is this matrix and T the translation matrix, then the new matrix will be T * M. So when transforming a vector v with the new matrix by using T * M * v, the translation will be applied last!

      In order to set the matrix to a translation transformation without pre-multiplying it, use translation(double, double, double).

      Parameters:
      x - the offset to translate in x
      y - the offset to translate in y
      z - the offset to translate in z
      Returns:
      this
      See Also:
    • writeExternal

      public void writeExternal(ObjectOutput out) throws IOException
      Specified by:
      writeExternal in interface Externalizable
      Throws:
      IOException
    • readExternal

      public void readExternal(ObjectInput in) throws IOException
      Specified by:
      readExternal in interface Externalizable
      Throws:
      IOException
    • rotateX

      public Matrix4x3d rotateX(double ang, Matrix4x3d dest)
      Description copied from interface: Matrix4x3dc
      Apply rotation about the X axis to this matrix by rotating the given amount of radians and store the result in dest.

      When used with a right-handed coordinate system, the produced rotation will rotate a vector counter-clockwise around the rotation axis, when viewing along the negative axis direction towards the origin. When used with a left-handed coordinate system, the rotation is clockwise.

      If M is this matrix and R the rotation matrix, then the new matrix will be M * R. So when transforming a vector v with the new matrix by using M * R * v, the rotation will be applied first!

      Reference: http://en.wikipedia.org

      Specified by:
      rotateX in interface Matrix4x3dc
      Parameters:
      ang - the angle in radians
      dest - will hold the result
      Returns:
      dest
    • rotateX

      public Matrix4x3d rotateX(double ang)
      Apply rotation about the X axis to this matrix by rotating the given amount of radians.

      When used with a right-handed coordinate system, the produced rotation will rotate a vector counter-clockwise around the rotation axis, when viewing along the negative axis direction towards the origin. When used with a left-handed coordinate system, the rotation is clockwise.

      If M is this matrix and R the rotation matrix, then the new matrix will be M * R. So when transforming a vector v with the new matrix by using M * R * v, the rotation will be applied first!

      Reference: http://en.wikipedia.org

      Parameters:
      ang - the angle in radians
      Returns:
      this
    • rotateY

      public Matrix4x3d rotateY(double ang, Matrix4x3d dest)
      Description copied from interface: Matrix4x3dc
      Apply rotation about the Y axis to this matrix by rotating the given amount of radians and store the result in dest.

      When used with a right-handed coordinate system, the produced rotation will rotate a vector counter-clockwise around the rotation axis, when viewing along the negative axis direction towards the origin. When used with a left-handed coordinate system, the rotation is clockwise.

      If M is this matrix and R the rotation matrix, then the new matrix will be M * R. So when transforming a vector v with the new matrix by using M * R * v, the rotation will be applied first!

      Reference: http://en.wikipedia.org

      Specified by:
      rotateY in interface Matrix4x3dc
      Parameters:
      ang - the angle in radians
      dest - will hold the result
      Returns:
      dest
    • rotateY

      public Matrix4x3d rotateY(double ang)
      Apply rotation about the Y axis to this matrix by rotating the given amount of radians.

      When used with a right-handed coordinate system, the produced rotation will rotate a vector counter-clockwise around the rotation axis, when viewing along the negative axis direction towards the origin. When used with a left-handed coordinate system, the rotation is clockwise.

      If M is this matrix and R the rotation matrix, then the new matrix will be M * R. So when transforming a vector v with the new matrix by using M * R * v, the rotation will be applied first!

      Reference: http://en.wikipedia.org

      Parameters:
      ang - the angle in radians
      Returns:
      this
    • rotateZ

      public Matrix4x3d rotateZ(double ang, Matrix4x3d dest)
      Description copied from interface: Matrix4x3dc
      Apply rotation about the Z axis to this matrix by rotating the given amount of radians and store the result in dest.

      When used with a right-handed coordinate system, the produced rotation will rotate a vector counter-clockwise around the rotation axis, when viewing along the negative axis direction towards the origin. When used with a left-handed coordinate system, the rotation is clockwise.

      If M is this matrix and R the rotation matrix, then the new matrix will be M * R. So when transforming a vector v with the new matrix by using M * R * v, the rotation will be applied first!

      Reference: http://en.wikipedia.org

      Specified by:
      rotateZ in interface Matrix4x3dc
      Parameters:
      ang - the angle in radians
      dest - will hold the result
      Returns:
      dest
    • rotateZ

      public Matrix4x3d rotateZ(double ang)
      Apply rotation about the Z axis to this matrix by rotating the given amount of radians.

      When used with a right-handed coordinate system, the produced rotation will rotate a vector counter-clockwise around the rotation axis, when viewing along the negative axis direction towards the origin. When used with a left-handed coordinate system, the rotation is clockwise.

      If M is this matrix and R the rotation matrix, then the new matrix will be M * R. So when transforming a vector v with the new matrix by using M * R * v, the rotation will be applied first!

      Reference: http://en.wikipedia.org

      Parameters:
      ang - the angle in radians
      Returns:
      this
    • rotateXYZ

      public Matrix4x3d rotateXYZ(Vector3d angles)
      Apply rotation of angles.x radians about the X axis, followed by a rotation of angles.y radians about the Y axis and followed by a rotation of angles.z radians about the Z axis.

      When used with a right-handed coordinate system, the produced rotation will rotate a vector counter-clockwise around the rotation axis, when viewing along the negative axis direction towards the origin. When used with a left-handed coordinate system, the rotation is clockwise.

      If M is this matrix and R the rotation matrix, then the new matrix will be M * R. So when transforming a vector v with the new matrix by using M * R * v, the rotation will be applied first!

      This method is equivalent to calling: rotateX(angles.x).rotateY(angles.y).rotateZ(angles.z)

      Parameters:
      angles - the Euler angles
      Returns:
      this
    • rotateXYZ

      public Matrix4x3d rotateXYZ(double angleX, double angleY, double angleZ)
      Apply rotation of angleX radians about the X axis, followed by a rotation of angleY radians about the Y axis and followed by a rotation of angleZ radians about the Z axis.

      When used with a right-handed coordinate system, the produced rotation will rotate a vector counter-clockwise around the rotation axis, when viewing along the negative axis direction towards the origin. When used with a left-handed coordinate system, the rotation is clockwise.

      If M is this matrix and R the rotation matrix, then the new matrix will be M * R. So when transforming a vector v with the new matrix by using M * R * v, the rotation will be applied first!

      This method is equivalent to calling: rotateX(angleX).rotateY(angleY).rotateZ(angleZ)

      Parameters:
      angleX - the angle to rotate about X
      angleY - the angle to rotate about Y
      angleZ - the angle to rotate about Z
      Returns:
      this
    • rotateXYZ

      public Matrix4x3d rotateXYZ(double angleX, double angleY, double angleZ, Matrix4x3d dest)
      Description copied from interface: Matrix4x3dc
      Apply rotation of angleX radians about the X axis, followed by a rotation of angleY radians about the Y axis and followed by a rotation of angleZ radians about the Z axis and store the result in dest.

      When used with a right-handed coordinate system, the produced rotation will rotate a vector counter-clockwise around the rotation axis, when viewing along the negative axis direction towards the origin. When used with a left-handed coordinate system, the rotation is clockwise.

      If M is this matrix and R the rotation matrix, then the new matrix will be M * R. So when transforming a vector v with the new matrix by using M * R * v, the rotation will be applied first!

      This method is equivalent to calling: rotateX(angleX, dest).rotateY(angleY).rotateZ(angleZ)

      Specified by:
      rotateXYZ in interface Matrix4x3dc
      Parameters:
      angleX - the angle to rotate about X
      angleY - the angle to rotate about Y
      angleZ - the angle to rotate about Z
      dest - will hold the result
      Returns:
      dest
    • rotateZYX

      public Matrix4x3d rotateZYX(Vector3d angles)
      Apply rotation of angles.z radians about the Z axis, followed by a rotation of angles.y radians about the Y axis and followed by a rotation of angles.x radians about the X axis.

      When used with a right-handed coordinate system, the produced rotation will rotate a vector counter-clockwise around the rotation axis, when viewing along the negative axis direction towards the origin. When used with a left-handed coordinate system, the rotation is clockwise.

      If M is this matrix and R the rotation matrix, then the new matrix will be M * R. So when transforming a vector v with the new matrix by using M * R * v, the rotation will be applied first!

      This method is equivalent to calling: rotateZ(angles.z).rotateY(angles.y).rotateX(angles.x)

      Parameters:
      angles - the Euler angles
      Returns:
      this
    • rotateZYX

      public Matrix4x3d rotateZYX(double angleZ, double angleY, double angleX)
      Apply rotation of angleZ radians about the Z axis, followed by a rotation of angleY radians about the Y axis and followed by a rotation of angleX radians about the X axis.

      When used with a right-handed coordinate system, the produced rotation will rotate a vector counter-clockwise around the rotation axis, when viewing along the negative axis direction towards the origin. When used with a left-handed coordinate system, the rotation is clockwise.

      If M is this matrix and R the rotation matrix, then the new matrix will be M * R. So when transforming a vector v with the new matrix by using M * R * v, the rotation will be applied first!

      This method is equivalent to calling: rotateZ(angleZ).rotateY(angleY).rotateX(angleX)

      Parameters:
      angleZ - the angle to rotate about Z
      angleY - the angle to rotate about Y
      angleX - the angle to rotate about X
      Returns:
      this
    • rotateZYX

      public Matrix4x3d rotateZYX(double angleZ, double angleY, double angleX, Matrix4x3d dest)
      Description copied from interface: Matrix4x3dc
      Apply rotation of angleZ radians about the Z axis, followed by a rotation of angleY radians about the Y axis and followed by a rotation of angleX radians about the X axis and store the result in dest.

      When used with a right-handed coordinate system, the produced rotation will rotate a vector counter-clockwise around the rotation axis, when viewing along the negative axis direction towards the origin. When used with a left-handed coordinate system, the rotation is clockwise.

      If M is this matrix and R the rotation matrix, then the new matrix will be M * R. So when transforming a vector v with the new matrix by using M * R * v, the rotation will be applied first!

      This method is equivalent to calling: rotateZ(angleZ, dest).rotateY(angleY).rotateX(angleX)

      Specified by:
      rotateZYX in interface Matrix4x3dc
      Parameters:
      angleZ - the angle to rotate about Z
      angleY - the angle to rotate about Y
      angleX - the angle to rotate about X
      dest - will hold the result
      Returns:
      dest
    • rotateYXZ

      public Matrix4x3d rotateYXZ(Vector3d angles)
      Apply rotation of angles.y radians about the Y axis, followed by a rotation of angles.x radians about the X axis and followed by a rotation of angles.z radians about the Z axis.

      When used with a right-handed coordinate system, the produced rotation will rotate a vector counter-clockwise around the rotation axis, when viewing along the negative axis direction towards the origin. When used with a left-handed coordinate system, the rotation is clockwise.

      If M is this matrix and R the rotation matrix, then the new matrix will be M * R. So when transforming a vector v with the new matrix by using M * R * v, the rotation will be applied first!

      This method is equivalent to calling: rotateY(angles.y).rotateX(angles.x).rotateZ(angles.z)

      Parameters:
      angles - the Euler angles
      Returns:
      this
    • rotateYXZ

      public Matrix4x3d rotateYXZ(double angleY, double angleX, double angleZ)
      Apply rotation of angleY radians about the Y axis, followed by a rotation of angleX radians about the X axis and followed by a rotation of angleZ radians about the Z axis.

      When used with a right-handed coordinate system, the produced rotation will rotate a vector counter-clockwise around the rotation axis, when viewing along the negative axis direction towards the origin. When used with a left-handed coordinate system, the rotation is clockwise.

      If M is this matrix and R the rotation matrix, then the new matrix will be M * R. So when transforming a vector v with the new matrix by using M * R * v, the rotation will be applied first!

      This method is equivalent to calling: rotateY(angleY).rotateX(angleX).rotateZ(angleZ)

      Parameters:
      angleY - the angle to rotate about Y
      angleX - the angle to rotate about X
      angleZ - the angle to rotate about Z
      Returns:
      this
    • rotateYXZ

      public Matrix4x3d rotateYXZ(double angleY, double angleX, double angleZ, Matrix4x3d dest)
      Description copied from interface: Matrix4x3dc
      Apply rotation of angleY radians about the Y axis, followed by a rotation of angleX radians about the X axis and followed by a rotation of angleZ radians about the Z axis and store the result in dest.

      When used with a right-handed coordinate system, the produced rotation will rotate a vector counter-clockwise around the rotation axis, when viewing along the negative axis direction towards the origin. When used with a left-handed coordinate system, the rotation is clockwise.

      If M is this matrix and R the rotation matrix, then the new matrix will be M * R. So when transforming a vector v with the new matrix by using M * R * v, the rotation will be applied first!

      This method is equivalent to calling: rotateY(angleY, dest).rotateX(angleX).rotateZ(angleZ)

      Specified by:
      rotateYXZ in interface Matrix4x3dc
      Parameters:
      angleY - the angle to rotate about Y
      angleX - the angle to rotate about X
      angleZ - the angle to rotate about Z
      dest - will hold the result
      Returns:
      dest
    • rotation

      public Matrix4x3d rotation(AxisAngle4f angleAxis)
      Set this matrix to a rotation transformation using the given AxisAngle4f.

      When used with a right-handed coordinate system, the produced rotation will rotate a vector counter-clockwise around the rotation axis, when viewing along the negative axis direction towards the origin. When used with a left-handed coordinate system, the rotation is clockwise.

      The resulting matrix can be multiplied against another transformation matrix to obtain an additional rotation.

      In order to apply the rotation transformation to an existing transformation, use rotate() instead.

      Reference: http://en.wikipedia.org

      Parameters:
      angleAxis - the AxisAngle4f (needs to be normalized)
      Returns:
      this
      See Also:
    • rotation

      public Matrix4x3d rotation(AxisAngle4d angleAxis)
      Set this matrix to a rotation transformation using the given AxisAngle4d.

      When used with a right-handed coordinate system, the produced rotation will rotate a vector counter-clockwise around the rotation axis, when viewing along the negative axis direction towards the origin. When used with a left-handed coordinate system, the rotation is clockwise.

      The resulting matrix can be multiplied against another transformation matrix to obtain an additional rotation.

      In order to apply the rotation transformation to an existing transformation, use rotate() instead.

      Reference: http://en.wikipedia.org

      Parameters:
      angleAxis - the AxisAngle4d (needs to be normalized)
      Returns:
      this
      See Also:
    • rotation

      public Matrix4x3d rotation(Quaterniondc quat)
      Set this matrix to the rotation - and possibly scaling - transformation of the given Quaterniondc.

      When used with a right-handed coordinate system, the produced rotation will rotate a vector counter-clockwise around the rotation axis, when viewing along the negative axis direction towards the origin. When used with a left-handed coordinate system, the rotation is clockwise.

      The resulting matrix can be multiplied against another transformation matrix to obtain an additional rotation.

      In order to apply the rotation transformation to an existing transformation, use rotate() instead.

      Reference: http://en.wikipedia.org

      Parameters:
      quat - the Quaterniondc
      Returns:
      this
      See Also:
    • rotation

      public Matrix4x3d rotation(Quaternionfc quat)
      Set this matrix to the rotation - and possibly scaling - transformation of the given Quaternionfc.

      When used with a right-handed coordinate system, the produced rotation will rotate a vector counter-clockwise around the rotation axis, when viewing along the negative axis direction towards the origin. When used with a left-handed coordinate system, the rotation is clockwise.

      The resulting matrix can be multiplied against another transformation matrix to obtain an additional rotation.

      In order to apply the rotation transformation to an existing transformation, use rotate() instead.

      Reference: http://en.wikipedia.org

      Parameters:
      quat - the Quaternionfc
      Returns:
      this
      See Also:
    • translationRotateScale

      public Matrix4x3d translationRotateScale(double tx, double ty, double tz, double qx, double qy, double qz, double qw, double sx, double sy, double sz)
      Set this matrix to T * R * S, where T is a translation by the given (tx, ty, tz), R is a rotation transformation specified by the quaternion (qx, qy, qz, qw), and S is a scaling transformation which scales the three axes x, y and z by (sx, sy, sz).

      When transforming a vector by the resulting matrix the scaling transformation will be applied first, then the rotation and at last the translation.

      When used with a right-handed coordinate system, the produced rotation will rotate a vector counter-clockwise around the rotation axis, when viewing along the negative axis direction towards the origin. When used with a left-handed coordinate system, the rotation is clockwise.

      This method is equivalent to calling: translation(tx, ty, tz).rotate(quat).scale(sx, sy, sz)

      Parameters:
      tx - the number of units by which to translate the x-component
      ty - the number of units by which to translate the y-component
      tz - the number of units by which to translate the z-component
      qx - the x-coordinate of the vector part of the quaternion
      qy - the y-coordinate of the vector part of the quaternion
      qz - the z-coordinate of the vector part of the quaternion
      qw - the scalar part of the quaternion
      sx - the scaling factor for the x-axis
      sy - the scaling factor for the y-axis
      sz - the scaling factor for the z-axis
      Returns:
      this
      See Also:
    • translationRotateScale

      public Matrix4x3d translationRotateScale(Vector3fc translation, Quaternionfc quat, Vector3fc scale)
      Set this matrix to T * R * S, where T is the given translation, R is a rotation transformation specified by the given quaternion, and S is a scaling transformation which scales the axes by scale.

      When transforming a vector by the resulting matrix the scaling transformation will be applied first, then the rotation and at last the translation.

      When used with a right-handed coordinate system, the produced rotation will rotate a vector counter-clockwise around the rotation axis, when viewing along the negative axis direction towards the origin. When used with a left-handed coordinate system, the rotation is clockwise.

      This method is equivalent to calling: translation(translation).rotate(quat).scale(scale)

      Parameters:
      translation - the translation
      quat - the quaternion representing a rotation
      scale - the scaling factors
      Returns:
      this
      See Also:
    • translationRotateScale

      public Matrix4x3d translationRotateScale(Vector3dc translation, Quaterniondc quat, Vector3dc scale)
      Set this matrix to T * R * S, where T is the given translation, R is a rotation transformation specified by the given quaternion, and S is a scaling transformation which scales the axes by scale.

      When transforming a vector by the resulting matrix the scaling transformation will be applied first, then the rotation and at last the translation.

      When used with a right-handed coordinate system, the produced rotation will rotate a vector counter-clockwise around the rotation axis, when viewing along the negative axis direction towards the origin. When used with a left-handed coordinate system, the rotation is clockwise.

      This method is equivalent to calling: translation(translation).rotate(quat).scale(scale)

      Parameters:
      translation - the translation
      quat - the quaternion representing a rotation
      scale - the scaling factors
      Returns:
      this
      See Also:
    • translationRotateScaleMul

      public Matrix4x3d translationRotateScaleMul(double tx, double ty, double tz, double qx, double qy, double qz, double qw, double sx, double sy, double sz, Matrix4x3dc m)
      Set this matrix to T * R * S * M, where T is a translation by the given (tx, ty, tz), R is a rotation transformation specified by the quaternion (qx, qy, qz, qw), S is a scaling transformation which scales the three axes x, y and z by (sx, sy, sz).

      When transforming a vector by the resulting matrix the transformation described by M will be applied first, then the scaling, then rotation and at last the translation.

      When used with a right-handed coordinate system, the produced rotation will rotate a vector counter-clockwise around the rotation axis, when viewing along the negative axis direction towards the origin. When used with a left-handed coordinate system, the rotation is clockwise.

      This method is equivalent to calling: translation(tx, ty, tz).rotate(quat).scale(sx, sy, sz).mul(m)

      Parameters:
      tx - the number of units by which to translate the x-component
      ty - the number of units by which to translate the y-component
      tz - the number of units by which to translate the z-component
      qx - the x-coordinate of the vector part of the quaternion
      qy - the y-coordinate of the vector part of the quaternion
      qz - the z-coordinate of the vector part of the quaternion
      qw - the scalar part of the quaternion
      sx - the scaling factor for the x-axis
      sy - the scaling factor for the y-axis
      sz - the scaling factor for the z-axis
      m - the matrix to multiply by
      Returns:
      this
      See Also:
    • translationRotateScaleMul

      public Matrix4x3d translationRotateScaleMul(Vector3dc translation, Quaterniondc quat, Vector3dc scale, Matrix4x3dc m)
      Set this matrix to T * R * S * M, where T is the given translation, R is a rotation transformation specified by the given quaternion, S is a scaling transformation which scales the axes by scale.

