Uses of Class
org.joml.Matrix4x3f

Packages that use Matrix4x3f
Package
Description
Contains all classes of JOML.
  • Uses of Matrix4x3f in org.joml

    Subclasses of Matrix4x3f in org.joml
    Modifier and Type
    Class
    Description
    class 
    A stack of many Matrix4x3f instances.
    Methods in org.joml that return Matrix4x3f
    Modifier and Type
    Method
    Description
    Matrix4x3f.add(Matrix4x3fc other)
    Component-wise add this and other.
    Matrix4x3f.add(Matrix4x3fc other, Matrix4x3f dest)
     
    Matrix4x3fc.add(Matrix4x3fc other, Matrix4x3f dest)
    Component-wise add this and other and store the result in dest.
    Matrix4x3f.arcball(float radius, float centerX, float centerY, float centerZ, float angleX, float angleY)
    Apply an arcball view transformation to this matrix with the given radius and center (centerX, centerY, centerZ) position of the arcball and the specified X and Y rotation angles.
    Matrix4x3f.arcball(float radius, float centerX, float centerY, float centerZ, float angleX, float angleY, Matrix4x3f dest)
     
    Matrix4x3f.arcball(float radius, Vector3fc center, float angleX, float angleY)
    Apply an arcball view transformation to this matrix with the given radius and center position of the arcball and the specified X and Y rotation angles.
    Matrix4x3f.arcball(float radius, Vector3fc center, float angleX, float angleY, Matrix4x3f dest)
     
    Matrix4x3fc.arcball(float radius, float centerX, float centerY, float centerZ, float angleX, float angleY, Matrix4x3f dest)
    Apply an arcball view transformation to this matrix with the given radius and center (centerX, centerY, centerZ) position of the arcball and the specified X and Y rotation angles, and store the result in dest.
    Matrix4x3fc.arcball(float radius, Vector3fc center, float angleX, float angleY, Matrix4x3f dest)
    Apply an arcball view transformation to this matrix with the given radius and center position of the arcball and the specified X and Y rotation angles, and store the result in dest.
    Matrix4x3f.assume(int properties)
    Assume the given properties about this matrix.
    Matrix4x3f.billboardCylindrical(Vector3fc objPos, Vector3fc targetPos, Vector3fc up)
    Set this matrix to a cylindrical billboard transformation that rotates the local +Z axis of a given object with position objPos towards a target position at targetPos while constraining a cylindrical rotation around the given up vector.
    Matrix4x3f.billboardSpherical(Vector3fc objPos, Vector3fc targetPos)
    Set this matrix to a spherical billboard transformation that rotates the local +Z axis of a given object with position objPos towards a target position at targetPos using a shortest arc rotation by not preserving any up vector of the object.
    Matrix4x3f.billboardSpherical(Vector3fc objPos, Vector3fc targetPos, Vector3fc up)
    Set this matrix to a spherical billboard transformation that rotates the local +Z axis of a given object with position objPos towards a target position at targetPos.
    Matrix4x3f.cofactor3x3()
    Compute the cofactor matrix of the left 3x3 submatrix of this.
    Matrix4x3f.cofactor3x3(Matrix4x3f dest)
    Compute the cofactor matrix of the left 3x3 submatrix of this and store it into dest.
    Matrix4x3fc.cofactor3x3(Matrix4x3f dest)
    Compute the cofactor matrix of the left 3x3 submatrix of this and store it into dest.
    Matrix4x3f.determineProperties()
    Compute and set the matrix properties returned by properties() based on the current matrix element values.
    Matrix4x3f.fma(Matrix4x3fc other, float otherFactor)
    Component-wise add this and other by first multiplying each component of other by otherFactor and adding that result to this.
    Matrix4x3f.fma(Matrix4x3fc other, float otherFactor, Matrix4x3f dest)
     
    Matrix4x3fc.fma(Matrix4x3fc other, float otherFactor, Matrix4x3f dest)
    Component-wise add this and other by first multiplying each component of other by otherFactor, adding that to this and storing the final result in dest.
    Matrix4x3f.get(Matrix4x3f dest)
    Get the current values of this matrix and store them into dest.
    Matrix4x3fc.get(Matrix4x3f dest)
    Get the current values of this matrix and store them into dest.
    Quaternionf.get(Matrix4x3f dest)
     
    Quaternionfc.get(Matrix4x3f dest)
    Set the given destination matrix to the rotation represented by this.
    Matrix4f.get4x3(Matrix4x3f dest)
     
    Matrix4fc.get4x3(Matrix4x3f dest)
    Get the current values of the upper 4x3 submatrix of this matrix and store them into dest.
    Matrix4x3f.identity()
    Reset this matrix to the identity.
    Matrix4x3f.invert()
    Invert this matrix.
    Matrix4x3f.invert(Matrix4x3f dest)
     
    Matrix4x3fc.invert(Matrix4x3f dest)
    Invert this matrix and write the result into dest.
    Matrix4x3f.invertOrtho()
    Invert this orthographic projection matrix.
    Matrix4x3f.invertOrtho(Matrix4x3f dest)
     
    Matrix4x3fc.invertOrtho(Matrix4x3f dest)
    Invert this orthographic projection matrix and store the result into the given dest.
    Matrix4x3f.lerp(Matrix4x3fc other, float t)
    Linearly interpolate this and other using the given interpolation factor t and store the result in this.
    Matrix4x3f.lerp(Matrix4x3fc other, float t, Matrix4x3f dest)
     