      When transforming a vector by the resulting matrix the transformation described by M will be applied first, then the scaling, then rotation and at last the translation.

      When used with a right-handed coordinate system, the produced rotation will rotate a vector counter-clockwise around the rotation axis, when viewing along the negative axis direction towards the origin. When used with a left-handed coordinate system, the rotation is clockwise.

      This method is equivalent to calling: translation(translation).rotate(quat).scale(scale).mul(m)

      Parameters:
      translation - the translation
      quat - the quaternion representing a rotation
      scale - the scaling factors
      m - the matrix to multiply by
      Returns:
      this
      See Also:
    • translationRotate

      public Matrix4x3d translationRotate(double tx, double ty, double tz, Quaterniondc quat)
      Set this matrix to T * R, where T is a translation by the given (tx, ty, tz) and R is a rotation transformation specified by the given quaternion.

      When transforming a vector by the resulting matrix the rotation transformation will be applied first and then the translation.

      When used with a right-handed coordinate system, the produced rotation will rotate a vector counter-clockwise around the rotation axis, when viewing along the negative axis direction towards the origin. When used with a left-handed coordinate system, the rotation is clockwise.

      This method is equivalent to calling: translation(tx, ty, tz).rotate(quat)

      Parameters:
      tx - the number of units by which to translate the x-component
      ty - the number of units by which to translate the y-component
      tz - the number of units by which to translate the z-component
      quat - the quaternion representing a rotation
      Returns:
      this
      See Also:
    • translationRotate

      public Matrix4x3d translationRotate(double tx, double ty, double tz, double qx, double qy, double qz, double qw)
      Set this matrix to T * R, where T is a translation by the given (tx, ty, tz) and R is a rotation - and possibly scaling - transformation specified by the quaternion (qx, qy, qz, qw).

      When transforming a vector by the resulting matrix the rotation - and possibly scaling - transformation will be applied first and then the translation.

      When used with a right-handed coordinate system, the produced rotation will rotate a vector counter-clockwise around the rotation axis, when viewing along the negative axis direction towards the origin. When used with a left-handed coordinate system, the rotation is clockwise.

      This method is equivalent to calling: translation(tx, ty, tz).rotate(quat)

      Parameters:
      tx - the number of units by which to translate the x-component
      ty - the number of units by which to translate the y-component
      tz - the number of units by which to translate the z-component
      qx - the x-coordinate of the vector part of the quaternion
      qy - the y-coordinate of the vector part of the quaternion
      qz - the z-coordinate of the vector part of the quaternion
      qw - the scalar part of the quaternion
      Returns:
      this
      See Also:
    • translationRotate

      public Matrix4x3d translationRotate(Vector3dc translation, Quaterniondc quat)
      Set this matrix to T * R, where T is the given translation and R is a rotation transformation specified by the given quaternion.

      When transforming a vector by the resulting matrix the scaling transformation will be applied first, then the rotation and at last the translation.

      When used with a right-handed coordinate system, the produced rotation will rotate a vector counter-clockwise around the rotation axis, when viewing along the negative axis direction towards the origin. When used with a left-handed coordinate system, the rotation is clockwise.

      This method is equivalent to calling: translation(translation).rotate(quat)

      Parameters:
      translation - the translation
      quat - the quaternion representing a rotation
      Returns:
      this
      See Also:
    • translationRotateMul

      public Matrix4x3d translationRotateMul(double tx, double ty, double tz, Quaternionfc quat, Matrix4x3dc mat)
      Set this matrix to T * R * M, where T is a translation by the given (tx, ty, tz), R is a rotation - and possibly scaling - transformation specified by the given quaternion and M is the given matrix mat.

      When transforming a vector by the resulting matrix the transformation described by M will be applied first, then the scaling, then rotation and at last the translation.

      When used with a right-handed coordinate system, the produced rotation will rotate a vector counter-clockwise around the rotation axis, when viewing along the negative axis direction towards the origin. When used with a left-handed coordinate system, the rotation is clockwise.

      This method is equivalent to calling: translation(tx, ty, tz).rotate(quat).mul(mat)

      Parameters:
      tx - the number of units by which to translate the x-component
      ty - the number of units by which to translate the y-component
      tz - the number of units by which to translate the z-component
      quat - the quaternion representing a rotation
      mat - the matrix to multiply with
      Returns:
      this
      See Also:
    • translationRotateMul

      public Matrix4x3d translationRotateMul(double tx, double ty, double tz, double qx, double qy, double qz, double qw, Matrix4x3dc mat)
      Set this matrix to T * R * M, where T is a translation by the given (tx, ty, tz), R is a rotation - and possibly scaling - transformation specified by the quaternion (qx, qy, qz, qw) and M is the given matrix mat

      When transforming a vector by the resulting matrix the transformation described by M will be applied first, then the scaling, then rotation and at last the translation.

      When used with a right-handed coordinate system, the produced rotation will rotate a vector counter-clockwise around the rotation axis, when viewing along the negative axis direction towards the origin. When used with a left-handed coordinate system, the rotation is clockwise.

      This method is equivalent to calling: translation(tx, ty, tz).rotate(quat).mul(mat)

      Parameters:
      tx - the number of units by which to translate the x-component
      ty - the number of units by which to translate the y-component
      tz - the number of units by which to translate the z-component
      qx - the x-coordinate of the vector part of the quaternion
      qy - the y-coordinate of the vector part of the quaternion
      qz - the z-coordinate of the vector part of the quaternion
      qw - the scalar part of the quaternion
      mat - the matrix to multiply with
      Returns:
      this
      See Also:
    • translationRotateInvert

      public Matrix4x3d translationRotateInvert(double tx, double ty, double tz, double qx, double qy, double qz, double qw)
      Set this matrix to (T * R)-1, where T is a translation by the given (tx, ty, tz) and R is a rotation transformation specified by the quaternion (qx, qy, qz, qw).

      This method is equivalent to calling: translationRotate(...).invert()

      Parameters:
      tx - the number of units by which to translate the x-component
      ty - the number of units by which to translate the y-component
      tz - the number of units by which to translate the z-component
      qx - the x-coordinate of the vector part of the quaternion
      qy - the y-coordinate of the vector part of the quaternion
      qz - the z-coordinate of the vector part of the quaternion
      qw - the scalar part of the quaternion
      Returns:
      this
      See Also:
    • translationRotateInvert

      public Matrix4x3d translationRotateInvert(Vector3dc translation, Quaterniondc quat)
      Set this matrix to (T * R)-1, where T is the given translation and R is a rotation transformation specified by the given quaternion.

      This method is equivalent to calling: translationRotate(...).invert()

      Parameters:
      translation - the translation
      quat - the quaternion representing a rotation
      Returns:
      this
      See Also:
    • rotate

      public Matrix4x3d rotate(Quaterniondc quat, Matrix4x3d dest)
      Apply the rotation - and possibly scaling - transformation of the given Quaterniondc to this matrix and store the result in dest.

      When used with a right-handed coordinate system, the produced rotation will rotate a vector counter-clockwise around the rotation axis, when viewing along the negative axis direction towards the origin. When used with a left-handed coordinate system, the rotation is clockwise.

      If M is this matrix and Q the rotation matrix obtained from the given quaternion, then the new matrix will be M * Q. So when transforming a vector v with the new matrix by using M * Q * v, the quaternion rotation will be applied first!

      In order to set the matrix to a rotation transformation without post-multiplying, use rotation(Quaterniondc).

      Reference: http://en.wikipedia.org

      Specified by:
      rotate in interface Matrix4x3dc
      Parameters:
      quat - the Quaterniondc
      dest - will hold the result
      Returns:
      dest
      See Also:
    • rotate

      public Matrix4x3d rotate(Quaternionfc quat, Matrix4x3d dest)
      Apply the rotation - and possibly scaling - transformation of the given Quaternionfc to this matrix and store the result in dest.

      When used with a right-handed coordinate system, the produced rotation will rotate a vector counter-clockwise around the rotation axis, when viewing along the negative axis direction towards the origin. When used with a left-handed coordinate system, the rotation is clockwise.

      If M is this matrix and Q the rotation matrix obtained from the given quaternion, then the new matrix will be M * Q. So when transforming a vector v with the new matrix by using M * Q * v, the quaternion rotation will be applied first!

      In order to set the matrix to a rotation transformation without post-multiplying, use rotation(Quaternionfc).

      Reference: http://en.wikipedia.org

      Specified by:
      rotate in interface Matrix4x3dc
      Parameters:
      quat - the Quaternionfc
      dest - will hold the result
      Returns:
      dest
      See Also:
    • rotate

      public Matrix4x3d rotate(Quaterniondc quat)
      Apply the rotation - and possibly scaling - transformation of the given Quaterniondc to this matrix.

      When used with a right-handed coordinate system, the produced rotation will rotate a vector counter-clockwise around the rotation axis, when viewing along the negative axis direction towards the origin. When used with a left-handed coordinate system, the rotation is clockwise.

      If M is this matrix and Q the rotation matrix obtained from the given quaternion, then the new matrix will be M * Q. So when transforming a vector v with the new matrix by using M * Q * v, the quaternion rotation will be applied first!

      In order to set the matrix to a rotation transformation without post-multiplying, use rotation(Quaterniondc).

      Reference: http://en.wikipedia.org

      Parameters:
      quat - the Quaterniondc
      Returns:
      this
      See Also:
    • rotate

      public Matrix4x3d rotate(Quaternionfc quat)
      Apply the rotation - and possibly scaling - transformation of the given Quaternionfc to this matrix.

      When used with a right-handed coordinate system, the produced rotation will rotate a vector counter-clockwise around the rotation axis, when viewing along the negative axis direction towards the origin. When used with a left-handed coordinate system, the rotation is clockwise.

      If M is this matrix and Q the rotation matrix obtained from the given quaternion, then the new matrix will be M * Q. So when transforming a vector v with the new matrix by using M * Q * v, the quaternion rotation will be applied first!

      In order to set the matrix to a rotation transformation without post-multiplying, use rotation(Quaternionfc).

      Reference: http://en.wikipedia.org

      Parameters:
      quat - the Quaternionfc
      Returns:
      this
      See Also:
    • rotateTranslation

      public Matrix4x3d rotateTranslation(Quaterniondc quat, Matrix4x3d dest)
      Apply the rotation - and possibly scaling - transformation of the given Quaterniondc to this matrix, which is assumed to only contain a translation, and store the result in dest.

      This method assumes this to only contain a translation.

      When used with a right-handed coordinate system, the produced rotation will rotate a vector counter-clockwise around the rotation axis, when viewing along the negative axis direction towards the origin. When used with a left-handed coordinate system, the rotation is clockwise.

      If M is this matrix and Q the rotation matrix obtained from the given quaternion, then the new matrix will be M * Q. So when transforming a vector v with the new matrix by using M * Q * v, the quaternion rotation will be applied first!

      In order to set the matrix to a rotation transformation without post-multiplying, use rotation(Quaterniondc).

      Reference: http://en.wikipedia.org

      Specified by:
      rotateTranslation in interface Matrix4x3dc
      Parameters:
      quat - the Quaterniondc
      dest - will hold the result
      Returns:
      dest
      See Also:
    • rotateTranslation

      public Matrix4x3d rotateTranslation(Quaternionfc quat, Matrix4x3d dest)
      Apply the rotation - and possibly scaling - transformation of the given Quaternionfc to this matrix, which is assumed to only contain a translation, and store the result in dest.

      This method assumes this to only contain a translation.

      When used with a right-handed coordinate system, the produced rotation will rotate a vector counter-clockwise around the rotation axis, when viewing along the negative axis direction towards the origin. When used with a left-handed coordinate system, the rotation is clockwise.

      If M is this matrix and Q the rotation matrix obtained from the given quaternion, then the new matrix will be M * Q. So when transforming a vector v with the new matrix by using M * Q * v, the quaternion rotation will be applied first!

      In order to set the matrix to a rotation transformation without post-multiplying, use rotation(Quaternionfc).

      Reference: http://en.wikipedia.org

      Specified by:
      rotateTranslation in interface Matrix4x3dc
      Parameters:
      quat - the Quaternionfc
      dest - will hold the result
      Returns:
      dest
      See Also:
    • rotateLocal

      public Matrix4x3d rotateLocal(Quaterniondc quat, Matrix4x3d dest)
      Pre-multiply the rotation - and possibly scaling - transformation of the given Quaterniondc to this matrix and store the result in dest.

      When used with a right-handed coordinate system, the produced rotation will rotate a vector counter-clockwise around the rotation axis, when viewing along the negative axis direction towards the origin. When used with a left-handed coordinate system, the rotation is clockwise.

      If M is this matrix and Q the rotation matrix obtained from the given quaternion, then the new matrix will be Q * M. So when transforming a vector v with the new matrix by using Q * M * v, the quaternion rotation will be applied last!

      In order to set the matrix to a rotation transformation without pre-multiplying, use rotation(Quaterniondc).

      Reference: http://en.wikipedia.org

      Specified by:
      rotateLocal in interface Matrix4x3dc
      Parameters:
      quat - the Quaterniondc
      dest - will hold the result
      Returns:
      dest
      See Also:
    • rotateLocal

      public Matrix4x3d rotateLocal(Quaterniondc quat)
      Pre-multiply the rotation transformation of the given Quaterniondc to this matrix.

      When used with a right-handed coordinate system, the produced rotation will rotate a vector counter-clockwise around the rotation axis, when viewing along the negative axis direction towards the origin. When used with a left-handed coordinate system, the rotation is clockwise.

      If M is this matrix and Q the rotation matrix obtained from the given quaternion, then the new matrix will be Q * M. So when transforming a vector v with the new matrix by using Q * M * v, the quaternion rotation will be applied last!

      In order to set the matrix to a rotation transformation without pre-multiplying, use rotation(Quaterniondc).

      Reference: http://en.wikipedia.org

      Parameters:
      quat - the Quaterniondc
      Returns:
      this
      See Also:
    • rotateLocal

      public Matrix4x3d rotateLocal(Quaternionfc quat, Matrix4x3d dest)
      Pre-multiply the rotation - and possibly scaling - transformation of the given Quaternionfc to this matrix and store the result in dest.

      When used with a right-handed coordinate system, the produced rotation will rotate a vector counter-clockwise around the rotation axis, when viewing along the negative axis direction towards the origin. When used with a left-handed coordinate system, the rotation is clockwise.

      If M is this matrix and Q the rotation matrix obtained from the given quaternion, then the new matrix will be Q * M. So when transforming a vector v with the new matrix by using Q * M * v, the quaternion rotation will be applied last!

      In order to set the matrix to a rotation transformation without pre-multiplying, use rotation(Quaternionfc).

      Reference: http://en.wikipedia.org

      Specified by:
      rotateLocal in interface Matrix4x3dc
      Parameters:
      quat - the Quaternionfc
      dest - will hold the result
      Returns:
      dest
      See Also:
    • rotateLocal

      public Matrix4x3d rotateLocal(Quaternionfc quat)
      Pre-multiply the rotation - and possibly scaling - transformation of the given Quaternionfc to this matrix.

      When used with a right-handed coordinate system, the produced rotation will rotate a vector counter-clockwise around the rotation axis, when viewing along the negative axis direction towards the origin. When used with a left-handed coordinate system, the rotation is clockwise.

      If M is this matrix and Q the rotation matrix obtained from the given quaternion, then the new matrix will be Q * M. So when transforming a vector v with the new matrix by using Q * M * v, the quaternion rotation will be applied last!

      In order to set the matrix to a rotation transformation without pre-multiplying, use rotation(Quaternionfc).

      Reference: http://en.wikipedia.org

      Parameters:
      quat - the Quaternionfc
      Returns:
      this
      See Also:
    • rotate

      public Matrix4x3d rotate(AxisAngle4f axisAngle)
      Apply a rotation transformation, rotating about the given AxisAngle4f, to this matrix.

      The axis described by the axis vector needs to be a unit vector.

      When used with a right-handed coordinate system, the produced rotation will rotate a vector counter-clockwise around the rotation axis, when viewing along the negative axis direction towards the origin. When used with a left-handed coordinate system, the rotation is clockwise.

      If M is this matrix and A the rotation matrix obtained from the given AxisAngle4f, then the new matrix will be M * A. So when transforming a vector v with the new matrix by using M * A * v, the AxisAngle4f rotation will be applied first!

      In order to set the matrix to a rotation transformation without post-multiplying, use rotation(AxisAngle4f).

      Reference: http://en.wikipedia.org

      Parameters:
      axisAngle - the AxisAngle4f (needs to be normalized)
      Returns:
      this
      See Also:
    • rotate

      public Matrix4x3d rotate(AxisAngle4f axisAngle, Matrix4x3d dest)
      Apply a rotation transformation, rotating about the given AxisAngle4f and store the result in dest.

      The axis described by the axis vector needs to be a unit vector.

      When used with a right-handed coordinate system, the produced rotation will rotate a vector counter-clockwise around the rotation axis, when viewing along the negative axis direction towards the origin. When used with a left-handed coordinate system, the rotation is clockwise.

      If M is this matrix and A the rotation matrix obtained from the given AxisAngle4f, then the new matrix will be M * A. So when transforming a vector v with the new matrix by using M * A * v, the AxisAngle4f rotation will be applied first!

      In order to set the matrix to a rotation transformation without post-multiplying, use rotation(AxisAngle4f).

      Reference: http://en.wikipedia.org

      Specified by:
      rotate in interface Matrix4x3dc
      Parameters:
      axisAngle - the AxisAngle4f (needs to be normalized)
      dest - will hold the result
      Returns:
      dest
      See Also:
    • rotate

      public Matrix4x3d rotate(AxisAngle4d axisAngle)
      Apply a rotation transformation, rotating about the given AxisAngle4d, to this matrix.

      When used with a right-handed coordinate system, the produced rotation will rotate a vector counter-clockwise around the rotation axis, when viewing along the negative axis direction towards the origin. When used with a left-handed coordinate system, the rotation is clockwise.

      If M is this matrix and A the rotation matrix obtained from the given AxisAngle4d, then the new matrix will be M * A. So when transforming a vector v with the new matrix by using M * A * v, the AxisAngle4d rotation will be applied first!

      In order to set the matrix to a rotation transformation without post-multiplying, use rotation(AxisAngle4d).

      Reference: http://en.wikipedia.org

      Parameters:
      axisAngle - the AxisAngle4d (needs to be normalized)
      Returns:
      this
      See Also:
    • rotate

      public Matrix4x3d rotate(AxisAngle4d axisAngle, Matrix4x3d dest)
      Apply a rotation transformation, rotating about the given AxisAngle4d and store the result in dest.

      When used with a right-handed coordinate system, the produced rotation will rotate a vector counter-clockwise around the rotation axis, when viewing along the negative axis direction towards the origin. When used with a left-handed coordinate system, the rotation is clockwise.

      If M is this matrix and A the rotation matrix obtained from the given AxisAngle4d, then the new matrix will be M * A. So when transforming a vector v with the new matrix by using M * A * v, the AxisAngle4d rotation will be applied first!

      In order to set the matrix to a rotation transformation without post-multiplying, use rotation(AxisAngle4d).

      Reference: http://en.wikipedia.org

      Specified by:
      rotate in interface Matrix4x3dc
      Parameters:
      axisAngle - the AxisAngle4d (needs to be normalized)
      dest - will hold the result
      Returns:
      dest
      See Also:
    • rotate

      public Matrix4x3d rotate(double angle, Vector3dc axis)
      Apply a rotation transformation, rotating the given radians about the specified axis, to this matrix.

      When used with a right-handed coordinate system, the produced rotation will rotate a vector counter-clockwise around the rotation axis, when viewing along the negative axis direction towards the origin. When used with a left-handed coordinate system, the rotation is clockwise.

      If M is this matrix and A the rotation matrix obtained from the given angle and axis, then the new matrix will be M * A. So when transforming a vector v with the new matrix by using M * A * v, the axis-angle rotation will be applied first!

      In order to set the matrix to a rotation transformation without post-multiplying, use rotation(double, Vector3dc).

      Reference: http://en.wikipedia.org

      Parameters:
      angle - the angle in radians
      axis - the rotation axis (needs to be normalized)
      Returns:
      this
      See Also:
    • rotate

      public Matrix4x3d rotate(double angle, Vector3dc axis, Matrix4x3d dest)
      Apply a rotation transformation, rotating the given radians about the specified axis and store the result in dest.

      When used with a right-handed coordinate system, the produced rotation will rotate a vector counter-clockwise around the rotation axis, when viewing along the negative axis direction towards the origin. When used with a left-handed coordinate system, the rotation is clockwise.

      If M is this matrix and A the rotation matrix obtained from the given angle and axis, then the new matrix will be M * A. So when transforming a vector v with the new matrix by using M * A * v, the axis-angle rotation will be applied first!

      In order to set the matrix to a rotation transformation without post-multiplying, use rotation(double, Vector3dc).

      Reference: http://en.wikipedia.org

      Specified by:
      rotate in interface Matrix4x3dc
      Parameters:
      angle - the angle in radians
      axis - the rotation axis (needs to be normalized)
      dest - will hold the result
      Returns:
      dest
      See Also:
    • rotate

      public Matrix4x3d rotate(double angle, Vector3fc axis)
      Apply a rotation transformation, rotating the given radians about the specified axis, to this matrix.

      When used with a right-handed coordinate system, the produced rotation will rotate a vector counter-clockwise around the rotation axis, when viewing along the negative axis direction towards the origin. When used with a left-handed coordinate system, the rotation is clockwise.

      If M is this matrix and A the rotation matrix obtained from the given angle and axis, then the new matrix will be M * A. So when transforming a vector v with the new matrix by using M * A * v, the axis-angle rotation will be applied first!

      In order to set the matrix to a rotation transformation without post-multiplying, use rotation(double, Vector3fc).

      Reference: http://en.wikipedia.org

      Parameters:
      angle - the angle in radians
      axis - the rotation axis (needs to be normalized)
      Returns:
      this
      See Also:
    • rotate

      public Matrix4x3d rotate(double angle, Vector3fc axis, Matrix4x3d dest)
      Apply a rotation transformation, rotating the given radians about the specified axis and store the result in dest.

      When used with a right-handed coordinate system, the produced rotation will rotate a vector counter-clockwise around the rotation axis, when viewing along the negative axis direction towards the origin. When used with a left-handed coordinate system, the rotation is clockwise.

      If M is this matrix and A the rotation matrix obtained from the given angle and axis, then the new matrix will be M * A. So when transforming a vector v with the new matrix by using M * A * v, the axis-angle rotation will be applied first!

      In order to set the matrix to a rotation transformation without post-multiplying, use rotation(double, Vector3fc).

      Reference: http://en.wikipedia.org

      Specified by:
      rotate in interface Matrix4x3dc
      Parameters:
      angle - the angle in radians
      axis - the rotation axis (needs to be normalized)
      dest - will hold the result
      Returns:
      dest
      See Also:
    • getRow

      public Vector4d getRow(int row, Vector4d dest) throws IndexOutOfBoundsException
      Description copied from interface: Matrix4x3dc
      Get the row at the given row index, starting with 0.
      Specified by:
      getRow in interface Matrix4x3dc
      Parameters:
      row - the row index in [0..2]
      dest - will hold the row components
      Returns:
      the passed in destination
      Throws:
      IndexOutOfBoundsException - if row is not in [0..2]
    • setRow

      public Matrix4x3d setRow(int row, Vector4dc src) throws IndexOutOfBoundsException
      Set the row at the given row index, starting with 0.
      Parameters:
      row - the row index in [0..2]
      src - the row components to set
      Returns:
      this
      Throws:
      IndexOutOfBoundsException - if row is not in [0..2]
    • getColumn

      public Vector3d getColumn(int column, Vector3d dest) throws IndexOutOfBoundsException
      Description copied from interface: Matrix4x3dc
      Get the column at the given column index, starting with 0.
      Specified by:
      getColumn in interface Matrix4x3dc
      Parameters:
      column - the column index in [0..3]
      dest - will hold the column components
      Returns:
      the passed in destination
      Throws:
      IndexOutOfBoundsException - if column is not in [0..3]
    • setColumn

      public Matrix4x3d setColumn(int column, Vector3dc src) throws IndexOutOfBoundsException
      Set the column at the given column index, starting with 0.
      Parameters:
      column - the column index in [0..3]
      src - the column components to set
      Returns:
      this
      Throws:
      IndexOutOfBoundsException - if column is not in [0..3]
    • normal

      public Matrix4x3d normal()
      Compute a normal matrix from the left 3x3 submatrix of this and store it into the left 3x3 submatrix of this. All other values of this will be set to identity.

      The normal matrix of m is the transpose of the inverse of m.

      Please note that, if this is an orthogonal matrix or a matrix whose columns are orthogonal vectors, then this method need not be invoked, since in that case this itself is its normal matrix. In that case, use set3x3(Matrix4x3dc) to set a given Matrix4x3d to only the left 3x3 submatrix of this matrix.

      Returns:
      this
      See Also:
    • normal

      public Matrix4x3d normal(Matrix4x3d dest)
      Compute a normal matrix from the left 3x3 submatrix of this and store it into the left 3x3 submatrix of dest. All other values of dest will be set to identity.

      The normal matrix of m is the transpose of the inverse of m.

      Please note that, if this is an orthogonal matrix or a matrix whose columns are orthogonal vectors, then this method need not be invoked, since in that case this itself is its normal matrix. In that case, use set3x3(Matrix4x3dc) to set a given Matrix4x3d to only the left 3x3 submatrix of a given matrix.

      Specified by:
      normal in interface Matrix4x3dc
      Parameters:
      dest - will hold the result
      Returns:
      dest
      See Also:
    • normal

      public Matrix3d normal(Matrix3d dest)
      Description copied from interface: Matrix4x3dc
      Compute a normal matrix from the left 3x3 submatrix of this and store it into dest.

      The normal matrix of m is the transpose of the inverse of m.

      Specified by:
      normal in interface Matrix4x3dc
      Parameters:
      dest - will hold the result
      Returns:
      dest
    • cofactor3x3

      public Matrix4x3d cofactor3x3()
      Compute the cofactor matrix of the left 3x3 submatrix of this.

      The cofactor matrix can be used instead of normal() to transform normals when the orientation of the normals with respect to the surface should be preserved.

      Returns:
      this
    • cofactor3x3

      public Matrix3d cofactor3x3(Matrix3d dest)
      Compute the cofactor matrix of the left 3x3 submatrix of this and store it into dest.

      The cofactor matrix can be used instead of normal(Matrix3d) to transform normals when the orientation of the normals with respect to the surface should be preserved.

      Specified by:
      cofactor3x3 in interface Matrix4x3dc
      Parameters:
      dest - will hold the result
      Returns:
      dest
    • cofactor3x3

      public Matrix4x3d cofactor3x3(Matrix4x3d dest)
      Compute the cofactor matrix of the left 3x3 submatrix of this and store it into dest. All other values of dest will be set to identity.

      The cofactor matrix can be used instead of normal(Matrix4x3d) to transform normals when the orientation of the normals with respect to the surface should be preserved.

      Specified by:
      cofactor3x3 in interface Matrix4x3dc
      Parameters:
      dest - will hold the result
      Returns:
      dest
    • normalize3x3

      public Matrix4x3d normalize3x3()
      Normalize the left 3x3 submatrix of this matrix.

      The resulting matrix will map unit vectors to unit vectors, though a pair of orthogonal input unit vectors need not be mapped to a pair of orthogonal output vectors if the original matrix was not orthogonal itself (i.e. had skewing).

      Returns:
      this
    • normalize3x3

      public Matrix4x3d normalize3x3(Matrix4x3d dest)
      Description copied from interface: Matrix4x3dc
      Normalize the left 3x3 submatrix of this matrix and store the result in dest.

      The resulting matrix will map unit vectors to unit vectors, though a pair of orthogonal input unit vectors need not be mapped to a pair of orthogonal output vectors if the original matrix was not orthogonal itself (i.e. had skewing).

      Specified by:
      normalize3x3 in interface Matrix4x3dc
      Parameters:
      dest - will hold the result
      Returns:
      dest
    • normalize3x3

      public Matrix3d normalize3x3(Matrix3d dest)
      Description copied from interface: Matrix4x3dc
      Normalize the left 3x3 submatrix of this matrix and store the result in dest.

      The resulting matrix will map unit vectors to unit vectors, though a pair of orthogonal input unit vectors need not be mapped to a pair of orthogonal output vectors if the original matrix was not orthogonal itself (i.e. had skewing).

      Specified by:
      normalize3x3 in interface Matrix4x3dc
      Parameters:
      dest - will hold the result
      Returns:
      dest
    • reflect

      public Matrix4x3d reflect(double a, double b, double c, double d, Matrix4x3d dest)
      Description copied from interface: Matrix4x3dc
      Apply a mirror/reflection transformation to this matrix that reflects about the given plane specified via the equation x*a + y*b + z*c + d = 0 and store the result in dest.

      The vector (a, b, c) must be a unit vector.

      If M is this matrix and R the reflection matrix, then the new matrix will be M * R. So when transforming a vector v with the new matrix by using M * R * v, the reflection will be applied first!

      Reference: msdn.microsoft.com

      Specified by:
      reflect in interface Matrix4x3dc
      Parameters:
      a - the x factor in the plane equation
      b - the y factor in the plane equation
      c - the z factor in the plane equation
      d - the constant in the plane equation
      dest - will hold the result
      Returns:
      dest
    • reflect

      public Matrix4x3d reflect(double a, double b, double c, double d)
      Apply a mirror/reflection transformation to this matrix that reflects about the given plane specified via the equation x*a + y*b + z*c + d = 0.

      The vector (a, b, c) must be a unit vector.

      If M is this matrix and R the reflection matrix, then the new matrix will be M * R. So when transforming a vector v with the new matrix by using M * R * v, the reflection will be applied first!

      Reference: msdn.microsoft.com

      Parameters:
      a - the x factor in the plane equation
      b - the y factor in the plane equation
      c - the z factor in the plane equation
      d - the constant in the plane equation
      Returns:
      this
    • reflect

      public Matrix4x3d reflect(double nx, double ny, double nz, double px, double py, double pz)
      Apply a mirror/reflection transformation to this matrix that reflects about the given plane specified via the plane normal and a point on the plane.

      If M is this matrix and R the reflection matrix, then the new matrix will be M * R. So when transforming a vector v with the new matrix by using M * R * v, the reflection will be applied first!

      Parameters:
      nx - the x-coordinate of the plane normal
      ny - the y-coordinate of the plane normal
      nz - the z-coordinate of the plane normal
      px - the x-coordinate of a point on the plane
      py - the y-coordinate of a point on the plane
      pz - the z-coordinate of a point on the plane
      Returns:
      this
    • reflect

      public Matrix4x3d reflect(double nx, double ny, double nz, double px, double py, double pz, Matrix4x3d dest)
      Description copied from interface: Matrix4x3dc
      Apply a mirror/reflection transformation to this matrix that reflects about the given plane specified via the plane normal and a point on the plane, and store the result in dest.

      If M is this matrix and R the reflection matrix, then the new matrix will be M * R. So when transforming a vector v with the new matrix by using M * R * v, the reflection will be applied first!

      Specified by:
      reflect in interface Matrix4x3dc
      Parameters:
      nx - the x-coordinate of the plane normal
      ny - the y-coordinate of the plane normal
      nz - the z-coordinate of the plane normal
      px - the x-coordinate of a point on the plane
      py - the y-coordinate of a point on the plane
      pz - the z-coordinate of a point on the plane
      dest - will hold the result
      Returns:
      dest
    • reflect

      public Matrix4x3d reflect(Vector3dc normal, Vector3dc point)
      Apply a mirror/reflection transformation to this matrix that reflects about the given plane specified via the plane normal and a point on the plane.

      If M is this matrix and R the reflection matrix, then the new matrix will be M * R. So when transforming a vector v with the new matrix by using M * R * v, the reflection will be applied first!

      Parameters:
      normal - the plane normal
      point - a point on the plane
      Returns:
      this
    • reflect

      public Matrix4x3d reflect(Quaterniondc orientation, Vector3dc point)
      Apply a mirror/reflection transformation to this matrix that reflects about a plane specified via the plane orientation and a point on the plane.

      This method can be used to build a reflection transformation based on the orientation of a mirror object in the scene. It is assumed that the default mirror plane's normal is (0, 0, 1). So, if the given Quaterniondc is the identity (does not apply any additional rotation), the reflection plane will be z=0, offset by the given point.

      If M is this matrix and R the reflection matrix, then the new matrix will be M * R. So when transforming a vector v with the new matrix by using M * R * v, the reflection will be applied first!

      Parameters:
      orientation - the plane orientation relative to an implied normal vector of (0, 0, 1)
      point - a point on the plane
      Returns:
      this
    • reflect

      public Matrix4x3d reflect(Quaterniondc orientation, Vector3dc point, Matrix4x3d dest)
      Description copied from interface: Matrix4x3dc
      Apply a mirror/reflection transformation to this matrix that reflects about a plane specified via the plane orientation and a point on the plane, and store the result in dest.

      This method can be used to build a reflection transformation based on the orientation of a mirror object in the scene. It is assumed that the default mirror plane's normal is (0, 0, 1). So, if the given Quaterniondc is the identity (does not apply any additional rotation), the reflection plane will be z=0, offset by the given point.

      If M is this matrix and R the reflection matrix, then the new matrix will be M * R. So when transforming a vector v with the new matrix by using M * R * v, the reflection will be applied first!

      Specified by:
      reflect in interface Matrix4x3dc
      Parameters:
      orientation - the plane orientation
      point - a point on the plane
      dest - will hold the result
      Returns:
      dest
    • reflect

      public Matrix4x3d reflect(Vector3dc normal, Vector3dc point, Matrix4x3d dest)
      Description copied from interface: Matrix4x3dc
      Apply a mirror/reflection transformation to this matrix that reflects about the given plane specified via the plane normal and a point on the plane, and store the result in dest.

      If M is this matrix and R the reflection matrix, then the new matrix will be M * R. So when transforming a vector v with the new matrix by using M * R * v, the reflection will be applied first!

      Specified by:
      reflect in interface Matrix4x3dc
      Parameters:
      normal - the plane normal
      point - a point on the plane
      dest - will hold the result
      Returns:
      dest
    • reflection

      public Matrix4x3d reflection(double a, double b, double c, double d)
      Set this matrix to a mirror/reflection transformation that reflects about the given plane specified via the equation x*a + y*b + z*c + d = 0.

      The vector (a, b, c) must be a unit vector.

      Reference: msdn.microsoft.com

      Parameters:
      a - the x factor in the plane equation
      b - the y factor in the plane equation
      c - the z factor in the plane equation
      d - the constant in the plane equation
      Returns:
      this
    • reflection

      public Matrix4x3d reflection(double nx, double ny, double nz, double px, double py, double pz)
      Set this matrix to a mirror/reflection transformation that reflects about the given plane specified via the plane normal and a point on the plane.
      Parameters:
      nx - the x-coordinate of the plane normal
      ny - the y-coordinate of the plane normal
      nz - the z-coordinate of the plane normal
      px - the x-coordinate of a point on the plane
      py - the y-coordinate of a point on the plane
      pz - the z-coordinate of a point on the plane
      Returns:
      this
    • reflection

      public Matrix4x3d reflection(Vector3dc normal, Vector3dc point)
      Set this matrix to a mirror/reflection transformation that reflects about the given plane specified via the plane normal and a point on the plane.
      Parameters:
      normal - the plane normal
      point - a point on the plane
      Returns:
      this
    • reflection

      public Matrix4x3d reflection(Quaterniondc orientation, Vector3dc point)
      Set this matrix to a mirror/reflection transformation that reflects about a plane specified via the plane orientation and a point on the plane.

      This method can be used to build a reflection transformation based on the orientation of a mirror object in the scene. It is assumed that the default mirror plane's normal is (0, 0, 1). So, if the given Quaterniondc is the identity (does not apply any additional rotation), the reflection plane will be z=0, offset by the given point.

      Parameters:
      orientation - the plane orientation
      point - a point on the plane
      Returns:
      this
    • ortho

      public Matrix4x3d ortho(double left, double right, double bottom, double top, double zNear, double zFar, boolean zZeroToOne, Matrix4x3d dest)
      Apply an orthographic projection transformation for a right-handed coordinate system using the given NDC z range to this matrix and store the result in dest.

      If M is this matrix and O the orthographic projection matrix, then the new matrix will be M * O. So when transforming a vector v with the new matrix by using M * O * v, the orthographic projection transformation will be applied first!

      In order to set the matrix to an orthographic projection without post-multiplying it, use setOrtho().

      Reference: http://www.songho.ca

      Specified by:
      ortho in interface Matrix4x3dc
      Parameters:
      left - the distance from the center to the left frustum edge
      right - the distance from the center to the right frustum edge
      bottom - the distance from the center to the bottom frustum edge
      top - the distance from the center to the top frustum edge
      zNear - near clipping plane distance
      zFar - far clipping plane distance
      zZeroToOne - whether to use Vulkan's and Direct3D's NDC z range of [0..+1] when true or whether to use OpenGL's NDC z range of [-1..+1] when false
      dest - will hold the result
      Returns:
      dest
      See Also:
    • ortho

      public Matrix4x3d ortho(double left, double right, double bottom, double top, double zNear, double zFar, Matrix4x3d dest)
      Apply an orthographic projection transformation for a right-handed coordinate system using OpenGL's NDC z range of [-1..+1] to this matrix and store the result in dest.

      If M is this matrix and O the orthographic projection matrix, then the new matrix will be M * O. So when transforming a vector v with the new matrix by using M * O * v, the orthographic projection transformation will be applied first!

      In order to set the matrix to an orthographic projection without post-multiplying it, use setOrtho().

      Reference: http://www.songho.ca

      Specified by:
      ortho in interface Matrix4x3dc
      Parameters:
      left - the distance from the center to the left frustum edge
      right - the distance from the center to the right frustum edge
      bottom - the distance from the center to the bottom frustum edge
      top - the distance from the center to the top frustum edge
      zNear - near clipping plane distance
      zFar - far clipping plane distance
      dest - will hold the result
      Returns:
      dest
      See Also:
    • ortho

      public Matrix4x3d ortho(double left, double right, double bottom, double top, double zNear, double zFar, boolean zZeroToOne)
      Apply an orthographic projection transformation for a right-handed coordinate system using the given NDC z range to this matrix.

      If M is this matrix and O the orthographic projection matrix, then the new matrix will be M * O. So when transforming a vector v with the new matrix by using M * O * v, the orthographic projection transformation will be applied first!

      In order to set the matrix to an orthographic projection without post-multiplying it, use setOrtho().

      Reference: http://www.songho.ca

      Parameters:
      left - the distance from the center to the left frustum edge
      right - the distance from the center to the right frustum edge
      bottom - the distance from the center to the bottom frustum edge
      top - the distance from the center to the top frustum edge
      zNear - near clipping plane distance
      zFar - far clipping plane distance
      zZeroToOne - whether to use Vulkan's and Direct3D's NDC z range of [0..+1] when true or whether to use OpenGL's NDC z range of [-1..+1] when false
      Returns:
      this
      See Also:
    • ortho

      public Matrix4x3d ortho(double left, double right, double bottom, double top, double zNear, double zFar)
      Apply an orthographic projection transformation for a right-handed coordinate system using OpenGL's NDC z range of [-1..+1] to this matrix.

      If M is this matrix and O the orthographic projection matrix, then the new matrix will be M * O. So when transforming a vector v with the new matrix by using M * O * v, the orthographic projection transformation will be applied first!

      In order to set the matrix to an orthographic projection without post-multiplying it, use setOrtho().