    Matrix4x3fc.lerp(Matrix4x3fc other, float t, Matrix4x3f dest)
    Linearly interpolate this and other using the given interpolation factor t and store the result in dest.
    Matrix4x3f.lookAlong(float dirX, float dirY, float dirZ, float upX, float upY, float upZ)
    Apply a rotation transformation to this matrix to make -z point along dir.
    Matrix4x3f.lookAlong(float dirX, float dirY, float dirZ, float upX, float upY, float upZ, Matrix4x3f dest)
    Apply a rotation transformation to this matrix to make -z point along dir and store the result in dest.
    Matrix4x3f.lookAlong(Vector3fc dir, Vector3fc up)
    Apply a rotation transformation to this matrix to make -z point along dir.
    Matrix4x3f.lookAlong(Vector3fc dir, Vector3fc up, Matrix4x3f dest)
    Apply a rotation transformation to this matrix to make -z point along dir and store the result in dest.
    Matrix4x3fc.lookAlong(float dirX, float dirY, float dirZ, float upX, float upY, float upZ, Matrix4x3f dest)
    Apply a rotation transformation to this matrix to make -z point along dir and store the result in dest.
    Matrix4x3fc.lookAlong(Vector3fc dir, Vector3fc up, Matrix4x3f dest)
    Apply a rotation transformation to this matrix to make -z point along dir and store the result in dest.
    Matrix4x3f.lookAt(float eyeX, float eyeY, float eyeZ, float centerX, float centerY, float centerZ, float upX, float upY, float upZ)
    Apply a "lookat" transformation to this matrix for a right-handed coordinate system, that aligns -z with center - eye.
    Matrix4x3f.lookAt(float eyeX, float eyeY, float eyeZ, float centerX, float centerY, float centerZ, float upX, float upY, float upZ, Matrix4x3f dest)
    Apply a "lookat" transformation to this matrix for a right-handed coordinate system, that aligns -z with center - eye and store the result in dest.
    Matrix4x3f.lookAt(Vector3fc eye, Vector3fc center, Vector3fc up)
    Apply a "lookat" transformation to this matrix for a right-handed coordinate system, that aligns -z with center - eye.
    Matrix4x3f.lookAt(Vector3fc eye, Vector3fc center, Vector3fc up, Matrix4x3f dest)
    Apply a "lookat" transformation to this matrix for a right-handed coordinate system, that aligns -z with center - eye and store the result in dest.
    Matrix4x3fc.lookAt(float eyeX, float eyeY, float eyeZ, float centerX, float centerY, float centerZ, float upX, float upY, float upZ, Matrix4x3f dest)
    Apply a "lookat" transformation to this matrix for a right-handed coordinate system, that aligns -z with center - eye and store the result in dest.
    Matrix4x3fc.lookAt(Vector3fc eye, Vector3fc center, Vector3fc up, Matrix4x3f dest)
    Apply a "lookat" transformation to this matrix for a right-handed coordinate system, that aligns -z with center - eye and store the result in dest.
    Matrix4x3f.lookAtLH(float eyeX, float eyeY, float eyeZ, float centerX, float centerY, float centerZ, float upX, float upY, float upZ)
    Apply a "lookat" transformation to this matrix for a left-handed coordinate system, that aligns +z with center - eye.
    Matrix4x3f.lookAtLH(float eyeX, float eyeY, float eyeZ, float centerX, float centerY, float centerZ, float upX, float upY, float upZ, Matrix4x3f dest)
    Apply a "lookat" transformation to this matrix for a left-handed coordinate system, that aligns +z with center - eye and store the result in dest.
    Matrix4x3f.lookAtLH(Vector3fc eye, Vector3fc center, Vector3fc up)
    Apply a "lookat" transformation to this matrix for a left-handed coordinate system, that aligns +z with center - eye.
    Matrix4x3f.lookAtLH(Vector3fc eye, Vector3fc center, Vector3fc up, Matrix4x3f dest)
    Apply a "lookat" transformation to this matrix for a left-handed coordinate system, that aligns +z with center - eye and store the result in dest.
    Matrix4x3fc.lookAtLH(float eyeX, float eyeY, float eyeZ, float centerX, float centerY, float centerZ, float upX, float upY, float upZ, Matrix4x3f dest)
    Apply a "lookat" transformation to this matrix for a left-handed coordinate system, that aligns +z with center - eye and store the result in dest.
    Matrix4x3fc.lookAtLH(Vector3fc eye, Vector3fc center, Vector3fc up, Matrix4x3f dest)
    Apply a "lookat" transformation to this matrix for a left-handed coordinate system, that aligns +z with center - eye and store the result in dest.
    Matrix4x3f.m00(float m00)
    Set the value of the matrix element at column 0 and row 0.
    Matrix4x3f.m01(float m01)
    Set the value of the matrix element at column 0 and row 1.
    Matrix4x3f.m02(float m02)
    Set the value of the matrix element at column 0 and row 2.
    Matrix4x3f.m10(float m10)
    Set the value of the matrix element at column 1 and row 0.
    Matrix4x3f.m11(float m11)
    Set the value of the matrix element at column 1 and row 1.
    Matrix4x3f.m12(float m12)
    Set the value of the matrix element at column 1 and row 2.
    Matrix4x3f.m20(float m20)
    Set the value of the matrix element at column 2 and row 0.
    Matrix4x3f.m21(float m21)
    Set the value of the matrix element at column 2 and row 1.
    Matrix4x3f.m22(float m22)
    Set the value of the matrix element at column 2 and row 2.
    Matrix4x3f.m30(float m30)
    Set the value of the matrix element at column 3 and row 0.
    Matrix4x3f.m31(float m31)
    Set the value of the matrix element at column 3 and row 1.
    Matrix4x3f.m32(float m32)
    Set the value of the matrix element at column 3 and row 2.
    Matrix4x3f.mul(Matrix4x3fc right)
    Multiply this matrix by the supplied right matrix and store the result in this.
    Matrix4x3f.mul(Matrix4x3fc right, Matrix4x3f dest)
     