      Reference: http://www.songho.ca

      Parameters:
      left - the distance from the center to the left frustum edge
      right - the distance from the center to the right frustum edge
      bottom - the distance from the center to the bottom frustum edge
      top - the distance from the center to the top frustum edge
      zNear - near clipping plane distance
      zFar - far clipping plane distance
      Returns:
      this
      See Also:
    • orthoLH

      public Matrix4x3d orthoLH(double left, double right, double bottom, double top, double zNear, double zFar, boolean zZeroToOne, Matrix4x3d dest)
      Apply an orthographic projection transformation for a left-handed coordiante system using the given NDC z range to this matrix and store the result in dest.

      If M is this matrix and O the orthographic projection matrix, then the new matrix will be M * O. So when transforming a vector v with the new matrix by using M * O * v, the orthographic projection transformation will be applied first!

      In order to set the matrix to an orthographic projection without post-multiplying it, use setOrthoLH().

      Reference: http://www.songho.ca

      Specified by:
      orthoLH in interface Matrix4x3dc
      Parameters:
      left - the distance from the center to the left frustum edge
      right - the distance from the center to the right frustum edge
      bottom - the distance from the center to the bottom frustum edge
      top - the distance from the center to the top frustum edge
      zNear - near clipping plane distance
      zFar - far clipping plane distance
      zZeroToOne - whether to use Vulkan's and Direct3D's NDC z range of [0..+1] when true or whether to use OpenGL's NDC z range of [-1..+1] when false
      dest - will hold the result
      Returns:
      dest
      See Also:
    • orthoLH

      public Matrix4x3d orthoLH(double left, double right, double bottom, double top, double zNear, double zFar, Matrix4x3d dest)
      Apply an orthographic projection transformation for a left-handed coordiante system using OpenGL's NDC z range of [-1..+1] to this matrix and store the result in dest.

      If M is this matrix and O the orthographic projection matrix, then the new matrix will be M * O. So when transforming a vector v with the new matrix by using M * O * v, the orthographic projection transformation will be applied first!

      In order to set the matrix to an orthographic projection without post-multiplying it, use setOrthoLH().

      Reference: http://www.songho.ca

      Specified by:
      orthoLH in interface Matrix4x3dc
      Parameters:
      left - the distance from the center to the left frustum edge
      right - the distance from the center to the right frustum edge
      bottom - the distance from the center to the bottom frustum edge
      top - the distance from the center to the top frustum edge
      zNear - near clipping plane distance
      zFar - far clipping plane distance
      dest - will hold the result
      Returns:
      dest
      See Also:
    • orthoLH

      public Matrix4x3d orthoLH(double left, double right, double bottom, double top, double zNear, double zFar, boolean zZeroToOne)
      Apply an orthographic projection transformation for a left-handed coordiante system using the given NDC z range to this matrix.

      If M is this matrix and O the orthographic projection matrix, then the new matrix will be M * O. So when transforming a vector v with the new matrix by using M * O * v, the orthographic projection transformation will be applied first!

      In order to set the matrix to an orthographic projection without post-multiplying it, use setOrthoLH().

      Reference: http://www.songho.ca

      Parameters:
      left - the distance from the center to the left frustum edge
      right - the distance from the center to the right frustum edge
      bottom - the distance from the center to the bottom frustum edge
      top - the distance from the center to the top frustum edge
      zNear - near clipping plane distance
      zFar - far clipping plane distance
      zZeroToOne - whether to use Vulkan's and Direct3D's NDC z range of [0..+1] when true or whether to use OpenGL's NDC z range of [-1..+1] when false
      Returns:
      this
      See Also:
    • orthoLH

      public Matrix4x3d orthoLH(double left, double right, double bottom, double top, double zNear, double zFar)
      Apply an orthographic projection transformation for a left-handed coordiante system using OpenGL's NDC z range of [-1..+1] to this matrix.

      If M is this matrix and O the orthographic projection matrix, then the new matrix will be M * O. So when transforming a vector v with the new matrix by using M * O * v, the orthographic projection transformation will be applied first!

      In order to set the matrix to an orthographic projection without post-multiplying it, use setOrthoLH().

      Reference: http://www.songho.ca

      Parameters:
      left - the distance from the center to the left frustum edge
      right - the distance from the center to the right frustum edge
      bottom - the distance from the center to the bottom frustum edge
      top - the distance from the center to the top frustum edge
      zNear - near clipping plane distance
      zFar - far clipping plane distance
      Returns:
      this
      See Also:
    • setOrtho

      public Matrix4x3d setOrtho(double left, double right, double bottom, double top, double zNear, double zFar, boolean zZeroToOne)
      Set this matrix to be an orthographic projection transformation for a right-handed coordinate system using the given NDC z range.

      In order to apply the orthographic projection to an already existing transformation, use ortho().

      Reference: http://www.songho.ca

      Parameters:
      left - the distance from the center to the left frustum edge
      right - the distance from the center to the right frustum edge
      bottom - the distance from the center to the bottom frustum edge
      top - the distance from the center to the top frustum edge
      zNear - near clipping plane distance
      zFar - far clipping plane distance
      zZeroToOne - whether to use Vulkan's and Direct3D's NDC z range of [0..+1] when true or whether to use OpenGL's NDC z range of [-1..+1] when false
      Returns:
      this
      See Also:
    • setOrtho

      public Matrix4x3d setOrtho(double left, double right, double bottom, double top, double zNear, double zFar)
      Set this matrix to be an orthographic projection transformation for a right-handed coordinate system using OpenGL's NDC z range of [-1..+1].

      In order to apply the orthographic projection to an already existing transformation, use ortho().

      Reference: http://www.songho.ca

      Parameters:
      left - the distance from the center to the left frustum edge
      right - the distance from the center to the right frustum edge
      bottom - the distance from the center to the bottom frustum edge
      top - the distance from the center to the top frustum edge
      zNear - near clipping plane distance
      zFar - far clipping plane distance
      Returns:
      this
      See Also:
    • setOrthoLH

      public Matrix4x3d setOrthoLH(double left, double right, double bottom, double top, double zNear, double zFar, boolean zZeroToOne)
      Set this matrix to be an orthographic projection transformation for a left-handed coordinate system using the given NDC z range.

      In order to apply the orthographic projection to an already existing transformation, use orthoLH().

      Reference: http://www.songho.ca

      Parameters:
      left - the distance from the center to the left frustum edge
      right - the distance from the center to the right frustum edge
      bottom - the distance from the center to the bottom frustum edge
      top - the distance from the center to the top frustum edge
      zNear - near clipping plane distance
      zFar - far clipping plane distance
      zZeroToOne - whether to use Vulkan's and Direct3D's NDC z range of [0..+1] when true or whether to use OpenGL's NDC z range of [-1..+1] when false
      Returns:
      this
      See Also:
    • setOrthoLH

      public Matrix4x3d setOrthoLH(double left, double right, double bottom, double top, double zNear, double zFar)
      Set this matrix to be an orthographic projection transformation for a left-handed coordinate system using OpenGL's NDC z range of [-1..+1].

      In order to apply the orthographic projection to an already existing transformation, use orthoLH().

      Reference: http://www.songho.ca

      Parameters:
      left - the distance from the center to the left frustum edge
      right - the distance from the center to the right frustum edge
      bottom - the distance from the center to the bottom frustum edge
      top - the distance from the center to the top frustum edge
      zNear - near clipping plane distance
      zFar - far clipping plane distance
      Returns:
      this
      See Also:
    • orthoSymmetric

      public Matrix4x3d orthoSymmetric(double width, double height, double zNear, double zFar, boolean zZeroToOne, Matrix4x3d dest)
      Apply a symmetric orthographic projection transformation for a right-handed coordinate system using the given NDC z range to this matrix and store the result in dest.

      This method is equivalent to calling ortho() with left=-width/2, right=+width/2, bottom=-height/2 and top=+height/2.

      If M is this matrix and O the orthographic projection matrix, then the new matrix will be M * O. So when transforming a vector v with the new matrix by using M * O * v, the orthographic projection transformation will be applied first!

      In order to set the matrix to a symmetric orthographic projection without post-multiplying it, use setOrthoSymmetric().

      Reference: http://www.songho.ca

      Specified by:
      orthoSymmetric in interface Matrix4x3dc
      Parameters:
      width - the distance between the right and left frustum edges
      height - the distance between the top and bottom frustum edges
      zNear - near clipping plane distance
      zFar - far clipping plane distance
      dest - will hold the result
      zZeroToOne - whether to use Vulkan's and Direct3D's NDC z range of [0..+1] when true or whether to use OpenGL's NDC z range of [-1..+1] when false
      Returns:
      dest
      See Also:
    • orthoSymmetric

      public Matrix4x3d orthoSymmetric(double width, double height, double zNear, double zFar, Matrix4x3d dest)
      Apply a symmetric orthographic projection transformation for a right-handed coordinate system using OpenGL's NDC z range of [-1..+1] to this matrix and store the result in dest.

      This method is equivalent to calling ortho() with left=-width/2, right=+width/2, bottom=-height/2 and top=+height/2.

      If M is this matrix and O the orthographic projection matrix, then the new matrix will be M * O. So when transforming a vector v with the new matrix by using M * O * v, the orthographic projection transformation will be applied first!

      In order to set the matrix to a symmetric orthographic projection without post-multiplying it, use setOrthoSymmetric().

      Reference: http://www.songho.ca

      Specified by:
      orthoSymmetric in interface Matrix4x3dc
      Parameters:
      width - the distance between the right and left frustum edges
      height - the distance between the top and bottom frustum edges
      zNear - near clipping plane distance
      zFar - far clipping plane distance
      dest - will hold the result
      Returns:
      dest
      See Also:
    • orthoSymmetric

      public Matrix4x3d orthoSymmetric(double width, double height, double zNear, double zFar, boolean zZeroToOne)
      Apply a symmetric orthographic projection transformation for a right-handed coordinate system using the given NDC z range to this matrix.

      This method is equivalent to calling ortho() with left=-width/2, right=+width/2, bottom=-height/2 and top=+height/2.

      If M is this matrix and O the orthographic projection matrix, then the new matrix will be M * O. So when transforming a vector v with the new matrix by using M * O * v, the orthographic projection transformation will be applied first!

      In order to set the matrix to a symmetric orthographic projection without post-multiplying it, use setOrthoSymmetric().

      Reference: http://www.songho.ca

      Parameters:
      width - the distance between the right and left frustum edges
      height - the distance between the top and bottom frustum edges
      zNear - near clipping plane distance
      zFar - far clipping plane distance
      zZeroToOne - whether to use Vulkan's and Direct3D's NDC z range of [0..+1] when true or whether to use OpenGL's NDC z range of [-1..+1] when false
      Returns:
      this
      See Also:
    • orthoSymmetric

      public Matrix4x3d orthoSymmetric(double width, double height, double zNear, double zFar)
      Apply a symmetric orthographic projection transformation for a right-handed coordinate system using OpenGL's NDC z range of [-1..+1] to this matrix.

      This method is equivalent to calling ortho() with left=-width/2, right=+width/2, bottom=-height/2 and top=+height/2.

      If M is this matrix and O the orthographic projection matrix, then the new matrix will be M * O. So when transforming a vector v with the new matrix by using M * O * v, the orthographic projection transformation will be applied first!

      In order to set the matrix to a symmetric orthographic projection without post-multiplying it, use setOrthoSymmetric().

      Reference: http://www.songho.ca

      Parameters:
      width - the distance between the right and left frustum edges
      height - the distance between the top and bottom frustum edges
      zNear - near clipping plane distance
      zFar - far clipping plane distance
      Returns:
      this
      See Also:
    • orthoSymmetricLH

      public Matrix4x3d orthoSymmetricLH(double width, double height, double zNear, double zFar, boolean zZeroToOne, Matrix4x3d dest)
      Apply a symmetric orthographic projection transformation for a left-handed coordinate system using the given NDC z range to this matrix and store the result in dest.

      This method is equivalent to calling orthoLH() with left=-width/2, right=+width/2, bottom=-height/2 and top=+height/2.

      If M is this matrix and O the orthographic projection matrix, then the new matrix will be M * O. So when transforming a vector v with the new matrix by using M * O * v, the orthographic projection transformation will be applied first!

      In order to set the matrix to a symmetric orthographic projection without post-multiplying it, use setOrthoSymmetricLH().

      Reference: http://www.songho.ca

      Specified by:
      orthoSymmetricLH in interface Matrix4x3dc
      Parameters:
      width - the distance between the right and left frustum edges
      height - the distance between the top and bottom frustum edges
      zNear - near clipping plane distance
      zFar - far clipping plane distance
      dest - will hold the result
      zZeroToOne - whether to use Vulkan's and Direct3D's NDC z range of [0..+1] when true or whether to use OpenGL's NDC z range of [-1..+1] when false
      Returns:
      dest
      See Also:
    • orthoSymmetricLH

      public Matrix4x3d orthoSymmetricLH(double width, double height, double zNear, double zFar, Matrix4x3d dest)
      Apply a symmetric orthographic projection transformation for a left-handed coordinate system using OpenGL's NDC z range of [-1..+1] to this matrix and store the result in dest.

      This method is equivalent to calling orthoLH() with left=-width/2, right=+width/2, bottom=-height/2 and top=+height/2.

      If M is this matrix and O the orthographic projection matrix, then the new matrix will be M * O. So when transforming a vector v with the new matrix by using M * O * v, the orthographic projection transformation will be applied first!

      In order to set the matrix to a symmetric orthographic projection without post-multiplying it, use setOrthoSymmetricLH().

      Reference: http://www.songho.ca

      Specified by:
      orthoSymmetricLH in interface Matrix4x3dc
      Parameters:
      width - the distance between the right and left frustum edges
      height - the distance between the top and bottom frustum edges
      zNear - near clipping plane distance
      zFar - far clipping plane distance
      dest - will hold the result
      Returns:
      dest
      See Also:
    • orthoSymmetricLH

      public Matrix4x3d orthoSymmetricLH(double width, double height, double zNear, double zFar, boolean zZeroToOne)
      Apply a symmetric orthographic projection transformation for a left-handed coordinate system using the given NDC z range to this matrix.

      This method is equivalent to calling orthoLH() with left=-width/2, right=+width/2, bottom=-height/2 and top=+height/2.

      If M is this matrix and O the orthographic projection matrix, then the new matrix will be M * O. So when transforming a vector v with the new matrix by using M * O * v, the orthographic projection transformation will be applied first!

      In order to set the matrix to a symmetric orthographic projection without post-multiplying it, use setOrthoSymmetricLH().

      Reference: http://www.songho.ca

      Parameters:
      width - the distance between the right and left frustum edges
      height - the distance between the top and bottom frustum edges
      zNear - near clipping plane distance
      zFar - far clipping plane distance
      zZeroToOne - whether to use Vulkan's and Direct3D's NDC z range of [0..+1] when true or whether to use OpenGL's NDC z range of [-1..+1] when false
      Returns:
      this
      See Also:
    • orthoSymmetricLH

      public Matrix4x3d orthoSymmetricLH(double width, double height, double zNear, double zFar)
      Apply a symmetric orthographic projection transformation for a left-handed coordinate system using OpenGL's NDC z range of [-1..+1] to this matrix.

      This method is equivalent to calling orthoLH() with left=-width/2, right=+width/2, bottom=-height/2 and top=+height/2.

      If M is this matrix and O the orthographic projection matrix, then the new matrix will be M * O. So when transforming a vector v with the new matrix by using M * O * v, the orthographic projection transformation will be applied first!

      In order to set the matrix to a symmetric orthographic projection without post-multiplying it, use setOrthoSymmetricLH().

      Reference: http://www.songho.ca

      Parameters:
      width - the distance between the right and left frustum edges
      height - the distance between the top and bottom frustum edges
      zNear - near clipping plane distance
      zFar - far clipping plane distance
      Returns:
      this
      See Also:
    • setOrthoSymmetric

      public Matrix4x3d setOrthoSymmetric(double width, double height, double zNear, double zFar, boolean zZeroToOne)
      Set this matrix to be a symmetric orthographic projection transformation for a right-handed coordinate system using the given NDC z range.

      This method is equivalent to calling setOrtho() with left=-width/2, right=+width/2, bottom=-height/2 and top=+height/2.

      In order to apply the symmetric orthographic projection to an already existing transformation, use orthoSymmetric().

      Reference: http://www.songho.ca

      Parameters:
      width - the distance between the right and left frustum edges
      height - the distance between the top and bottom frustum edges
      zNear - near clipping plane distance
      zFar - far clipping plane distance
      zZeroToOne - whether to use Vulkan's and Direct3D's NDC z range of [0..+1] when true or whether to use OpenGL's NDC z range of [-1..+1] when false
      Returns:
      this
      See Also:
    • setOrthoSymmetric

      public Matrix4x3d setOrthoSymmetric(double width, double height, double zNear, double zFar)
      Set this matrix to be a symmetric orthographic projection transformation for a right-handed coordinate system using OpenGL's NDC z range of [-1..+1].

      This method is equivalent to calling setOrtho() with left=-width/2, right=+width/2, bottom=-height/2 and top=+height/2.

      In order to apply the symmetric orthographic projection to an already existing transformation, use orthoSymmetric().

      Reference: http://www.songho.ca

      Parameters:
      width - the distance between the right and left frustum edges
      height - the distance between the top and bottom frustum edges
      zNear - near clipping plane distance
      zFar - far clipping plane distance
      Returns:
      this
      See Also:
    • setOrthoSymmetricLH

      public Matrix4x3d setOrthoSymmetricLH(double width, double height, double zNear, double zFar, boolean zZeroToOne)
      Set this matrix to be a symmetric orthographic projection transformation for a left-handed coordinate system using the given NDC z range.

      This method is equivalent to calling setOrtho() with left=-width/2, right=+width/2, bottom=-height/2 and top=+height/2.

      In order to apply the symmetric orthographic projection to an already existing transformation, use orthoSymmetricLH().

      Reference: http://www.songho.ca

      Parameters:
      width - the distance between the right and left frustum edges
      height - the distance between the top and bottom frustum edges
      zNear - near clipping plane distance
      zFar - far clipping plane distance
      zZeroToOne - whether to use Vulkan's and Direct3D's NDC z range of [0..+1] when true or whether to use OpenGL's NDC z range of [-1..+1] when false
      Returns:
      this
      See Also:
    • setOrthoSymmetricLH

      public Matrix4x3d setOrthoSymmetricLH(double width, double height, double zNear, double zFar)
      Set this matrix to be a symmetric orthographic projection transformation for a left-handed coordinate system using OpenGL's NDC z range of [-1..+1].

      This method is equivalent to calling setOrthoLH() with left=-width/2, right=+width/2, bottom=-height/2 and top=+height/2.

      In order to apply the symmetric orthographic projection to an already existing transformation, use orthoSymmetricLH().

      Reference: http://www.songho.ca

      Parameters:
      width - the distance between the right and left frustum edges
      height - the distance between the top and bottom frustum edges
      zNear - near clipping plane distance
      zFar - far clipping plane distance
      Returns:
      this
      See Also:
    • ortho2D

      public Matrix4x3d ortho2D(double left, double right, double bottom, double top, Matrix4x3d dest)
      Apply an orthographic projection transformation for a right-handed coordinate system to this matrix and store the result in dest.

      This method is equivalent to calling ortho() with zNear=-1 and zFar=+1.

      If M is this matrix and O the orthographic projection matrix, then the new matrix will be M * O. So when transforming a vector v with the new matrix by using M * O * v, the orthographic projection transformation will be applied first!

      In order to set the matrix to an orthographic projection without post-multiplying it, use setOrtho().

      Reference: http://www.songho.ca

      Specified by:
      ortho2D in interface Matrix4x3dc
      Parameters:
      left - the distance from the center to the left frustum edge
      right - the distance from the center to the right frustum edge
      bottom - the distance from the center to the bottom frustum edge
      top - the distance from the center to the top frustum edge
      dest - will hold the result
      Returns:
      dest
      See Also:
    • ortho2D

      public Matrix4x3d ortho2D(double left, double right, double bottom, double top)
      Apply an orthographic projection transformation for a right-handed coordinate system to this matrix.

      This method is equivalent to calling ortho() with zNear=-1 and zFar=+1.