    Matrix4x3fc.mul(Matrix4x3fc right, Matrix4x3f dest)
    Multiply this matrix by the supplied right matrix and store the result in dest.
    Matrix4x3f.mulComponentWise(Matrix4x3fc other)
    Component-wise multiply this by other.
    Matrix4x3f.mulComponentWise(Matrix4x3fc other, Matrix4x3f dest)
     
    Matrix4x3fc.mulComponentWise(Matrix4x3fc other, Matrix4x3f dest)
    Component-wise multiply this by other and store the result in dest.
    Matrix4x3f.mulOrtho(Matrix4x3fc view)
    Multiply this orthographic projection matrix by the supplied view matrix.
    Matrix4x3f.mulOrtho(Matrix4x3fc view, Matrix4x3f dest)
     
    Matrix4x3fc.mulOrtho(Matrix4x3fc view, Matrix4x3f dest)
    Multiply this orthographic projection matrix by the supplied view matrix and store the result in dest.
    Matrix4x3f.mulTranslation(Matrix4x3fc right, Matrix4x3f dest)
     
    Matrix4x3fc.mulTranslation(Matrix4x3fc right, Matrix4x3f dest)
    Multiply this matrix, which is assumed to only contain a translation, by the supplied right matrix and store the result in dest.
    Matrix4x3f.normal()
    Compute a normal matrix from the left 3x3 submatrix of this and store it into the left 3x3 submatrix of this.
    Matrix4x3f.normal(Matrix4x3f dest)
    Compute a normal matrix from the left 3x3 submatrix of this and store it into the left 3x3 submatrix of dest.
    Matrix4x3fc.normal(Matrix4x3f dest)
    Compute a normal matrix from the left 3x3 submatrix of this and store it into the left 3x3 submatrix of dest.
    Matrix4x3f.normalize3x3()
    Normalize the left 3x3 submatrix of this matrix.
    Matrix4x3f.normalize3x3(Matrix4x3f dest)
     
    Matrix4x3fc.normalize3x3(Matrix4x3f dest)
    Normalize the left 3x3 submatrix of this matrix and store the result in dest.
    Matrix4x3f.obliqueZ(float a, float b)
    Apply an oblique projection transformation to this matrix with the given values for a and b.
    Matrix4x3f.obliqueZ(float a, float b, Matrix4x3f dest)
    Apply an oblique projection transformation to this matrix with the given values for a and b and store the result in dest.
    Matrix4x3fc.obliqueZ(float a, float b, Matrix4x3f dest)
    Apply an oblique projection transformation to this matrix with the given values for a and b and store the result in dest.
    Matrix4x3f.ortho(float left, float right, float bottom, float top, float zNear, float zFar)
    Apply an orthographic projection transformation for a right-handed coordinate system using OpenGL's NDC z range of [-1..+1] to this matrix.
    Matrix4x3f.ortho(float left, float right, float bottom, float top, float zNear, float zFar, boolean zZeroToOne)
    Apply an orthographic projection transformation for a right-handed coordinate system using the given NDC z range to this matrix.
    Matrix4x3f.ortho(float left, float right, float bottom, float top, float zNear, float zFar, boolean zZeroToOne, Matrix4x3f dest)
    Apply an orthographic projection transformation for a right-handed coordinate system using the given NDC z range to this matrix and store the result in dest.
    Matrix4x3f.ortho(float left, float right, float bottom, float top, float zNear, float zFar, Matrix4x3f dest)
    Apply an orthographic projection transformation for a right-handed coordinate system using OpenGL's NDC z range of [-1..+1] to this matrix and store the result in dest.
    Matrix4x3fc.ortho(float left, float right, float bottom, float top, float zNear, float zFar, boolean zZeroToOne, Matrix4x3f dest)
    Apply an orthographic projection transformation for a right-handed coordinate system using the given NDC z range to this matrix and store the result in dest.
    Matrix4x3fc.ortho(float left, float right, float bottom, float top, float zNear, float zFar, Matrix4x3f dest)
    Apply an orthographic projection transformation for a right-handed coordinate system using OpenGL's NDC z range of [-1..+1] to this matrix and store the result in dest.
    Matrix4x3f.ortho2D(float left, float right, float bottom, float top)
    Apply an orthographic projection transformation for a right-handed coordinate system to this matrix.
    Matrix4x3f.ortho2D(float left, float right, float bottom, float top, Matrix4x3f dest)
    Apply an orthographic projection transformation for a right-handed coordinate system to this matrix and store the result in dest.
    Matrix4x3fc.ortho2D(float left, float right, float bottom, float top, Matrix4x3f dest)
    Apply an orthographic projection transformation for a right-handed coordinate system to this matrix and store the result in dest.
    Matrix4x3f.ortho2DLH(float left, float right, float bottom, float top)
    Apply an orthographic projection transformation for a left-handed coordinate system to this matrix.
    Matrix4x3f.ortho2DLH(float left, float right, float bottom, float top, Matrix4x3f dest)
    Apply an orthographic projection transformation for a left-handed coordinate system to this matrix and store the result in dest.
    Matrix4x3fc.ortho2DLH(float left, float right, float bottom, float top, Matrix4x3f dest)
    Apply an orthographic projection transformation for a left-handed coordinate system to this matrix and store the result in dest.
    Matrix4x3f.orthoLH(float left, float right, float bottom, float top, float zNear, float zFar)
    Apply an orthographic projection transformation for a left-handed coordiante system using OpenGL's NDC z range of [-1..+1] to this matrix.
    Matrix4x3f.orthoLH(float left, float right, float bottom, float top, float zNear, float zFar, boolean zZeroToOne)
    Apply an orthographic projection transformation for a left-handed coordiante system using the given NDC z range to this matrix.
    Matrix4x3f.orthoLH(float left, float right, float bottom, float top, float zNear, float zFar, boolean zZeroToOne, Matrix4x3f dest)
    Apply an orthographic projection transformation for a left-handed coordiante system using the given NDC z range to this matrix and store the result in dest.
    Matrix4x3f.orthoLH(float left, float right, float bottom, float top, float zNear, float zFar, Matrix4x3f dest)
    Apply an orthographic projection transformation for a left-handed coordiante system using OpenGL's NDC z range of [-1..+1] to this matrix and store the result in dest.
    Matrix4x3fc.orthoLH(float left, float right, float bottom, float top, float zNear, float zFar, boolean zZeroToOne, Matrix4x3f dest)
    Apply an orthographic projection transformation for a left-handed coordiante system using the given NDC z range to this matrix and store the result in dest.
    Matrix4x3fc.orthoLH(float left, float right, float bottom, float top, float zNear, float zFar, Matrix4x3f dest)
    Apply an orthographic projection transformation for a left-handed coordiante system using OpenGL's NDC z range of [-1..+1] to this matrix and store the result in dest.
    Matrix4x3f.orthoSymmetric(float width, float height, float zNear, float zFar)
    Apply a symmetric orthographic projection transformation for a right-handed coordinate system using OpenGL's NDC z range of [-1..+1] to this matrix.
    Matrix4x3f.orthoSymmetric(float width, float height, float zNear, float zFar, boolean zZeroToOne)
    Apply a symmetric orthographic projection transformation for a right-handed coordinate system using the given NDC z range to this matrix.
    Matrix4x3f.orthoSymmetric(float width, float height, float zNear, float zFar, boolean zZeroToOne, Matrix4x3f dest)
    Apply a symmetric orthographic projection transformation for a right-handed coordinate system using the given NDC z range to this matrix and store the result in dest.
    Matrix4x3f.orthoSymmetric(float width, float height, float zNear, float zFar, Matrix4x3f dest)
    Apply a symmetric orthographic projection transformation for a right-handed coordinate system using OpenGL's NDC z range of [-1..+1] to this matrix and store the result in dest.
    Matrix4x3fc.orthoSymmetric(float width, float height, float zNear, float zFar, boolean zZeroToOne, Matrix4x3f dest)
    Apply a symmetric orthographic projection transformation for a right-handed coordinate system using the given NDC z range to this matrix and store the result in dest.
    Matrix4x3fc.orthoSymmetric(float width, float height, float zNear, float zFar, Matrix4x3f dest)
    Apply a symmetric orthographic projection transformation for a right-handed coordinate system using OpenGL's NDC z range of [-1..+1] to this matrix and store the result in dest.
    Matrix4x3f.orthoSymmetricLH(float width, float height, float zNear, float zFar)
    Apply a symmetric orthographic projection transformation for a left-handed coordinate system using OpenGL's NDC z range of [-1..+1] to this matrix.
    Matrix4x3f.orthoSymmetricLH(float width, float height, float zNear, float zFar, boolean zZeroToOne)
    Apply a symmetric orthographic projection transformation for a left-handed coordinate system using the given NDC z range to this matrix.
    Matrix4x3f.orthoSymmetricLH(float width, float height, float zNear, float zFar, boolean zZeroToOne, Matrix4x3f dest)
    Apply a symmetric orthographic projection transformation for a left-handed coordinate system using the given NDC z range to this matrix and store the result in dest.
    Matrix4x3f.orthoSymmetricLH(float width, float height, float zNear, float zFar, Matrix4x3f dest)
    Apply a symmetric orthographic projection transformation for a left-handed coordinate system using OpenGL's NDC z range of [-1..+1] to this matrix and store the result in dest.
    Matrix4x3fc.orthoSymmetricLH(float width, float height, float zNear, float zFar, boolean zZeroToOne, Matrix4x3f dest)
    Apply a symmetric orthographic projection transformation for a left-handed coordinate system using the given NDC z range to this matrix and store the result in dest.
    Matrix4x3fc.orthoSymmetricLH(float width, float height, float zNear, float zFar, Matrix4x3f dest)
    Apply a symmetric orthographic projection transformation for a left-handed coordinate system using OpenGL's NDC z range of [-1..+1] to this matrix and store the result in dest.
    Matrix4x3f.pick(float x, float y, float width, float height, int[] viewport)
    Apply a picking transformation to this matrix using the given window coordinates (x, y) as the pick center and the given (width, height) as the size of the picking region in window coordinates.
    Matrix4x3f.pick(float x, float y, float width, float height, int[] viewport, Matrix4x3f dest)
     