      If M is this matrix and O the orthographic projection matrix, then the new matrix will be M * O. So when transforming a vector v with the new matrix by using M * O * v, the orthographic projection transformation will be applied first!

      In order to set the matrix to an orthographic projection without post-multiplying it, use setOrtho2D().

      Reference: http://www.songho.ca

      Parameters:
      left - the distance from the center to the left frustum edge
      right - the distance from the center to the right frustum edge
      bottom - the distance from the center to the bottom frustum edge
      top - the distance from the center to the top frustum edge
      Returns:
      this
      See Also:
    • ortho2DLH

      public Matrix4x3d ortho2DLH(double left, double right, double bottom, double top, Matrix4x3d dest)
      Apply an orthographic projection transformation for a left-handed coordinate system to this matrix and store the result in dest.

      This method is equivalent to calling orthoLH() with zNear=-1 and zFar=+1.

      If M is this matrix and O the orthographic projection matrix, then the new matrix will be M * O. So when transforming a vector v with the new matrix by using M * O * v, the orthographic projection transformation will be applied first!

      In order to set the matrix to an orthographic projection without post-multiplying it, use setOrthoLH().

      Reference: http://www.songho.ca

      Specified by:
      ortho2DLH in interface Matrix4x3dc
      Parameters:
      left - the distance from the center to the left frustum edge
      right - the distance from the center to the right frustum edge
      bottom - the distance from the center to the bottom frustum edge
      top - the distance from the center to the top frustum edge
      dest - will hold the result
      Returns:
      dest
      See Also:
    • ortho2DLH

      public Matrix4x3d ortho2DLH(double left, double right, double bottom, double top)
      Apply an orthographic projection transformation for a left-handed coordinate system to this matrix.

      This method is equivalent to calling orthoLH() with zNear=-1 and zFar=+1.

      If M is this matrix and O the orthographic projection matrix, then the new matrix will be M * O. So when transforming a vector v with the new matrix by using M * O * v, the orthographic projection transformation will be applied first!

      In order to set the matrix to an orthographic projection without post-multiplying it, use setOrtho2DLH().

      Reference: http://www.songho.ca

      Parameters:
      left - the distance from the center to the left frustum edge
      right - the distance from the center to the right frustum edge
      bottom - the distance from the center to the bottom frustum edge
      top - the distance from the center to the top frustum edge
      Returns:
      this
      See Also:
    • setOrtho2D

      public Matrix4x3d setOrtho2D(double left, double right, double bottom, double top)
      Set this matrix to be an orthographic projection transformation for a right-handed coordinate system.

      This method is equivalent to calling setOrtho() with zNear=-1 and zFar=+1.

      In order to apply the orthographic projection to an already existing transformation, use ortho2D().

      Reference: http://www.songho.ca

      Parameters:
      left - the distance from the center to the left frustum edge
      right - the distance from the center to the right frustum edge
      bottom - the distance from the center to the bottom frustum edge
      top - the distance from the center to the top frustum edge
      Returns:
      this
      See Also:
    • setOrtho2DLH

      public Matrix4x3d setOrtho2DLH(double left, double right, double bottom, double top)
      Set this matrix to be an orthographic projection transformation for a left-handed coordinate system.

      This method is equivalent to calling setOrthoLH() with zNear=-1 and zFar=+1.

      In order to apply the orthographic projection to an already existing transformation, use ortho2DLH().

      Reference: http://www.songho.ca

      Parameters:
      left - the distance from the center to the left frustum edge
      right - the distance from the center to the right frustum edge
      bottom - the distance from the center to the bottom frustum edge
      top - the distance from the center to the top frustum edge
      Returns:
      this
      See Also:
    • lookAlong

      public Matrix4x3d lookAlong(Vector3dc dir, Vector3dc up)
      Apply a rotation transformation to this matrix to make -z point along dir.

      If M is this matrix and L the lookalong rotation matrix, then the new matrix will be M * L. So when transforming a vector v with the new matrix by using M * L * v, the lookalong rotation transformation will be applied first!

      This is equivalent to calling lookAt with eye = (0, 0, 0) and center = dir.

      In order to set the matrix to a lookalong transformation without post-multiplying it, use setLookAlong().

      Parameters:
      dir - the direction in space to look along
      up - the direction of 'up'
      Returns:
      this
      See Also:
    • lookAlong

      public Matrix4x3d lookAlong(Vector3dc dir, Vector3dc up, Matrix4x3d dest)
      Apply a rotation transformation to this matrix to make -z point along dir and store the result in dest.

      If M is this matrix and L the lookalong rotation matrix, then the new matrix will be M * L. So when transforming a vector v with the new matrix by using M * L * v, the lookalong rotation transformation will be applied first!

      This is equivalent to calling lookAt with eye = (0, 0, 0) and center = dir.

      In order to set the matrix to a lookalong transformation without post-multiplying it, use setLookAlong().

      Specified by:
      lookAlong in interface Matrix4x3dc
      Parameters:
      dir - the direction in space to look along
      up - the direction of 'up'
      dest - will hold the result
      Returns:
      dest
      See Also:
    • lookAlong

      public Matrix4x3d lookAlong(double dirX, double dirY, double dirZ, double upX, double upY, double upZ, Matrix4x3d dest)
      Apply a rotation transformation to this matrix to make -z point along dir and store the result in dest.

      If M is this matrix and L the lookalong rotation matrix, then the new matrix will be M * L. So when transforming a vector v with the new matrix by using M * L * v, the lookalong rotation transformation will be applied first!

      This is equivalent to calling lookAt() with eye = (0, 0, 0) and center = dir.

      In order to set the matrix to a lookalong transformation without post-multiplying it, use setLookAlong()

      Specified by:
      lookAlong in interface Matrix4x3dc
      Parameters:
      dirX - the x-coordinate of the direction to look along
      dirY - the y-coordinate of the direction to look along
      dirZ - the z-coordinate of the direction to look along
      upX - the x-coordinate of the up vector
      upY - the y-coordinate of the up vector
      upZ - the z-coordinate of the up vector
      dest - will hold the result
      Returns:
      dest
      See Also:
    • lookAlong

      public Matrix4x3d lookAlong(double dirX, double dirY, double dirZ, double upX, double upY, double upZ)
      Apply a rotation transformation to this matrix to make -z point along dir.

      If M is this matrix and L the lookalong rotation matrix, then the new matrix will be M * L. So when transforming a vector v with the new matrix by using M * L * v, the lookalong rotation transformation will be applied first!

      This is equivalent to calling lookAt() with eye = (0, 0, 0) and center = dir.

      In order to set the matrix to a lookalong transformation without post-multiplying it, use setLookAlong()

      Parameters:
      dirX - the x-coordinate of the direction to look along
      dirY - the y-coordinate of the direction to look along
      dirZ - the z-coordinate of the direction to look along
      upX - the x-coordinate of the up vector
      upY - the y-coordinate of the up vector
      upZ - the z-coordinate of the up vector
      Returns:
      this
      See Also:
    • setLookAlong

      public Matrix4x3d setLookAlong(Vector3dc dir, Vector3dc up)
      Set this matrix to a rotation transformation to make -z point along dir.

      This is equivalent to calling setLookAt() with eye = (0, 0, 0) and center = dir.

      In order to apply the lookalong transformation to any previous existing transformation, use lookAlong(Vector3dc, Vector3dc).

      Parameters:
      dir - the direction in space to look along
      up - the direction of 'up'
      Returns:
      this
      See Also:
    • setLookAlong

      public Matrix4x3d setLookAlong(double dirX, double dirY, double dirZ, double upX, double upY, double upZ)
      Set this matrix to a rotation transformation to make -z point along dir.

      This is equivalent to calling setLookAt() with eye = (0, 0, 0) and center = dir.

      In order to apply the lookalong transformation to any previous existing transformation, use lookAlong()

      Parameters:
      dirX - the x-coordinate of the direction to look along
      dirY - the y-coordinate of the direction to look along
      dirZ - the z-coordinate of the direction to look along
      upX - the x-coordinate of the up vector
      upY - the y-coordinate of the up vector
      upZ - the z-coordinate of the up vector
      Returns:
      this
      See Also:
    • setLookAt

      public Matrix4x3d setLookAt(Vector3dc eye, Vector3dc center, Vector3dc up)
      Set this matrix to be a "lookat" transformation for a right-handed coordinate system, that aligns -z with center - eye.

      In order to not make use of vectors to specify eye, center and up but use primitives, like in the GLU function, use setLookAt() instead.

      In order to apply the lookat transformation to a previous existing transformation, use lookAt().

      Parameters:
      eye - the position of the camera
      center - the point in space to look at
      up - the direction of 'up'
      Returns:
      this
      See Also:
    • setLookAt

      public Matrix4x3d setLookAt(double eyeX, double eyeY, double eyeZ, double centerX, double centerY, double centerZ, double upX, double upY, double upZ)
      Set this matrix to be a "lookat" transformation for a right-handed coordinate system, that aligns -z with center - eye.

      In order to apply the lookat transformation to a previous existing transformation, use lookAt.

      Parameters:
      eyeX - the x-coordinate of the eye/camera location
      eyeY - the y-coordinate of the eye/camera location
      eyeZ - the z-coordinate of the eye/camera location
      centerX - the x-coordinate of the point to look at
      centerY - the y-coordinate of the point to look at
      centerZ - the z-coordinate of the point to look at
      upX - the x-coordinate of the up vector
      upY - the y-coordinate of the up vector
      upZ - the z-coordinate of the up vector
      Returns:
      this
      See Also:
    • lookAt

      public Matrix4x3d lookAt(Vector3dc eye, Vector3dc center, Vector3dc up, Matrix4x3d dest)
      Apply a "lookat" transformation to this matrix for a right-handed coordinate system, that aligns -z with center - eye and store the result in dest.

      If M is this matrix and L the lookat matrix, then the new matrix will be M * L. So when transforming a vector v with the new matrix by using M * L * v, the lookat transformation will be applied first!

      In order to set the matrix to a lookat transformation without post-multiplying it, use setLookAt(Vector3dc, Vector3dc, Vector3dc).

      Specified by:
      lookAt in interface Matrix4x3dc
      Parameters:
      eye - the position of the camera
      center - the point in space to look at
      up - the direction of 'up'
      dest - will hold the result
      Returns:
      dest
      See Also:
    • lookAt

      public Matrix4x3d lookAt(Vector3dc eye, Vector3dc center, Vector3dc up)
      Apply a "lookat" transformation to this matrix for a right-handed coordinate system, that aligns -z with center - eye.

      If M is this matrix and L the lookat matrix, then the new matrix will be M * L. So when transforming a vector v with the new matrix by using M * L * v, the lookat transformation will be applied first!

      In order to set the matrix to a lookat transformation without post-multiplying it, use setLookAt(Vector3dc, Vector3dc, Vector3dc).

      Parameters:
      eye - the position of the camera
      center - the point in space to look at
      up - the direction of 'up'
      Returns:
      this
      See Also:
    • lookAt

      public Matrix4x3d lookAt(double eyeX, double eyeY, double eyeZ, double centerX, double centerY, double centerZ, double upX, double upY, double upZ, Matrix4x3d dest)
      Apply a "lookat" transformation to this matrix for a right-handed coordinate system, that aligns -z with center - eye and store the result in dest.

      If M is this matrix and L the lookat matrix, then the new matrix will be M * L. So when transforming a vector v with the new matrix by using M * L * v, the lookat transformation will be applied first!

      In order to set the matrix to a lookat transformation without post-multiplying it, use setLookAt().

      Specified by:
      lookAt in interface Matrix4x3dc
      Parameters:
      eyeX - the x-coordinate of the eye/camera location
      eyeY - the y-coordinate of the eye/camera location
      eyeZ - the z-coordinate of the eye/camera location
      centerX - the x-coordinate of the point to look at
      centerY - the y-coordinate of the point to look at
      centerZ - the z-coordinate of the point to look at
      upX - the x-coordinate of the up vector
      upY - the y-coordinate of the up vector
      upZ - the z-coordinate of the up vector
      dest - will hold the result
      Returns:
      dest
      See Also:
    • lookAt

      public Matrix4x3d lookAt(double eyeX, double eyeY, double eyeZ, double centerX, double centerY, double centerZ, double upX, double upY, double upZ)
      Apply a "lookat" transformation to this matrix for a right-handed coordinate system, that aligns -z with center - eye.

      If M is this matrix and L the lookat matrix, then the new matrix will be M * L. So when transforming a vector v with the new matrix by using M * L * v, the lookat transformation will be applied first!

      In order to set the matrix to a lookat transformation without post-multiplying it, use setLookAt().

      Parameters:
      eyeX - the x-coordinate of the eye/camera location
      eyeY - the y-coordinate of the eye/camera location
      eyeZ - the z-coordinate of the eye/camera location
      centerX - the x-coordinate of the point to look at
      centerY - the y-coordinate of the point to look at
      centerZ - the z-coordinate of the point to look at
      upX - the x-coordinate of the up vector
      upY - the y-coordinate of the up vector
      upZ - the z-coordinate of the up vector
      Returns:
      this
      See Also:
    • setLookAtLH

      public Matrix4x3d setLookAtLH(Vector3dc eye, Vector3dc center, Vector3dc up)
      Set this matrix to be a "lookat" transformation for a left-handed coordinate system, that aligns +z with center - eye.

      In order to not make use of vectors to specify eye, center and up but use primitives, like in the GLU function, use setLookAtLH() instead.

      In order to apply the lookat transformation to a previous existing transformation, use lookAt().

      Parameters:
      eye - the position of the camera
      center - the point in space to look at
      up - the direction of 'up'
      Returns:
      this
      See Also:
    • setLookAtLH

      public Matrix4x3d setLookAtLH(double eyeX, double eyeY, double eyeZ, double centerX, double centerY, double centerZ, double upX, double upY, double upZ)
      Set this matrix to be a "lookat" transformation for a left-handed coordinate system, that aligns +z with center - eye.

      In order to apply the lookat transformation to a previous existing transformation, use lookAtLH.

      Parameters:
      eyeX - the x-coordinate of the eye/camera location
      eyeY - the y-coordinate of the eye/camera location
      eyeZ - the z-coordinate of the eye/camera location
      centerX - the x-coordinate of the point to look at
      centerY - the y-coordinate of the point to look at
      centerZ - the z-coordinate of the point to look at
      upX - the x-coordinate of the up vector
      upY - the y-coordinate of the up vector
      upZ - the z-coordinate of the up vector
      Returns:
      this
      See Also:
    • lookAtLH

      public Matrix4x3d lookAtLH(Vector3dc eye, Vector3dc center, Vector3dc up, Matrix4x3d dest)
      Apply a "lookat" transformation to this matrix for a left-handed coordinate system, that aligns +z with center - eye and store the result in dest.

      If M is this matrix and L the lookat matrix, then the new matrix will be M * L. So when transforming a vector v with the new matrix by using M * L * v, the lookat transformation will be applied first!

      In order to set the matrix to a lookat transformation without post-multiplying it, use setLookAtLH(Vector3dc, Vector3dc, Vector3dc).

      Specified by:
      lookAtLH in interface Matrix4x3dc
      Parameters:
      eye - the position of the camera
      center - the point in space to look at
      up - the direction of 'up'
      dest - will hold the result
      Returns:
      dest
      See Also:
    • lookAtLH

      public Matrix4x3d lookAtLH(Vector3dc eye, Vector3dc center, Vector3dc up)
      Apply a "lookat" transformation to this matrix for a left-handed coordinate system, that aligns +z with center - eye.

      If M is this matrix and L the lookat matrix, then the new matrix will be M * L. So when transforming a vector v with the new matrix by using M * L * v, the lookat transformation will be applied first!

      In order to set the matrix to a lookat transformation without post-multiplying it, use setLookAtLH(Vector3dc, Vector3dc, Vector3dc).

      Parameters:
      eye - the position of the camera
      center - the point in space to look at
      up - the direction of 'up'
      Returns:
      this
      See Also:
    • lookAtLH

      public Matrix4x3d lookAtLH(double eyeX, double eyeY, double eyeZ, double centerX, double centerY, double centerZ, double upX, double upY, double upZ, Matrix4x3d dest)
      Apply a "lookat" transformation to this matrix for a left-handed coordinate system, that aligns +z with center - eye and store the result in dest.

      If M is this matrix and L the lookat matrix, then the new matrix will be M * L. So when transforming a vector v with the new matrix by using M * L * v, the lookat transformation will be applied first!

      In order to set the matrix to a lookat transformation without post-multiplying it, use setLookAtLH().

      Specified by:
      lookAtLH in interface Matrix4x3dc
      Parameters:
      eyeX - the x-coordinate of the eye/camera location
      eyeY - the y-coordinate of the eye/camera location
      eyeZ - the z-coordinate of the eye/camera location
      centerX - the x-coordinate of the point to look at
      centerY - the y-coordinate of the point to look at
      centerZ - the z-coordinate of the point to look at
      upX - the x-coordinate of the up vector
      upY - the y-coordinate of the up vector
      upZ - the z-coordinate of the up vector
      dest - will hold the result
      Returns:
      dest
      See Also:
    • lookAtLH

      public Matrix4x3d lookAtLH(double eyeX, double eyeY, double eyeZ, double centerX, double centerY, double centerZ, double upX, double upY, double upZ)
      Apply a "lookat" transformation to this matrix for a left-handed coordinate system, that aligns +z with center - eye.

      If M is this matrix and L the lookat matrix, then the new matrix will be M * L. So when transforming a vector v with the new matrix by using M * L * v, the lookat transformation will be applied first!

      In order to set the matrix to a lookat transformation without post-multiplying it, use setLookAtLH().

      Parameters:
      eyeX - the x-coordinate of the eye/camera location
      eyeY - the y-coordinate of the eye/camera location
      eyeZ - the z-coordinate of the eye/camera location
      centerX - the x-coordinate of the point to look at
      centerY - the y-coordinate of the point to look at
      centerZ - the z-coordinate of the point to look at
      upX - the x-coordinate of the up vector
      upY - the y-coordinate of the up vector
      upZ - the z-coordinate of the up vector
      Returns:
      this
      See Also:
    • frustumPlane

      public Vector4d frustumPlane(int which, Vector4d dest)
      Description copied from interface: Matrix4x3dc
      Calculate a frustum plane of this matrix, which can be a projection matrix or a combined modelview-projection matrix, and store the result in the given dest.

      Generally, this method computes the frustum plane in the local frame of any coordinate system that existed before this transformation was applied to it in order to yield homogeneous clipping space.

      The plane normal, which is (a, b, c), is directed "inwards" of the frustum. Any plane/point test using a*x + b*y + c*z + d therefore will yield a result greater than zero if the point is within the frustum (i.e. at the positive side of the frustum plane).

      Reference: Fast Extraction of Viewing Frustum Planes from the World-View-Projection Matrix

      Specified by:
      frustumPlane in interface Matrix4x3dc
      Parameters:
      which - one of the six possible planes, given as numeric constants Matrix4x3dc.PLANE_NX, Matrix4x3dc.PLANE_PX, Matrix4x3dc.PLANE_NY, Matrix4x3dc.PLANE_PY, Matrix4x3dc.PLANE_NZ and Matrix4x3dc.PLANE_PZ
      dest - will hold the computed plane equation. The plane equation will be normalized, meaning that (a, b, c) will be a unit vector
      Returns:
      dest
    • positiveZ

      public Vector3d positiveZ(Vector3d dir)
      Description copied from interface: Matrix4x3dc
      Obtain the direction of +Z before the transformation represented by this matrix is applied.

      This method uses the rotation component of the left 3x3 submatrix to obtain the direction that is transformed to +Z by this matrix.

      This method is equivalent to the following code:

       Matrix4x3d inv = new Matrix4x3d(this).invert();
       inv.transformDirection(dir.set(0, 0, 1)).normalize();
       
      If this is already an orthogonal matrix, then consider using Matrix4x3dc.normalizedPositiveZ(Vector3d) instead.

      Reference: http://www.euclideanspace.com

      Specified by:
      positiveZ in interface Matrix4x3dc
      Parameters:
      dir - will hold the direction of +Z
      Returns:
      dir
    • normalizedPositiveZ

      public Vector3d normalizedPositiveZ(Vector3d dir)
      Description copied from interface: Matrix4x3dc
      Obtain the direction of +Z before the transformation represented by this orthogonal matrix is applied. This method only produces correct results if this is an orthogonal matrix.