    Matrix4x3fc.pick(float x, float y, float width, float height, int[] viewport, Matrix4x3f dest)
    Apply a picking transformation to this matrix using the given window coordinates (x, y) as the pick center and the given (width, height) as the size of the picking region in window coordinates, and store the result in dest.
    Matrix4x3f.reflect(float a, float b, float c, float d)
    Apply a mirror/reflection transformation to this matrix that reflects about the given plane specified via the equation x*a + y*b + z*c + d = 0.
    Matrix4x3f.reflect(float nx, float ny, float nz, float px, float py, float pz)
    Apply a mirror/reflection transformation to this matrix that reflects about the given plane specified via the plane normal and a point on the plane.
    Matrix4x3f.reflect(float nx, float ny, float nz, float px, float py, float pz, Matrix4x3f dest)
     
    Matrix4x3f.reflect(float a, float b, float c, float d, Matrix4x3f dest)
     
    Matrix4x3f.reflect(Quaternionfc orientation, Vector3fc point)
    Apply a mirror/reflection transformation to this matrix that reflects about a plane specified via the plane orientation and a point on the plane.
    Matrix4x3f.reflect(Quaternionfc orientation, Vector3fc point, Matrix4x3f dest)
     
    Matrix4x3f.reflect(Vector3fc normal, Vector3fc point)
    Apply a mirror/reflection transformation to this matrix that reflects about the given plane specified via the plane normal and a point on the plane.
    Matrix4x3f.reflect(Vector3fc normal, Vector3fc point, Matrix4x3f dest)
     
    Matrix4x3fc.reflect(float nx, float ny, float nz, float px, float py, float pz, Matrix4x3f dest)
    Apply a mirror/reflection transformation to this matrix that reflects about the given plane specified via the plane normal and a point on the plane, and store the result in dest.
    Matrix4x3fc.reflect(float a, float b, float c, float d, Matrix4x3f dest)
    Apply a mirror/reflection transformation to this matrix that reflects about the given plane specified via the equation x*a + y*b + z*c + d = 0 and store the result in dest.
    Matrix4x3fc.reflect(Quaternionfc orientation, Vector3fc point, Matrix4x3f dest)
    Apply a mirror/reflection transformation to this matrix that reflects about a plane specified via the plane orientation and a point on the plane, and store the result in dest.
    Matrix4x3fc.reflect(Vector3fc normal, Vector3fc point, Matrix4x3f dest)
    Apply a mirror/reflection transformation to this matrix that reflects about the given plane specified via the plane normal and a point on the plane, and store the result in dest.
    Matrix4x3f.reflection(float a, float b, float c, float d)
    Set this matrix to a mirror/reflection transformation that reflects about the given plane specified via the equation x*a + y*b + z*c + d = 0.
    Matrix4x3f.reflection(float nx, float ny, float nz, float px, float py, float pz)
    Set this matrix to a mirror/reflection transformation that reflects about the given plane specified via the plane normal and a point on the plane.
    Matrix4x3f.reflection(Quaternionfc orientation, Vector3fc point)
    Set this matrix to a mirror/reflection transformation that reflects about a plane specified via the plane orientation and a point on the plane.
    Matrix4x3f.reflection(Vector3fc normal, Vector3fc point)
    Set this matrix to a mirror/reflection transformation that reflects about the given plane specified via the plane normal and a point on the plane.
    Matrix4x3f.rotate(float ang, float x, float y, float z)
    Apply rotation to this matrix by rotating the given amount of radians about the specified (x, y, z) axis.
    Matrix4x3f.rotate(float ang, float x, float y, float z, Matrix4x3f dest)
    Apply rotation to this matrix by rotating the given amount of radians about the specified (x, y, z) axis and store the result in dest.
    Matrix4x3f.rotate(float angle, Vector3fc axis)
    Apply a rotation transformation, rotating the given radians about the specified axis, to this matrix.
    Matrix4x3f.rotate(float angle, Vector3fc axis, Matrix4x3f dest)
    Apply a rotation transformation, rotating the given radians about the specified axis and store the result in dest.
    Matrix4x3f.rotate(AxisAngle4f axisAngle)
    Apply a rotation transformation, rotating about the given AxisAngle4f, to this matrix.
    Matrix4x3f.rotate(AxisAngle4f axisAngle, Matrix4x3f dest)
    Apply a rotation transformation, rotating about the given AxisAngle4f and store the result in dest.
    Matrix4x3f.rotate(Quaternionfc quat)
    Apply the rotation - and possibly scaling - transformation of the given Quaternionfc to this matrix.
    Matrix4x3f.rotate(Quaternionfc quat, Matrix4x3f dest)
    Apply the rotation - and possibly scaling - transformation of the given Quaternionfc to this matrix and store the result in dest.
    Matrix4x3fc.rotate(float ang, float x, float y, float z, Matrix4x3f dest)
    Apply rotation to this matrix by rotating the given amount of radians about the specified (x, y, z) axis and store the result in dest.
    Matrix4x3fc.rotate(float angle, Vector3fc axis, Matrix4x3f dest)
    Apply a rotation transformation, rotating the given radians about the specified axis and store the result in dest.
    Matrix4x3fc.rotate(AxisAngle4f axisAngle, Matrix4x3f dest)
    Apply a rotation transformation, rotating about the given AxisAngle4f and store the result in dest.
    Matrix4x3fc.rotate(Quaternionfc quat, Matrix4x3f dest)
    Apply the rotation - and possibly scaling - transformation of the given Quaternionfc to this matrix and store the result in dest.
    Matrix4x3f.rotateAround(Quaternionfc quat, float ox, float oy, float oz)
    Apply the rotation transformation of the given Quaternionfc to this matrix while using (ox, oy, oz) as the rotation origin.
    Matrix4x3f.rotateAround(Quaternionfc quat, float ox, float oy, float oz, Matrix4x3f dest)
     
    Matrix4x3fc.rotateAround(Quaternionfc quat, float ox, float oy, float oz, Matrix4x3f dest)
    Apply the rotation - and possibly scaling - transformation of the given Quaternionfc to this matrix while using (ox, oy, oz) as the rotation origin, and store the result in dest.
    Matrix4x3f.rotateLocal(float ang, float x, float y, float z)
    Pre-multiply a rotation to this matrix by rotating the given amount of radians about the specified (x, y, z) axis.
    Matrix4x3f.rotateLocal(float ang, float x, float y, float z, Matrix4x3f dest)
    Pre-multiply a rotation to this matrix by rotating the given amount of radians about the specified (x, y, z) axis and store the result in dest.
    Matrix4x3f.rotateLocal(Quaternionfc quat)
    Pre-multiply the rotation - and possibly scaling - transformation of the given Quaternionfc to this matrix.
    Matrix4x3f.rotateLocal(Quaternionfc quat, Matrix4x3f dest)
    Pre-multiply the rotation - and possibly scaling - transformation of the given Quaternionfc to this matrix and store the result in dest.
    Matrix4x3fc.rotateLocal(float ang, float x, float y, float z, Matrix4x3f dest)
    Pre-multiply a rotation to this matrix by rotating the given amount of radians about the specified (x, y, z) axis and store the result in dest.
    Matrix4x3fc.rotateLocal(Quaternionfc quat, Matrix4x3f dest)
    Pre-multiply the rotation - and possibly scaling - transformation of the given Quaternionfc to this matrix and store the result in dest.
    Matrix4x3f.rotateLocalX(float ang)
    Pre-multiply a rotation to this matrix by rotating the given amount of radians about the X axis.
    Matrix4x3f.rotateLocalX(float ang, Matrix4x3f dest)
    Pre-multiply a rotation around the X axis to this matrix by rotating the given amount of radians about the X axis and store the result in dest.
    Matrix4x3f.rotateLocalY(float ang)
    Pre-multiply a rotation to this matrix by rotating the given amount of radians about the Y axis.
    Matrix4x3f.rotateLocalY(float ang, Matrix4x3f dest)
    Pre-multiply a rotation around the Y axis to this matrix by rotating the given amount of radians about the Y axis and store the result in dest.
    Matrix4x3f.rotateLocalZ(float ang)
    Pre-multiply a rotation to this matrix by rotating the given amount of radians about the Z axis.
    Matrix4x3f.rotateLocalZ(float ang, Matrix4x3f dest)
    Pre-multiply a rotation around the Z axis to this matrix by rotating the given amount of radians about the Z axis and store the result in dest.
    Matrix4x3f.rotateTowards(float dirX, float dirY, float dirZ, float upX, float upY, float upZ)
    Apply a model transformation to this matrix for a right-handed coordinate system, that aligns the local +Z axis with (dirX, dirY, dirZ).
    Matrix4x3f.rotateTowards(float dirX, float dirY, float dirZ, float upX, float upY, float upZ, Matrix4x3f dest)
    Apply a model transformation to this matrix for a right-handed coordinate system, that aligns the local +Z axis with (dirX, dirY, dirZ) and store the result in dest.
    Matrix4x3f.rotateTowards(Vector3fc dir, Vector3fc up)
    Apply a model transformation to this matrix for a right-handed coordinate system, that aligns the local +Z axis with dir.
    Matrix4x3f.rotateTowards(Vector3fc dir, Vector3fc up, Matrix4x3f dest)
    Apply a model transformation to this matrix for a right-handed coordinate system, that aligns the local +Z axis with dir and store the result in dest.
    Matrix4x3fc.rotateTowards(float dirX, float dirY, float dirZ, float upX, float upY, float upZ, Matrix4x3f dest)
    Apply a model transformation to this matrix for a right-handed coordinate system, that aligns the local +Z axis with (dirX, dirY, dirZ) and store the result in dest.
    Matrix4x3fc.rotateTowards(Vector3fc dir, Vector3fc up, Matrix4x3f dest)
    Apply a model transformation to this matrix for a right-handed coordinate system, that aligns the local +Z axis with dir and store the result in dest.
    Matrix4x3f.rotateTranslation(float ang, float x, float y, float z, Matrix4x3f dest)
    Apply rotation to this matrix, which is assumed to only contain a translation, by rotating the given amount of radians about the specified (x, y, z) axis and store the result in dest.
    Matrix4x3f.rotateTranslation(Quaternionfc quat, Matrix4x3f dest)
    Apply the rotation - and possibly scaling - transformation of the given Quaternionfc to this matrix, which is assumed to only contain a translation, and store the result in dest.
    Matrix4x3fc.rotateTranslation(float ang, float x, float y, float z, Matrix4x3f dest)
    Apply rotation to this matrix, which is assumed to only contain a translation, by rotating the given amount of radians about the specified (x, y, z) axis and store the result in dest.
    Matrix4x3fc.rotateTranslation(Quaternionfc quat, Matrix4x3f dest)
    Apply the rotation - and possibly scaling - transformation of the given Quaternionfc to this matrix, which is assumed to only contain a translation, and store the result in dest.
    Matrix4x3f.rotateX(float ang)
    Apply rotation about the X axis to this matrix by rotating the given amount of radians.
    Matrix4x3f.rotateX(float ang, Matrix4x3f dest)
     