      This method uses the rotation component of the left 3x3 submatrix to obtain the direction that is transformed to +Z by this matrix.

      This method is equivalent to the following code:

       Matrix4x3d inv = new Matrix4x3d(this).transpose();
       inv.transformDirection(dir.set(0, 0, 1)).normalize();
       

      Reference: http://www.euclideanspace.com

      Specified by:
      normalizedPositiveZ in interface Matrix4x3dc
      Parameters:
      dir - will hold the direction of +Z
      Returns:
      dir
    • positiveX

      public Vector3d positiveX(Vector3d dir)
      Description copied from interface: Matrix4x3dc
      Obtain the direction of +X before the transformation represented by this matrix is applied.

      This method uses the rotation component of the left 3x3 submatrix to obtain the direction that is transformed to +X by this matrix.

      This method is equivalent to the following code:

       Matrix4x3d inv = new Matrix4x3d(this).invert();
       inv.transformDirection(dir.set(1, 0, 0)).normalize();
       
      If this is already an orthogonal matrix, then consider using Matrix4x3dc.normalizedPositiveX(Vector3d) instead.

      Reference: http://www.euclideanspace.com

      Specified by:
      positiveX in interface Matrix4x3dc
      Parameters:
      dir - will hold the direction of +X
      Returns:
      dir
    • normalizedPositiveX

      public Vector3d normalizedPositiveX(Vector3d dir)
      Description copied from interface: Matrix4x3dc
      Obtain the direction of +X before the transformation represented by this orthogonal matrix is applied. This method only produces correct results if this is an orthogonal matrix.

      This method uses the rotation component of the left 3x3 submatrix to obtain the direction that is transformed to +X by this matrix.

      This method is equivalent to the following code:

       Matrix4x3d inv = new Matrix4x3d(this).transpose();
       inv.transformDirection(dir.set(1, 0, 0)).normalize();
       

      Reference: http://www.euclideanspace.com

      Specified by:
      normalizedPositiveX in interface Matrix4x3dc
      Parameters:
      dir - will hold the direction of +X
      Returns:
      dir
    • positiveY

      public Vector3d positiveY(Vector3d dir)
      Description copied from interface: Matrix4x3dc
      Obtain the direction of +Y before the transformation represented by this matrix is applied.

      This method uses the rotation component of the left 3x3 submatrix to obtain the direction that is transformed to +Y by this matrix.

      This method is equivalent to the following code:

       Matrix4x3d inv = new Matrix4x3d(this).invert();
       inv.transformDirection(dir.set(0, 1, 0)).normalize();
       
      If this is already an orthogonal matrix, then consider using Matrix4x3dc.normalizedPositiveY(Vector3d) instead.

      Reference: http://www.euclideanspace.com

      Specified by:
      positiveY in interface Matrix4x3dc
      Parameters:
      dir - will hold the direction of +Y
      Returns:
      dir
    • normalizedPositiveY

      public Vector3d normalizedPositiveY(Vector3d dir)
      Description copied from interface: Matrix4x3dc
      Obtain the direction of +Y before the transformation represented by this orthogonal matrix is applied. This method only produces correct results if this is an orthogonal matrix.

      This method uses the rotation component of the left 3x3 submatrix to obtain the direction that is transformed to +Y by this matrix.

      This method is equivalent to the following code:

       Matrix4x3d inv = new Matrix4x3d(this).transpose();
       inv.transformDirection(dir.set(0, 1, 0)).normalize();
       

      Reference: http://www.euclideanspace.com

      Specified by:
      normalizedPositiveY in interface Matrix4x3dc
      Parameters:
      dir - will hold the direction of +Y
      Returns:
      dir
    • origin

      public Vector3d origin(Vector3d origin)
      Description copied from interface: Matrix4x3dc
      Obtain the position that gets transformed to the origin by this matrix. This can be used to get the position of the "camera" from a given view transformation matrix.

      This method is equivalent to the following code:

       Matrix4x3f inv = new Matrix4x3f(this).invert();
       inv.transformPosition(origin.set(0, 0, 0));
       
      Specified by:
      origin in interface Matrix4x3dc
      Parameters:
      origin - will hold the position transformed to the origin
      Returns:
      origin
    • shadow

      public Matrix4x3d shadow(Vector4dc light, double a, double b, double c, double d)
      Apply a projection transformation to this matrix that projects onto the plane specified via the general plane equation x*a + y*b + z*c + d = 0 as if casting a shadow from a given light position/direction light.

      If light.w is 0.0 the light is being treated as a directional light; if it is 1.0 it is a point light.

      If M is this matrix and S the shadow matrix, then the new matrix will be M * S. So when transforming a vector v with the new matrix by using M * S * v, the shadow projection will be applied first!

      Reference: ftp.sgi.com

      Parameters:
      light - the light's vector
      a - the x factor in the plane equation
      b - the y factor in the plane equation
      c - the z factor in the plane equation
      d - the constant in the plane equation
      Returns:
      this
    • shadow

      public Matrix4x3d shadow(Vector4dc light, double a, double b, double c, double d, Matrix4x3d dest)
      Description copied from interface: Matrix4x3dc
      Apply a projection transformation to this matrix that projects onto the plane specified via the general plane equation x*a + y*b + z*c + d = 0 as if casting a shadow from a given light position/direction light and store the result in dest.

      If light.w is 0.0 the light is being treated as a directional light; if it is 1.0 it is a point light.

      If M is this matrix and S the shadow matrix, then the new matrix will be M * S. So when transforming a vector v with the new matrix by using M * S * v, the shadow projection will be applied first!

      Reference: ftp.sgi.com

      Specified by:
      shadow in interface Matrix4x3dc
      Parameters:
      light - the light's vector
      a - the x factor in the plane equation
      b - the y factor in the plane equation
      c - the z factor in the plane equation
      d - the constant in the plane equation
      dest - will hold the result
      Returns:
      dest
    • shadow

      public Matrix4x3d shadow(double lightX, double lightY, double lightZ, double lightW, double a, double b, double c, double d)
      Apply a projection transformation to this matrix that projects onto the plane specified via the general plane equation x*a + y*b + z*c + d = 0 as if casting a shadow from a given light position/direction (lightX, lightY, lightZ, lightW).

      If lightW is 0.0 the light is being treated as a directional light; if it is 1.0 it is a point light.

      If M is this matrix and S the shadow matrix, then the new matrix will be M * S. So when transforming a vector v with the new matrix by using M * S * v, the shadow projection will be applied first!

      Reference: ftp.sgi.com

      Parameters:
      lightX - the x-component of the light's vector
      lightY - the y-component of the light's vector
      lightZ - the z-component of the light's vector
      lightW - the w-component of the light's vector
      a - the x factor in the plane equation
      b - the y factor in the plane equation
      c - the z factor in the plane equation
      d - the constant in the plane equation
      Returns:
      this
    • shadow

      public Matrix4x3d shadow(double lightX, double lightY, double lightZ, double lightW, double a, double b, double c, double d, Matrix4x3d dest)
      Description copied from interface: Matrix4x3dc
      Apply a projection transformation to this matrix that projects onto the plane specified via the general plane equation x*a + y*b + z*c + d = 0 as if casting a shadow from a given light position/direction (lightX, lightY, lightZ, lightW) and store the result in dest.

      If lightW is 0.0 the light is being treated as a directional light; if it is 1.0 it is a point light.

      If M is this matrix and S the shadow matrix, then the new matrix will be M * S. So when transforming a vector v with the new matrix by using M * S * v, the shadow projection will be applied first!

      Reference: ftp.sgi.com

      Specified by:
      shadow in interface Matrix4x3dc
      Parameters:
      lightX - the x-component of the light's vector
      lightY - the y-component of the light's vector
      lightZ - the z-component of the light's vector
      lightW - the w-component of the light's vector
      a - the x factor in the plane equation
      b - the y factor in the plane equation
      c - the z factor in the plane equation
      d - the constant in the plane equation
      dest - will hold the result
      Returns:
      dest
    • shadow

      public Matrix4x3d shadow(Vector4dc light, Matrix4x3dc planeTransform, Matrix4x3d dest)
      Description copied from interface: Matrix4x3dc
      Apply a projection transformation to this matrix that projects onto the plane with the general plane equation y = 0 as if casting a shadow from a given light position/direction light and store the result in dest.

      Before the shadow projection is applied, the plane is transformed via the specified planeTransformation.

      If light.w is 0.0 the light is being treated as a directional light; if it is 1.0 it is a point light.

      If M is this matrix and S the shadow matrix, then the new matrix will be M * S. So when transforming a vector v with the new matrix by using M * S * v, the shadow projection will be applied first!

      Specified by:
      shadow in interface Matrix4x3dc
      Parameters:
      light - the light's vector
      planeTransform - the transformation to transform the implied plane y = 0 before applying the projection
      dest - will hold the result
      Returns:
      dest
    • shadow

      public Matrix4x3d shadow(Vector4dc light, Matrix4x3dc planeTransform)
      Apply a projection transformation to this matrix that projects onto the plane with the general plane equation y = 0 as if casting a shadow from a given light position/direction light.

      Before the shadow projection is applied, the plane is transformed via the specified planeTransformation.

      If light.w is 0.0 the light is being treated as a directional light; if it is 1.0 it is a point light.

      If M is this matrix and S the shadow matrix, then the new matrix will be M * S. So when transforming a vector v with the new matrix by using M * S * v, the shadow projection will be applied first!

      Parameters:
      light - the light's vector
      planeTransform - the transformation to transform the implied plane y = 0 before applying the projection
      Returns:
      this
    • shadow

      public Matrix4x3d shadow(double lightX, double lightY, double lightZ, double lightW, Matrix4x3dc planeTransform, Matrix4x3d dest)
      Description copied from interface: Matrix4x3dc
      Apply a projection transformation to this matrix that projects onto the plane with the general plane equation y = 0 as if casting a shadow from a given light position/direction (lightX, lightY, lightZ, lightW) and store the result in dest.

      Before the shadow projection is applied, the plane is transformed via the specified planeTransformation.

      If lightW is 0.0 the light is being treated as a directional light; if it is 1.0 it is a point light.

      If M is this matrix and S the shadow matrix, then the new matrix will be M * S. So when transforming a vector v with the new matrix by using M * S * v, the shadow projection will be applied first!

      Specified by:
      shadow in interface Matrix4x3dc
      Parameters:
      lightX - the x-component of the light vector
      lightY - the y-component of the light vector
      lightZ - the z-component of the light vector
      lightW - the w-component of the light vector
      planeTransform - the transformation to transform the implied plane y = 0 before applying the projection
      dest - will hold the result
      Returns:
      dest
    • shadow

      public Matrix4x3d shadow(double lightX, double lightY, double lightZ, double lightW, Matrix4x3dc planeTransform)
      Apply a projection transformation to this matrix that projects onto the plane with the general plane equation y = 0 as if casting a shadow from a given light position/direction (lightX, lightY, lightZ, lightW).

      Before the shadow projection is applied, the plane is transformed via the specified planeTransformation.

      If lightW is 0.0 the light is being treated as a directional light; if it is 1.0 it is a point light.

      If M is this matrix and S the shadow matrix, then the new matrix will be M * S. So when transforming a vector v with the new matrix by using M * S * v, the shadow projection will be applied first!

      Parameters:
      lightX - the x-component of the light vector
      lightY - the y-component of the light vector
      lightZ - the z-component of the light vector
      lightW - the w-component of the light vector
      planeTransform - the transformation to transform the implied plane y = 0 before applying the projection
      Returns:
      this
    • billboardCylindrical

      public Matrix4x3d billboardCylindrical(Vector3dc objPos, Vector3dc targetPos, Vector3dc up)
      Set this matrix to a cylindrical billboard transformation that rotates the local +Z axis of a given object with position objPos towards a target position at targetPos while constraining a cylindrical rotation around the given up vector.

      This method can be used to create the complete model transformation for a given object, including the translation of the object to its position objPos.

      Parameters:
      objPos - the position of the object to rotate towards targetPos
      targetPos - the position of the target (for example the camera) towards which to rotate the object
      up - the rotation axis (must be normalized)
      Returns:
      this
    • billboardSpherical

      public Matrix4x3d billboardSpherical(Vector3dc objPos, Vector3dc targetPos, Vector3dc up)
      Set this matrix to a spherical billboard transformation that rotates the local +Z axis of a given object with position objPos towards a target position at targetPos.

      This method can be used to create the complete model transformation for a given object, including the translation of the object to its position objPos.

      If preserving an up vector is not necessary when rotating the +Z axis, then a shortest arc rotation can be obtained using billboardSpherical(Vector3dc, Vector3dc).

      Parameters:
      objPos - the position of the object to rotate towards targetPos
      targetPos - the position of the target (for example the camera) towards which to rotate the object
      up - the up axis used to orient the object
      Returns:
      this
      See Also:
    • billboardSpherical

      public Matrix4x3d billboardSpherical(Vector3dc objPos, Vector3dc targetPos)
      Set this matrix to a spherical billboard transformation that rotates the local +Z axis of a given object with position objPos towards a target position at targetPos using a shortest arc rotation by not preserving any up vector of the object.

      This method can be used to create the complete model transformation for a given object, including the translation of the object to its position objPos.

      In order to specify an up vector which needs to be maintained when rotating the +Z axis of the object, use billboardSpherical(Vector3dc, Vector3dc, Vector3dc).

      Parameters:
      objPos - the position of the object to rotate towards targetPos
      targetPos - the position of the target (for example the camera) towards which to rotate the object
      Returns:
      this
      See Also:
    • hashCode

      public int hashCode()
      Overrides:
      hashCode in class Object
    • equals

      public boolean equals(Object obj)
      Overrides:
      equals in class Object
    • equals

      public boolean equals(Matrix4x3dc m, double delta)
      Description copied from interface: Matrix4x3dc
      Compare the matrix elements of this matrix with the given matrix using the given delta and return whether all of them are equal within a maximum difference of delta.

      Please note that this method is not used by any data structure such as ArrayList HashSet or HashMap and their operations, such as ArrayList.contains(Object) or HashSet.remove(Object), since those data structures only use the Object.equals(Object) and Object.hashCode() methods.

      Specified by:
      equals in interface Matrix4x3dc
      Parameters:
      m - the other matrix
      delta - the allowed maximum difference
      Returns:
      true whether all of the matrix elements are equal; false otherwise
    • pick

      public Matrix4x3d pick(double x, double y, double width, double height, int[] viewport, Matrix4x3d dest)
      Description copied from interface: Matrix4x3dc
      Apply a picking transformation to this matrix using the given window coordinates (x, y) as the pick center and the given (width, height) as the size of the picking region in window coordinates, and store the result in dest.
      Specified by:
      pick in interface Matrix4x3dc
      Parameters:
      x - the x coordinate of the picking region center in window coordinates
      y - the y coordinate of the picking region center in window coordinates
      width - the width of the picking region in window coordinates
      height - the height of the picking region in window coordinates
      viewport - the viewport described by [x, y, width, height]
      dest - the destination matrix, which will hold the result
      Returns:
      dest
    • pick

      public Matrix4x3d pick(double x, double y, double width, double height, int[] viewport)
      Apply a picking transformation to this matrix using the given window coordinates (x, y) as the pick center and the given (width, height) as the size of the picking region in window coordinates.
      Parameters:
      x - the x coordinate of the picking region center in window coordinates
      y - the y coordinate of the picking region center in window coordinates
      width - the width of the picking region in window coordinates
      height - the height of the picking region in window coordinates
      viewport - the viewport described by [x, y, width, height]
      Returns:
      this
    • swap

      public Matrix4x3d swap(Matrix4x3d other)
      Exchange the values of this matrix with the given other matrix.
      Parameters:
      other - the other matrix to exchange the values with
      Returns:
      this
    • arcball

      public Matrix4x3d arcball(double radius, double centerX, double centerY, double centerZ, double angleX, double angleY, Matrix4x3d dest)
      Description copied from interface: Matrix4x3dc
      Apply an arcball view transformation to this matrix with the given radius and center (centerX, centerY, centerZ) position of the arcball and the specified X and Y rotation angles, and store the result in dest.

      This method is equivalent to calling: translate(0, 0, -radius, dest).rotateX(angleX).rotateY(angleY).translate(-centerX, -centerY, -centerZ)

      Specified by:
      arcball in interface Matrix4x3dc
      Parameters:
      radius - the arcball radius
      centerX - the x coordinate of the center position of the arcball
      centerY - the y coordinate of the center position of the arcball
      centerZ - the z coordinate of the center position of the arcball
      angleX - the rotation angle around the X axis in radians
      angleY - the rotation angle around the Y axis in radians
      dest - will hold the result
      Returns:
      dest
    • arcball

      public Matrix4x3d arcball(double radius, Vector3dc center, double angleX, double angleY, Matrix4x3d dest)
      Description copied from interface: Matrix4x3dc
      Apply an arcball view transformation to this matrix with the given radius and center position of the arcball and the specified X and Y rotation angles, and store the result in dest.

      This method is equivalent to calling: translate(0, 0, -radius).rotateX(angleX).rotateY(angleY).translate(-center.x, -center.y, -center.z)

      Specified by:
      arcball in interface Matrix4x3dc
      Parameters:
      radius - the arcball radius
      center - the center position of the arcball
      angleX - the rotation angle around the X axis in radians
      angleY - the rotation angle around the Y axis in radians
      dest - will hold the result
      Returns:
      dest
    • arcball

      public Matrix4x3d arcball(double radius, double centerX, double centerY, double centerZ, double angleX, double angleY)
      Apply an arcball view transformation to this matrix with the given radius and center (centerX, centerY, centerZ) position of the arcball and the specified X and Y rotation angles.

      This method is equivalent to calling: translate(0, 0, -radius).rotateX(angleX).rotateY(angleY).translate(-centerX, -centerY, -centerZ)

      Parameters:
      radius - the arcball radius
      centerX - the x coordinate of the center position of the arcball
      centerY - the y coordinate of the center position of the arcball
      centerZ - the z coordinate of the center position of the arcball
      angleX - the rotation angle around the X axis in radians
      angleY - the rotation angle around the Y axis in radians
      Returns:
      this
    • arcball

      public Matrix4x3d arcball(double radius, Vector3dc center, double angleX, double angleY)
      Apply an arcball view transformation to this matrix with the given radius and center position of the arcball and the specified X and Y rotation angles.

      This method is equivalent to calling: translate(0, 0, -radius).rotateX(angleX).rotateY(angleY).translate(-center.x, -center.y, -center.z)

      Parameters:
      radius - the arcball radius
      center - the center position of the arcball
      angleX - the rotation angle around the X axis in radians
      angleY - the rotation angle around the Y axis in radians
      Returns:
      this
    • transformAab

      public Matrix4x3d transformAab(double minX, double minY, double minZ, double maxX, double maxY, double maxZ, Vector3d outMin, Vector3d outMax)
      Description copied from interface: Matrix4x3dc
      Transform the axis-aligned box given as the minimum corner (minX, minY, minZ) and maximum corner (maxX, maxY, maxZ) by this matrix and compute the axis-aligned box of the result whose minimum corner is stored in outMin and maximum corner stored in outMax.

      Reference: http://dev.theomader.com

      Specified by:
      transformAab in interface Matrix4x3dc
      Parameters:
      minX - the x coordinate of the minimum corner of the axis-aligned box
      minY - the y coordinate of the minimum corner of the axis-aligned box
      minZ - the z coordinate of the minimum corner of the axis-aligned box
      maxX - the x coordinate of the maximum corner of the axis-aligned box
      maxY - the y coordinate of the maximum corner of the axis-aligned box
      maxZ - the y coordinate of the maximum corner of the axis-aligned box
      outMin - will hold the minimum corner of the resulting axis-aligned box
      outMax - will hold the maximum corner of the resulting axis-aligned box
      Returns:
      this
    • transformAab

      public Matrix4x3d transformAab(Vector3dc min, Vector3dc max, Vector3d outMin, Vector3d outMax)
      Description copied from interface: Matrix4x3dc
      Transform the axis-aligned box given as the minimum corner min and maximum corner max by this matrix and compute the axis-aligned box of the result whose minimum corner is stored in outMin and maximum corner stored in outMax.
      Specified by:
      transformAab in interface Matrix4x3dc
      Parameters:
      min - the minimum corner of the axis-aligned box
      max - the maximum corner of the axis-aligned box
      outMin - will hold the minimum corner of the resulting axis-aligned box
      outMax - will hold the maximum corner of the resulting axis-aligned box
      Returns:
      this
    • lerp

      public Matrix4x3d lerp(Matrix4x3dc other, double t)
      Linearly interpolate this and other using the given interpolation factor t and store the result in this.