    Matrix4x3fc.rotateX(float ang, Matrix4x3f dest)
    Apply rotation about the X axis to this matrix by rotating the given amount of radians and store the result in dest.
    Matrix4x3f.rotateXYZ(float angleX, float angleY, float angleZ)
    Apply rotation of angleX radians about the X axis, followed by a rotation of angleY radians about the Y axis and followed by a rotation of angleZ radians about the Z axis.
    Matrix4x3f.rotateXYZ(float angleX, float angleY, float angleZ, Matrix4x3f dest)
     
    Matrix4x3f.rotateXYZ(Vector3f angles)
    Apply rotation of angles.x radians about the X axis, followed by a rotation of angles.y radians about the Y axis and followed by a rotation of angles.z radians about the Z axis.
    Matrix4x3fc.rotateXYZ(float angleX, float angleY, float angleZ, Matrix4x3f dest)
    Apply rotation of angleX radians about the X axis, followed by a rotation of angleY radians about the Y axis and followed by a rotation of angleZ radians about the Z axis and store the result in dest.
    Matrix4x3f.rotateY(float ang)
    Apply rotation about the Y axis to this matrix by rotating the given amount of radians.
    Matrix4x3f.rotateY(float ang, Matrix4x3f dest)
     
    Matrix4x3fc.rotateY(float ang, Matrix4x3f dest)
    Apply rotation about the Y axis to this matrix by rotating the given amount of radians and store the result in dest.
    Matrix4x3f.rotateYXZ(float angleY, float angleX, float angleZ)
    Apply rotation of angleY radians about the Y axis, followed by a rotation of angleX radians about the X axis and followed by a rotation of angleZ radians about the Z axis.
    Matrix4x3f.rotateYXZ(float angleY, float angleX, float angleZ, Matrix4x3f dest)
     
    Matrix4x3f.rotateYXZ(Vector3f angles)
    Apply rotation of angles.y radians about the Y axis, followed by a rotation of angles.x radians about the X axis and followed by a rotation of angles.z radians about the Z axis.
    Matrix4x3fc.rotateYXZ(float angleY, float angleX, float angleZ, Matrix4x3f dest)
    Apply rotation of angleY radians about the Y axis, followed by a rotation of angleX radians about the X axis and followed by a rotation of angleZ radians about the Z axis and store the result in dest.
    Matrix4x3f.rotateZ(float ang)
    Apply rotation about the Z axis to this matrix by rotating the given amount of radians.
    Matrix4x3f.rotateZ(float ang, Matrix4x3f dest)
     
    Matrix4x3fc.rotateZ(float ang, Matrix4x3f dest)
    Apply rotation about the Z axis to this matrix by rotating the given amount of radians and store the result in dest.
    Matrix4x3f.rotateZYX(float angleZ, float angleY, float angleX)
    Apply rotation of angleZ radians about the Z axis, followed by a rotation of angleY radians about the Y axis and followed by a rotation of angleX radians about the X axis.
    Matrix4x3f.rotateZYX(float angleZ, float angleY, float angleX, Matrix4x3f dest)
     
    Matrix4x3f.rotateZYX(Vector3f angles)
    Apply rotation of angles.z radians about the Z axis, followed by a rotation of angles.y radians about the Y axis and followed by a rotation of angles.x radians about the X axis.
    Matrix4x3fc.rotateZYX(float angleZ, float angleY, float angleX, Matrix4x3f dest)
    Apply rotation of angleZ radians about the Z axis, followed by a rotation of angleY radians about the Y axis and followed by a rotation of angleX radians about the X axis and store the result in dest.
    Matrix4x3f.rotation(float angle, float x, float y, float z)
    Set this matrix to a rotation matrix which rotates the given radians about a given axis.
    Matrix4x3f.rotation(float angle, Vector3fc axis)
    Set this matrix to a rotation matrix which rotates the given radians about a given axis.
    Matrix4x3f.rotation(AxisAngle4f axisAngle)
    Set this matrix to a rotation transformation using the given AxisAngle4f.
    Matrix4x3f.rotation(Quaternionfc quat)
    Set this matrix to the rotation - and possibly scaling - transformation of the given Quaternionfc.
    Matrix4x3f.rotationAround(Quaternionfc quat, float ox, float oy, float oz)
    Set this matrix to a transformation composed of a rotation of the specified Quaternionfc while using (ox, oy, oz) as the rotation origin.
    Matrix4x3f.rotationTowards(float dirX, float dirY, float dirZ, float upX, float upY, float upZ)
    Set this matrix to a model transformation for a right-handed coordinate system, that aligns the local -z axis with (dirX, dirY, dirZ).
    Matrix4x3f.rotationTowards(Vector3fc dir, Vector3fc up)
    Set this matrix to a model transformation for a right-handed coordinate system, that aligns the local -z axis with dir.
    Matrix4x3f.rotationX(float ang)
    Set this matrix to a rotation transformation about the X axis.
    Matrix4x3f.rotationXYZ(float angleX, float angleY, float angleZ)
    Set this matrix to a rotation of angleX radians about the X axis, followed by a rotation of angleY radians about the Y axis and followed by a rotation of angleZ radians about the Z axis.
    Matrix4x3f.rotationY(float ang)
    Set this matrix to a rotation transformation about the Y axis.
    Matrix4x3f.rotationYXZ(float angleY, float angleX, float angleZ)
    Set this matrix to a rotation of angleY radians about the Y axis, followed by a rotation of angleX radians about the X axis and followed by a rotation of angleZ radians about the Z axis.
    Matrix4x3f.rotationZ(float ang)
    Set this matrix to a rotation transformation about the Z axis.
    Matrix4x3f.rotationZYX(float angleZ, float angleY, float angleX)
    Set this matrix to a rotation of angleZ radians about the Z axis, followed by a rotation of angleY radians about the Y axis and followed by a rotation of angleX radians about the X axis.
    Matrix4x3f.scale(float xyz)
    Apply scaling to this matrix by uniformly scaling all base axes by the given xyz factor.
    Matrix4x3f.scale(float x, float y, float z)
    Apply scaling to this matrix by scaling the base axes by the given x, y and z factors.
    Matrix4x3f.scale(float x, float y, float z, Matrix4x3f dest)
     