      If t is 0.0 then the result is this. If the interpolation factor is 1.0 then the result is other.

      Parameters:
      other - the other matrix
      t - the interpolation factor between 0.0 and 1.0
      Returns:
      this
    • lerp

      public Matrix4x3d lerp(Matrix4x3dc other, double t, Matrix4x3d dest)
      Description copied from interface: Matrix4x3dc
      Linearly interpolate this and other using the given interpolation factor t and store the result in dest.

      If t is 0.0 then the result is this. If the interpolation factor is 1.0 then the result is other.

      Specified by:
      lerp in interface Matrix4x3dc
      Parameters:
      other - the other matrix
      t - the interpolation factor between 0.0 and 1.0
      dest - will hold the result
      Returns:
      dest
    • rotateTowards

      public Matrix4x3d rotateTowards(Vector3dc dir, Vector3dc up, Matrix4x3d dest)
      Apply a model transformation to this matrix for a right-handed coordinate system, that aligns the local +Z axis with dir and store the result in dest.

      If M is this matrix and L the lookat matrix, then the new matrix will be M * L. So when transforming a vector v with the new matrix by using M * L * v, the lookat transformation will be applied first!

      In order to set the matrix to a rotation transformation without post-multiplying it, use rotationTowards().

      This method is equivalent to calling: mul(new Matrix4x3d().lookAt(new Vector3d(), new Vector3d(dir).negate(), up).invert(), dest)

      Specified by:
      rotateTowards in interface Matrix4x3dc
      Parameters:
      dir - the direction to rotate towards
      up - the up vector
      dest - will hold the result
      Returns:
      dest
      See Also:
    • rotateTowards

      public Matrix4x3d rotateTowards(Vector3dc dir, Vector3dc up)
      Apply a model transformation to this matrix for a right-handed coordinate system, that aligns the local +Z axis with dir.

      If M is this matrix and L the lookat matrix, then the new matrix will be M * L. So when transforming a vector v with the new matrix by using M * L * v, the lookat transformation will be applied first!

      In order to set the matrix to a rotation transformation without post-multiplying it, use rotationTowards().

      This method is equivalent to calling: mul(new Matrix4x3d().lookAt(new Vector3d(), new Vector3d(dir).negate(), up).invert())

      Parameters:
      dir - the direction to orient towards
      up - the up vector
      Returns:
      this
      See Also:
    • rotateTowards

      public Matrix4x3d rotateTowards(double dirX, double dirY, double dirZ, double upX, double upY, double upZ)
      Apply a model transformation to this matrix for a right-handed coordinate system, that aligns the local +Z axis with (dirX, dirY, dirZ).

      If M is this matrix and L the lookat matrix, then the new matrix will be M * L. So when transforming a vector v with the new matrix by using M * L * v, the lookat transformation will be applied first!

      In order to set the matrix to a rotation transformation without post-multiplying it, use rotationTowards().

      This method is equivalent to calling: mul(new Matrix4x3d().lookAt(0, 0, 0, -dirX, -dirY, -dirZ, upX, upY, upZ).invert())

      Parameters:
      dirX - the x-coordinate of the direction to rotate towards
      dirY - the y-coordinate of the direction to rotate towards
      dirZ - the z-coordinate of the direction to rotate towards
      upX - the x-coordinate of the up vector
      upY - the y-coordinate of the up vector
      upZ - the z-coordinate of the up vector
      Returns:
      this
      See Also:
    • rotateTowards

      public Matrix4x3d rotateTowards(double dirX, double dirY, double dirZ, double upX, double upY, double upZ, Matrix4x3d dest)
      Apply a model transformation to this matrix for a right-handed coordinate system, that aligns the local +Z axis with (dirX, dirY, dirZ) and store the result in dest.

      If M is this matrix and L the lookat matrix, then the new matrix will be M * L. So when transforming a vector v with the new matrix by using M * L * v, the lookat transformation will be applied first!

      In order to set the matrix to a rotation transformation without post-multiplying it, use rotationTowards().

      This method is equivalent to calling: mul(new Matrix4x3d().lookAt(0, 0, 0, -dirX, -dirY, -dirZ, upX, upY, upZ).invert(), dest)

      Specified by:
      rotateTowards in interface Matrix4x3dc
      Parameters:
      dirX - the x-coordinate of the direction to rotate towards
      dirY - the y-coordinate of the direction to rotate towards
      dirZ - the z-coordinate of the direction to rotate towards
      upX - the x-coordinate of the up vector
      upY - the y-coordinate of the up vector
      upZ - the z-coordinate of the up vector
      dest - will hold the result
      Returns:
      dest
      See Also:
    • rotationTowards

      public Matrix4x3d rotationTowards(Vector3dc dir, Vector3dc up)
      Set this matrix to a model transformation for a right-handed coordinate system, that aligns the local -z axis with dir.

      In order to apply the rotation transformation to a previous existing transformation, use rotateTowards.

      This method is equivalent to calling: setLookAt(new Vector3d(), new Vector3d(dir).negate(), up).invert()

      Parameters:
      dir - the direction to orient the local -z axis towards
      up - the up vector
      Returns:
      this
      See Also:
    • rotationTowards

      public Matrix4x3d rotationTowards(double dirX, double dirY, double dirZ, double upX, double upY, double upZ)
      Set this matrix to a model transformation for a right-handed coordinate system, that aligns the local -z axis with (dirX, dirY, dirZ).

      In order to apply the rotation transformation to a previous existing transformation, use rotateTowards.

      This method is equivalent to calling: setLookAt(0, 0, 0, -dirX, -dirY, -dirZ, upX, upY, upZ).invert()

      Parameters:
      dirX - the x-coordinate of the direction to rotate towards
      dirY - the y-coordinate of the direction to rotate towards
      dirZ - the z-coordinate of the direction to rotate towards
      upX - the x-coordinate of the up vector
      upY - the y-coordinate of the up vector
      upZ - the z-coordinate of the up vector
      Returns:
      this
      See Also:
    • translationRotateTowards

      public Matrix4x3d translationRotateTowards(Vector3dc pos, Vector3dc dir, Vector3dc up)
      Set this matrix to a model transformation for a right-handed coordinate system, that translates to the given pos and aligns the local -z axis with dir.

      This method is equivalent to calling: translation(pos).rotateTowards(dir, up)

      Parameters:
      pos - the position to translate to
      dir - the direction to rotate towards
      up - the up vector
      Returns:
      this
      See Also:
    • translationRotateTowards

      public Matrix4x3d translationRotateTowards(double posX, double posY, double posZ, double dirX, double dirY, double dirZ, double upX, double upY, double upZ)
      Set this matrix to a model transformation for a right-handed coordinate system, that translates to the given (posX, posY, posZ) and aligns the local -z axis with (dirX, dirY, dirZ).

      This method is equivalent to calling: translation(posX, posY, posZ).rotateTowards(dirX, dirY, dirZ, upX, upY, upZ)

      Parameters:
      posX - the x-coordinate of the position to translate to
      posY - the y-coordinate of the position to translate to
      posZ - the z-coordinate of the position to translate to
      dirX - the x-coordinate of the direction to rotate towards
      dirY - the y-coordinate of the direction to rotate towards
      dirZ - the z-coordinate of the direction to rotate towards
      upX - the x-coordinate of the up vector
      upY - the y-coordinate of the up vector
      upZ - the z-coordinate of the up vector
      Returns:
      this
      See Also:
    • getEulerAnglesZYX

      public Vector3d getEulerAnglesZYX(Vector3d dest)
      Description copied from interface: Matrix4x3dc
      Extract the Euler angles from the rotation represented by the left 3x3 submatrix of this and store the extracted Euler angles in dest.

      This method assumes that the left 3x3 submatrix of this only represents a rotation without scaling.

      The Euler angles are always returned as the angle around X in the Vector3d.x field, the angle around Y in the Vector3d.y field and the angle around Z in the Vector3d.z field of the supplied Vector3d instance.

      Note that the returned Euler angles must be applied in the order Z * Y * X to obtain the identical matrix. This means that calling rotateZYX(double, double, double) using the obtained Euler angles will yield the same rotation as the original matrix from which the Euler angles were obtained, so in the below code the matrix m2 should be identical to m (disregarding possible floating-point inaccuracies).

       Matrix4x3d m = ...; // <- matrix only representing rotation
       Matrix4x3d n = new Matrix4x3d();
       n.rotateZYX(m.getEulerAnglesZYX(new Vector3d()));
       

      Reference: http://en.wikipedia.org/

      Specified by:
      getEulerAnglesZYX in interface Matrix4x3dc
      Parameters:
      dest - will hold the extracted Euler angles
      Returns:
      dest
    • getEulerAnglesXYZ

      public Vector3d getEulerAnglesXYZ(Vector3d dest)
      Description copied from interface: Matrix4x3dc
      Extract the Euler angles from the rotation represented by the left 3x3 submatrix of this and store the extracted Euler angles in dest.

      This method assumes that the left 3x3 submatrix of this only represents a rotation without scaling.

      The Euler angles are always returned as the angle around X in the Vector3d.x field, the angle around Y in the Vector3d.y field and the angle around Z in the Vector3d.z field of the supplied Vector3d instance.

      Note that the returned Euler angles must be applied in the order X * Y * Z to obtain the identical matrix. This means that calling rotateXYZ(double, double, double) using the obtained Euler angles will yield the same rotation as the original matrix from which the Euler angles were obtained, so in the below code the matrix m2 should be identical to m (disregarding possible floating-point inaccuracies).

       Matrix4x3d m = ...; // <- matrix only representing rotation
       Matrix4x3d n = new Matrix4x3d();
       n.rotateXYZ(m.getEulerAnglesXYZ(new Vector3d()));
       

      Reference: http://en.wikipedia.org/

      Specified by:
      getEulerAnglesXYZ in interface Matrix4x3dc
      Parameters:
      dest - will hold the extracted Euler angles
      Returns:
      dest
    • obliqueZ

      public Matrix4x3d obliqueZ(double a, double b)
      Apply an oblique projection transformation to this matrix with the given values for a and b.

      If M is this matrix and O the oblique transformation matrix, then the new matrix will be M * O. So when transforming a vector v with the new matrix by using M * O * v, the oblique transformation will be applied first!

      The oblique transformation is defined as:

       x' = x + a*z
       y' = y + a*z
       z' = z
       
      or in matrix form:
       1 0 a 0
       0 1 b 0
       0 0 1 0
       
      Parameters:
      a - the value for the z factor that applies to x
      b - the value for the z factor that applies to y
      Returns:
      this
    • obliqueZ

      public Matrix4x3d obliqueZ(double a, double b, Matrix4x3d dest)
      Apply an oblique projection transformation to this matrix with the given values for a and b and store the result in dest.

      If M is this matrix and O the oblique transformation matrix, then the new matrix will be M * O. So when transforming a vector v with the new matrix by using M * O * v, the oblique transformation will be applied first!

      The oblique transformation is defined as:

       x' = x + a*z
       y' = y + a*z
       z' = z
       
      or in matrix form:
       1 0 a 0
       0 1 b 0
       0 0 1 0
       
      Specified by:
      obliqueZ in interface Matrix4x3dc
      Parameters:
      a - the value for the z factor that applies to x
      b - the value for the z factor that applies to y
      dest - will hold the result
      Returns:
      dest
    • mapXZY

      public Matrix4x3d mapXZY()
      Multiply this by the matrix
       1 0 0 0
       0 0 1 0
       0 1 0 0
       
      Returns:
      this
    • mapXZY

      public Matrix4x3d mapXZY(Matrix4x3d dest)
      Description copied from interface: Matrix4x3dc
      Multiply this by the matrix
       1 0 0 0
       0 0 1 0
       0 1 0 0
       
      and store the result in dest.
      Specified by:
      mapXZY in interface Matrix4x3dc
      Parameters:
      dest - will hold the result
      Returns:
      dest
    • mapXZnY

      public Matrix4x3d mapXZnY()
      Multiply this by the matrix
       1 0  0 0
       0 0 -1 0
       0 1  0 0
       
      Returns:
      this
    • mapXZnY

      public Matrix4x3d mapXZnY(Matrix4x3d dest)
      Description copied from interface: Matrix4x3dc
      Multiply this by the matrix
       1 0  0 0
       0 0 -1 0
       0 1  0 0
       
      and store the result in dest.
      Specified by:
      mapXZnY in interface Matrix4x3dc
      Parameters:
      dest - will hold the result
      Returns:
      dest
    • mapXnYnZ

      public Matrix4x3d mapXnYnZ()
      Multiply this by the matrix
       1  0  0 0
       0 -1  0 0
       0  0 -1 0
       
      Returns:
      this
    • mapXnYnZ

      public Matrix4x3d mapXnYnZ(Matrix4x3d dest)
      Description copied from interface: Matrix4x3dc
      Multiply this by the matrix
       1  0  0 0
       0 -1  0 0
       0  0 -1 0
       
      and store the result in dest.
      Specified by:
      mapXnYnZ in interface Matrix4x3dc
      Parameters:
      dest - will hold the result
      Returns:
      dest
    • mapXnZY

      public Matrix4x3d mapXnZY()
      Multiply this by the matrix
       1  0 0 0
       0  0 1 0
       0 -1 0 0
       
      Returns:
      this
    • mapXnZY

      public Matrix4x3d mapXnZY(Matrix4x3d dest)
      Description copied from interface: Matrix4x3dc
      Multiply this by the matrix
       1  0 0 0
       0  0 1 0
       0 -1 0 0
       
      and store the result in dest.
      Specified by:
      mapXnZY in interface Matrix4x3dc
      Parameters:
      dest - will hold the result
      Returns:
      dest
    • mapXnZnY

      public Matrix4x3d mapXnZnY()
      Multiply this by the matrix
       1  0  0 0
       0  0 -1 0
       0 -1  0 0
       
      Returns:
      this
    • mapXnZnY

      public Matrix4x3d mapXnZnY(Matrix4x3d dest)
      Description copied from interface: Matrix4x3dc
      Multiply this by the matrix
       1  0  0 0
       0  0 -1 0
       0 -1  0 0
       
      and store the result in dest.
      Specified by:
      mapXnZnY in interface Matrix4x3dc
      Parameters:
      dest - will hold the result
      Returns:
      dest
    • mapYXZ

      public Matrix4x3d mapYXZ()
      Multiply this by the matrix
       0 1 0 0
       1 0 0 0
       0 0 1 0
       
      Returns:
      this
    • mapYXZ

      public Matrix4x3d mapYXZ(Matrix4x3d dest)
      Description copied from interface: Matrix4x3dc
      Multiply this by the matrix
       0 1 0 0
       1 0 0 0
       0 0 1 0
       
      and store the result in dest.
      Specified by:
      mapYXZ in interface Matrix4x3dc
      Parameters:
      dest - will hold the result
      Returns:
      dest
    • mapYXnZ

      public Matrix4x3d mapYXnZ()
      Multiply this by the matrix
       0 1  0 0
       1 0  0 0
       0 0 -1 0
       
      Returns:
      this
    • mapYXnZ

      public Matrix4x3d mapYXnZ(Matrix4x3d dest)
      Description copied from interface: Matrix4x3dc
      Multiply this by the matrix
       0 1  0 0
       1 0  0 0
       0 0 -1 0
       
      and store the result in dest.
      Specified by:
      mapYXnZ in interface Matrix4x3dc
      Parameters:
      dest - will hold the result
      Returns:
      dest
    • mapYZX

      public Matrix4x3d mapYZX()
      Multiply this by the matrix
       0 0 1 0
       1 0 0 0
       0 1 0 0
       
      Returns:
      this
    • mapYZX

      public Matrix4x3d mapYZX(Matrix4x3d dest)
      Description copied from interface: Matrix4x3dc
      Multiply this by the matrix
       0 0 1 0
       1 0 0 0
       0 1 0 0
       
      and store the result in dest.
      Specified by:
      mapYZX in interface Matrix4x3dc
      Parameters:
      dest - will hold the result
      Returns:
      dest
    • mapYZnX

      public Matrix4x3d mapYZnX()
      Multiply this by the matrix
       0 0 -1 0
       1 0  0 0
       0 1  0 0
       
      Returns:
      this
    • mapYZnX

      public Matrix4x3d mapYZnX(Matrix4x3d dest)
      Description copied from interface: Matrix4x3dc
      Multiply this by the matrix
       0 0 -1 0
       1 0  0 0
       0 1  0 0
       
      and store the result in dest.
      Specified by:
      mapYZnX in interface Matrix4x3dc
      Parameters:
      dest - will hold the result
      Returns:
      dest
    • mapYnXZ

      public Matrix4x3d mapYnXZ()
      Multiply this by the matrix
       0 -1 0 0
       1  0 0 0
       0  0 1 0
       
      Returns:
      this
    • mapYnXZ

      public Matrix4x3d mapYnXZ(Matrix4x3d dest)
      Description copied from interface: Matrix4x3dc
      Multiply this by the matrix
       0 -1 0 0
       1  0 0 0
       0  0 1 0
       
      and store the result in dest.
      Specified by:
      mapYnXZ in interface Matrix4x3dc
      Parameters:
      dest - will hold the result
      Returns:
      dest
    • mapYnXnZ

      public Matrix4x3d mapYnXnZ()
      Multiply this by the matrix
       0 -1  0 0
       1  0  0 0
       0  0 -1 0
       
      Returns:
      this
    • mapYnXnZ

      public Matrix4x3d mapYnXnZ(Matrix4x3d dest)
      Description copied from interface: Matrix4x3dc
      Multiply this by the matrix
       0 -1  0 0
       1  0  0 0
       0  0 -1 0
       
      and store the result in dest.
      Specified by:
      mapYnXnZ in interface Matrix4x3dc
      Parameters:
      dest - will hold the result
      Returns:
      dest
    • mapYnZX

      public Matrix4x3d mapYnZX()
      Multiply this by the matrix
       0  0 1 0
       1  0 0 0
       0 -1 0 0
       
      Returns:
      this
    • mapYnZX

      public Matrix4x3d mapYnZX(Matrix4x3d dest)
      Description copied from interface: Matrix4x3dc
      Multiply this by the matrix
       0  0 1 0
       1  0 0 0
       0 -1 0 0
       
      and store the result in dest.
      Specified by:
      mapYnZX in interface Matrix4x3dc
      Parameters:
      dest - will hold the result
      Returns:
      dest
    • mapYnZnX

      public Matrix4x3d mapYnZnX()
      Multiply this by the matrix
       0  0 -1 0
       1  0  0 0
       0 -1  0 0
       
      Returns:
      this
    • mapYnZnX

      public Matrix4x3d mapYnZnX(Matrix4x3d dest)
      Description copied from interface: Matrix4x3dc
      Multiply this by the matrix
       0  0 -1 0
       1  0  0 0
       0 -1  0 0
       
      and store the result in dest.
      Specified by:
      mapYnZnX in interface Matrix4x3dc
      Parameters:
      dest - will hold the result
      Returns:
      dest
    • mapZXY

      public Matrix4x3d mapZXY()
      Multiply this by the matrix
       0 1 0 0
       0 0 1 0
       1 0 0 0
       
      Returns:
      this
    • mapZXY

      public Matrix4x3d mapZXY(Matrix4x3d dest)
      Description copied from interface: Matrix4x3dc
      Multiply this by the matrix
       0 1 0 0
       0 0 1 0
       1 0 0 0
       
      and store the result in dest.
      Specified by:
      mapZXY in interface Matrix4x3dc
      Parameters:
      dest - will hold the result
      Returns:
      dest
    • mapZXnY

      public Matrix4x3d mapZXnY()
      Multiply this by the matrix
       0 1  0 0
       0 0 -1 0
       1 0  0 0
       
      Returns:
      this
    • mapZXnY

      public Matrix4x3d mapZXnY(Matrix4x3d dest)
      Description copied from interface: Matrix4x3dc
      Multiply this by the matrix
       0 1  0 0
       0 0 -1 0
       1 0  0 0
       
      and store the result in dest.
      Specified by:
      mapZXnY in interface Matrix4x3dc
      Parameters:
      dest - will hold the result
      Returns:
      dest
    • mapZYX

      public Matrix4x3d mapZYX()
      Multiply this by the matrix
       0 0 1 0
       0 1 0 0
       1 0 0 0
       
      Returns:
      this
    • mapZYX

      public Matrix4x3d mapZYX(Matrix4x3d dest)
      Description copied from interface: Matrix4x3dc
      Multiply this by the matrix
       0 0 1 0
       0 1 0 0
       1 0 0 0
       
      and store the result in dest.
      Specified by:
      mapZYX in interface Matrix4x3dc
      Parameters:
      dest - will hold the result
      Returns:
      dest
    • mapZYnX

      public Matrix4x3d mapZYnX()
      Multiply this by the matrix
       0 0 -1 0
       0 1  0 0
       1 0  0 0
       
      Returns:
      this
    • mapZYnX

      public Matrix4x3d mapZYnX(Matrix4x3d dest)
      Description copied from interface: Matrix4x3dc
      Multiply this by the matrix
       0 0 -1 0
       0 1  0 0
       1 0  0 0
       
      and store the result in dest.
      Specified by:
      mapZYnX in interface Matrix4x3dc
      Parameters:
      dest - will hold the result
      Returns:
      dest
    • mapZnXY

      public Matrix4x3d mapZnXY()
      Multiply this by the matrix
       0 -1 0 0
       0  0 1 0
       1  0 0 0
       
      Returns:
      this
    • mapZnXY

      public Matrix4x3d mapZnXY(Matrix4x3d dest)
      Description copied from interface: Matrix4x3dc
      Multiply this by the matrix
       0 -1 0 0
       0  0 1 0
       1  0 0 0
       
      and store the result in dest.
      Specified by:
      mapZnXY in interface Matrix4x3dc
      Parameters:
      dest - will hold the result
      Returns:
      dest
    • mapZnXnY

      public Matrix4x3d mapZnXnY()
      Multiply this by the matrix
       0 -1  0 0
       0  0 -1 0
       1  0  0 0
       
      Returns:
      this
    • mapZnXnY

      public Matrix4x3d mapZnXnY(Matrix4x3d dest)
      Description copied from interface: Matrix4x3dc
      Multiply this by the matrix
       0 -1  0 0
       0  0 -1 0
       1  0  0 0
       
      and store the result in dest.
      Specified by:
      mapZnXnY in interface Matrix4x3dc
      Parameters:
      dest - will hold the result
      Returns:
      dest
    • mapZnYX

      public Matrix4x3d mapZnYX()
      Multiply this by the matrix
       0  0 1 0
       0 -1 0 0
       1  0 0 0
       
      Returns:
      this
    • mapZnYX

      public Matrix4x3d mapZnYX(Matrix4x3d dest)
      Description copied from interface: Matrix4x3dc
      Multiply this by the matrix
       0  0 1 0
       0 -1 0 0
       1  0 0 0
       
      and store the result in dest.
      Specified by:
      mapZnYX in interface Matrix4x3dc
      Parameters:
      dest - will hold the result
      Returns:
      dest
    • mapZnYnX

      public Matrix4x3d mapZnYnX()
      Multiply this by the matrix
       0  0 -1 0
       0 -1  0 0
       1  0  0 0
       
      Returns:
      this
    • mapZnYnX

      public Matrix4x3d mapZnYnX(Matrix4x3d dest)
      Description copied from interface: Matrix4x3dc
      Multiply this by the matrix
       0  0 -1 0
       0 -1  0 0
       1  0  0 0
       
      and store the result in dest.
      Specified by:
      mapZnYnX in interface Matrix4x3dc
      Parameters:
      dest - will hold the result
      Returns:
      dest
    • mapnXYnZ

      public Matrix4x3d mapnXYnZ()
      Multiply this by the matrix
       -1 0  0 0
        0 1  0 0
        0 0 -1 0
       
      Returns:
      this
    • mapnXYnZ

      public Matrix4x3d mapnXYnZ(Matrix4x3d dest)
      Description copied from interface: Matrix4x3dc
      Multiply this by the matrix
       -1 0  0 0
        0 1  0 0
        0 0 -1 0
       
      and store the result in dest.
      Specified by:
      mapnXYnZ in interface Matrix4x3dc
      Parameters:
      dest - will hold the result
      Returns:
      dest
    • mapnXZY

      public Matrix4x3d mapnXZY()
      Multiply this by the matrix
       -1 0 0 0
        0 0 1 0
        0 1 0 0
       
      Returns:
      this
    • mapnXZY

      public Matrix4x3d mapnXZY(Matrix4x3d dest)
      Description copied from interface: Matrix4x3dc
      Multiply this by the matrix
       -1 0 0 0
        0 0 1 0
        0 1 0 0
       
      and store the result in dest.
      Specified by:
      mapnXZY in interface Matrix4x3dc
      Parameters:
      dest - will hold the result
      Returns:
      dest
    • mapnXZnY

      public Matrix4x3d mapnXZnY()
      Multiply this by the matrix
       -1 0  0 0
        0 0 -1 0
        0 1  0 0
       
      Returns:
      this
    • mapnXZnY

      public Matrix4x3d mapnXZnY(Matrix4x3d dest)
      Description copied from interface: Matrix4x3dc
      Multiply this by the matrix
       -1 0  0 0
        0 0 -1 0
        0 1  0 0
       
      and store the result in dest.
      Specified by:
      mapnXZnY in interface Matrix4x3dc
      Parameters:
      dest - will hold the result
      Returns:
      dest
    • mapnXnYZ

      public Matrix4x3d mapnXnYZ()
      Multiply this by the matrix
       -1  0 0 0
        0 -1 0 0
        0  0 1 0
       
      Returns:
      this
    • mapnXnYZ

      public Matrix4x3d mapnXnYZ(Matrix4x3d dest)
      Description copied from interface: Matrix4x3dc
      Multiply this by the matrix
       -1  0 0 0
        0 -1 0 0
        0  0 1 0
       
      and store the result in dest.
      Specified by:
      mapnXnYZ in interface Matrix4x3dc
      Parameters:
      dest - will hold the result
      Returns:
      dest
    • mapnXnYnZ

      public Matrix4x3d mapnXnYnZ()
      Multiply this by the matrix
       -1  0  0 0
        0 -1  0 0
        0  0 -1 0
       
      Returns:
      this
    • mapnXnYnZ

      public Matrix4x3d mapnXnYnZ(Matrix4x3d dest)
      Description copied from interface: Matrix4x3dc
      Multiply this by the matrix
       -1  0  0 0
        0 -1  0 0
        0  0 -1 0
       
      and store the result in dest.
      Specified by:
      mapnXnYnZ in interface Matrix4x3dc
      Parameters:
      dest - will hold the result
      Returns:
      dest
    • mapnXnZY

      public Matrix4x3d mapnXnZY()
      Multiply this by the matrix
       -1  0 0 0
        0  0 1 0
        0 -1 0 0
       
      Returns:
      this
    • mapnXnZY

      public Matrix4x3d mapnXnZY(Matrix4x3d dest)
      Description copied from interface: Matrix4x3dc
      Multiply this by the matrix
       -1  0 0 0
        0  0 1 0
        0 -1 0 0
       
      and store the result in dest.
      Specified by:
      mapnXnZY in interface Matrix4x3dc
      Parameters:
      dest - will hold the result
      Returns:
      dest
    • mapnXnZnY

      public Matrix4x3d mapnXnZnY()
      Multiply this by the matrix
       -1  0  0 0
        0  0 -1 0
        0 -1  0 0
       
      Returns:
      this
    • mapnXnZnY

      public Matrix4x3d mapnXnZnY(Matrix4x3d dest)
      Description copied from interface: Matrix4x3dc
      Multiply this by the matrix
       -1  0  0 0
        0  0 -1 0
        0 -1  0 0
       
      and store the result in dest.
      Specified by:
      mapnXnZnY in interface Matrix4x3dc
      Parameters:
      dest - will hold the result
      Returns:
      dest
    • mapnYXZ

      public Matrix4x3d mapnYXZ()
      Multiply this by the matrix
        0 1 0 0
       -1 0 0 0
        0 0 1 0
       
      Returns:
      this
    • mapnYXZ

      public Matrix4x3d mapnYXZ(Matrix4x3d dest)
      Description copied from interface: Matrix4x3dc
      Multiply this by the matrix
        0 1 0 0
       -1 0 0 0
        0 0 1 0
       
      and store the result in dest.
      Specified by:
      mapnYXZ in interface Matrix4x3dc
      Parameters:
      dest - will hold the result
      Returns:
      dest
    • mapnYXnZ

      public Matrix4x3d mapnYXnZ()
      Multiply this by the matrix
        0 1  0 0
       -1 0  0 0
        0 0 -1 0
       
      Returns:
      this
    • mapnYXnZ

      public Matrix4x3d mapnYXnZ(Matrix4x3d dest)
      Description copied from interface: Matrix4x3dc
      Multiply this by the matrix
        0 1  0 0
       -1 0  0 0
        0 0 -1 0
       
      and store the result in dest.
      Specified by:
      mapnYXnZ in interface Matrix4x3dc
      Parameters:
      dest - will hold the result
      Returns:
      dest
    • mapnYZX

      public Matrix4x3d mapnYZX()
      Multiply this by the matrix
        0 0 1 0
       -1 0 0 0
        0 1 0 0
       
      Returns:
      this
    • mapnYZX

      public Matrix4x3d mapnYZX(Matrix4x3d dest)
      Description copied from interface: Matrix4x3dc
      Multiply this by the matrix
        0 0 1 0
       -1 0 0 0
        0 1 0 0
       
      and store the result in dest.
      Specified by:
      mapnYZX in interface Matrix4x3dc
      Parameters:
      dest - will hold the result
      Returns:
      dest
    • mapnYZnX

      public Matrix4x3d mapnYZnX()
      Multiply this by the matrix
        0 0 -1 0
       -1 0  0 0
        0 1  0 0
       
      Returns:
      this
    • mapnYZnX

      public Matrix4x3d mapnYZnX(Matrix4x3d dest)
      Description copied from interface: Matrix4x3dc
      Multiply this by the matrix
        0 0 -1 0
       -1 0  0 0
        0 1  0 0
       
      and store the result in dest.
      Specified by:
      mapnYZnX in interface Matrix4x3dc
      Parameters:
      dest - will hold the result
      Returns:
      dest
    • mapnYnXZ

      public Matrix4x3d mapnYnXZ()
      Multiply this by the matrix
        0 -1 0 0
       -1  0 0 0
        0  0 1 0
       
      Returns:
      this
    • mapnYnXZ

      public Matrix4x3d mapnYnXZ(Matrix4x3d dest)
      Description copied from interface: Matrix4x3dc
      Multiply this by the matrix
        0 -1 0 0
       -1  0 0 0
        0  0 1 0
       
      and store the result in dest.
      Specified by:
      mapnYnXZ in interface Matrix4x3dc
      Parameters:
      dest - will hold the result
      Returns:
      dest
    • mapnYnXnZ

      public Matrix4x3d mapnYnXnZ()
      Multiply this by the matrix
        0 -1  0 0
       -1  0  0 0
        0  0 -1 0
       
      Returns:
      this
    • mapnYnXnZ

      public Matrix4x3d mapnYnXnZ(Matrix4x3d dest)
      Description copied from interface: Matrix4x3dc
      Multiply this by the matrix
        0 -1  0 0
       -1  0  0 0
        0  0 -1 0
       
      and store the result in dest.
      Specified by:
      mapnYnXnZ in interface Matrix4x3dc
      Parameters:
      dest - will hold the result
      Returns:
      dest
    • mapnYnZX

      public Matrix4x3d mapnYnZX()
      Multiply this by the matrix
        0  0 1 0
       -1  0 0 0
        0 -1 0 0
       
      Returns:
      this
    • mapnYnZX

      public Matrix4x3d mapnYnZX(Matrix4x3d dest)
      Description copied from interface: Matrix4x3dc
      Multiply this by the matrix
        0  0 1 0
       -1  0 0 0
        0 -1 0 0
       
      and store the result in dest.
      Specified by:
      mapnYnZX in interface Matrix4x3dc
      Parameters:
      dest - will hold the result
      Returns:
      dest
    • mapnYnZnX

      public Matrix4x3d mapnYnZnX()
      Multiply this by the matrix
        0  0 -1 0
       -1  0  0 0
        0 -1  0 0
       
      Returns:
      this
    • mapnYnZnX

      public Matrix4x3d mapnYnZnX(Matrix4x3d dest)
      Description copied from interface: Matrix4x3dc
      Multiply this by the matrix
        0  0 -1 0
       -1  0  0 0
        0 -1  0 0
       
      and store the result in dest.
      Specified by:
      mapnYnZnX in interface Matrix4x3dc
      Parameters:
      dest - will hold the result
      Returns:
      dest
    • mapnZXY

      public Matrix4x3d mapnZXY()
      Multiply this by the matrix
        0 1 0 0
        0 0 1 0
       -1 0 0 0
       
      Returns:
      this
    • mapnZXY

      public Matrix4x3d mapnZXY(Matrix4x3d dest)
      Description copied from interface: Matrix4x3dc
      Multiply this by the matrix
        0 1 0 0
        0 0 1 0
       -1 0 0 0
       
      and store the result in dest.
      Specified by:
      mapnZXY in interface Matrix4x3dc
      Parameters:
      dest - will hold the result
      Returns:
      dest
    • mapnZXnY

      public Matrix4x3d mapnZXnY()
      Multiply this by the matrix
        0 1  0 0
        0 0 -1 0
       -1 0  0 0
       
      Returns:
      this
    • mapnZXnY

      public Matrix4x3d mapnZXnY(Matrix4x3d dest)
      Description copied from interface: Matrix4x3dc
      Multiply this by the matrix
        0 1  0 0
        0 0 -1 0
       -1 0  0 0
       
      and store the result in dest.
      Specified by:
      mapnZXnY in interface Matrix4x3dc
      Parameters:
      dest - will hold the result
      Returns:
      dest
    • mapnZYX

      public Matrix4x3d mapnZYX()
      Multiply this by the matrix
        0 0 1 0
        0 1 0 0
       -1 0 0 0
       
      Returns:
      this
    • mapnZYX

      public Matrix4x3d mapnZYX(Matrix4x3d dest)
      Description copied from interface: Matrix4x3dc
      Multiply this by the matrix
        0 0 1 0
        0 1 0 0
       -1 0 0 0
       
      and store the result in dest.
      Specified by:
      mapnZYX in interface Matrix4x3dc
      Parameters:
      dest - will hold the result
      Returns:
      dest
    • mapnZYnX

      public Matrix4x3d mapnZYnX()
      Multiply this by the matrix
        0 0 -1 0
        0 1  0 0
       -1 0  0 0
       
      Returns:
      this
    • mapnZYnX

      public Matrix4x3d mapnZYnX(Matrix4x3d dest)
      Description copied from interface: Matrix4x3dc
      Multiply this by the matrix
        0 0 -1 0
        0 1  0 0
       -1 0  0 0
       
      and store the result in dest.
      Specified by:
      mapnZYnX in interface Matrix4x3dc
      Parameters:
      dest - will hold the result
      Returns:
      dest
    • mapnZnXY

      public Matrix4x3d mapnZnXY()
      Multiply this by the matrix
        0 -1 0 0
        0  0 1 0
       -1  0 0 0
       
      Returns:
      this
    • mapnZnXY

      public Matrix4x3d mapnZnXY(Matrix4x3d dest)
      Description copied from interface: Matrix4x3dc
      Multiply this by the matrix
        0 -1 0 0
        0  0 1 0
       -1  0 0 0
       
      and store the result in dest.
      Specified by:
      mapnZnXY in interface Matrix4x3dc
      Parameters:
      dest - will hold the result
      Returns:
      dest
    • mapnZnXnY

      public Matrix4x3d mapnZnXnY()
      Multiply this by the matrix
        0 -1  0 0
        0  0 -1 0
       -1  0  0 0
       
      Returns:
      this
    • mapnZnXnY

      public Matrix4x3d mapnZnXnY(Matrix4x3d dest)
      Description copied from interface: Matrix4x3dc
      Multiply this by the matrix
        0 -1  0 0
        0  0 -1 0
       -1  0  0 0
       
      and store the result in dest.
      Specified by:
      mapnZnXnY in interface Matrix4x3dc
      Parameters:
      dest - will hold the result
      Returns:
      dest
    • mapnZnYX

      public Matrix4x3d mapnZnYX()
      Multiply this by the matrix
        0  0 1 0
        0 -1 0 0
       -1  0 0 0
       
      Returns:
      this
    • mapnZnYX

      public Matrix4x3d mapnZnYX(Matrix4x3d dest)
      Description copied from interface: Matrix4x3dc
      Multiply this by the matrix
        0  0 1 0
        0 -1 0 0
       -1  0 0 0
       
      and store the result in dest.
      Specified by:
      mapnZnYX in interface Matrix4x3dc
      Parameters:
      dest - will hold the result
      Returns:
      dest
    • mapnZnYnX

      public Matrix4x3d mapnZnYnX()
      Multiply this by the matrix
        0  0 -1 0
        0 -1  0 0
       -1  0  0 0
       
      Returns:
      this
    • mapnZnYnX

      public Matrix4x3d mapnZnYnX(Matrix4x3d dest)
      Description copied from interface: Matrix4x3dc
      Multiply this by the matrix
        0  0 -1 0
        0 -1  0 0
       -1  0  0 0
       
      and store the result in dest.
      Specified by:
      mapnZnYnX in interface Matrix4x3dc
      Parameters:
      dest - will hold the result
      Returns:
      dest
    • negateX

      public Matrix4x3d negateX()
      Multiply this by the matrix
       -1 0 0 0
        0 1 0 0
        0 0 1 0
       
      Returns:
      this
    • negateX

      public Matrix4x3d negateX(Matrix4x3d dest)
      Description copied from interface: Matrix4x3dc
      Multiply this by the matrix
       -1 0 0 0
        0 1 0 0
        0 0 1 0
       
      and store the result in dest.
      Specified by:
      negateX in interface Matrix4x3dc
      Parameters:
      dest - will hold the result
      Returns:
      dest
    • negateY

      public Matrix4x3d negateY()
      Multiply this by the matrix
       1  0 0 0
       0 -1 0 0
       0  0 1 0
       
      Returns:
      this
    • negateY

      public Matrix4x3d negateY(Matrix4x3d dest)
      Description copied from interface: Matrix4x3dc
      Multiply this by the matrix
       1  0 0 0
       0 -1 0 0
       0  0 1 0
       
      and store the result in dest.
      Specified by:
      negateY in interface Matrix4x3dc
      Parameters:
      dest - will hold the result
      Returns:
      dest
    • negateZ

      public Matrix4x3d negateZ()
      Multiply this by the matrix
       1 0  0 0
       0 1  0 0
       0 0 -1 0
       
      Returns:
      this
    • negateZ

      public Matrix4x3d negateZ(Matrix4x3d dest)
      Description copied from interface: Matrix4x3dc
      Multiply this by the matrix
       1 0  0 0
       0 1  0 0
       0 0 -1 0
       
      and store the result in dest.
      Specified by:
      negateZ in interface Matrix4x3dc
      Parameters:
      dest - will hold the result
      Returns:
      dest
    • isFinite

      public boolean isFinite()
      Description copied from interface: Matrix4x3dc
      Determine whether all matrix elements are finite floating-point values, that is, they are not NaN and not infinity.
      Specified by:
      isFinite in interface Matrix4x3dc
      Returns:
      true if all components are finite floating-point values; false otherwise
    • clone

      public Object clone() throws CloneNotSupportedException
      Overrides:
      clone in class Object
      Throws:
      CloneNotSupportedException