    Matrix4x3f.scale(float xyz, Matrix4x3f dest)
     
    Matrix4x3f.scale(Vector3fc xyz)
    Apply scaling to this matrix by scaling the base axes by the given xyz.x, xyz.y and xyz.z factors, respectively.
    Matrix4x3f.scale(Vector3fc xyz, Matrix4x3f dest)
     
    Matrix4x3fc.scale(float x, float y, float z, Matrix4x3f dest)
    Apply scaling to this matrix by scaling the base axes by the given x, y and z factors and store the result in dest.
    Matrix4x3fc.scale(float xyz, Matrix4x3f dest)
    Apply scaling to this matrix by uniformly scaling all base axes by the given xyz factor and store the result in dest.
    Matrix4x3fc.scale(Vector3fc xyz, Matrix4x3f dest)
    Apply scaling to this matrix by scaling the base axes by the given xyz.x, xyz.y and xyz.z factors, respectively and store the result in dest.
    Matrix4x3f.scaleAround(float factor, float ox, float oy, float oz)
    Apply scaling to this matrix by scaling all three base axes by the given factor while using (ox, oy, oz) as the scaling origin.
    Matrix4x3f.scaleAround(float sx, float sy, float sz, float ox, float oy, float oz)
    Apply scaling to this matrix by scaling the base axes by the given sx, sy and sz factors while using (ox, oy, oz) as the scaling origin.
    Matrix4x3f.scaleAround(float sx, float sy, float sz, float ox, float oy, float oz, Matrix4x3f dest)
     
    Matrix4x3f.scaleAround(float factor, float ox, float oy, float oz, Matrix4x3f dest)
     
    Matrix4x3fc.scaleAround(float sx, float sy, float sz, float ox, float oy, float oz, Matrix4x3f dest)
    Apply scaling to this matrix by scaling the base axes by the given sx, sy and sz factors while using (ox, oy, oz) as the scaling origin, and store the result in dest.
    Matrix4x3fc.scaleAround(float factor, float ox, float oy, float oz, Matrix4x3f dest)
    Apply scaling to this matrix by scaling all three base axes by the given factor while using (ox, oy, oz) as the scaling origin, and store the result in dest.
    Matrix4x3f.scaleLocal(float x, float y, float z)
    Pre-multiply scaling to this matrix by scaling the base axes by the given x, y and z factors.
    Matrix4x3f.scaleLocal(float x, float y, float z, Matrix4x3f dest)
     
    Matrix4x3fc.scaleLocal(float x, float y, float z, Matrix4x3f dest)
    Pre-multiply scaling to this matrix by scaling the base axes by the given x, y and z factors and store the result in dest.
    Matrix4x3f.scaleXY(float x, float y)
    Apply scaling to this matrix by scaling the X axis by x and the Y axis by y.
    Matrix4x3f.scaleXY(float x, float y, Matrix4x3f dest)
     
    Matrix4x3fc.scaleXY(float x, float y, Matrix4x3f dest)
    Apply scaling to this matrix by by scaling the X axis by x and the Y axis by y and store the result in dest.
    Matrix4x3f.scaling(float factor)
    Set this matrix to be a simple scale matrix, which scales all axes uniformly by the given factor.
    Matrix4x3f.scaling(float x, float y, float z)
    Set this matrix to be a simple scale matrix.
    Matrix4x3f.scaling(Vector3fc xyz)
    Set this matrix to be a simple scale matrix which scales the base axes by xyz.x, xyz.y and xyz.z respectively.
    Matrix4x3f.set(float[] m)
    Set the values in the matrix using a float array that contains the matrix elements in column-major order.
    Matrix4x3f.set(float[] m, int off)
    Set the values in the matrix using a float array that contains the matrix elements in column-major order.
    Matrix4x3f.set(float m00, float m01, float m02, float m10, float m11, float m12, float m20, float m21, float m22, float m30, float m31, float m32)
    Set the values within this matrix to the supplied float values.
    Matrix4x3f.set(int index, ByteBuffer buffer)
    Set the values of this matrix by reading 12 float values from the given ByteBuffer in column-major order, starting at the specified absolute buffer position/index.
    Matrix4x3f.set(int index, FloatBuffer buffer)
    Set the values of this matrix by reading 12 float values from the given FloatBuffer in column-major order, starting at the specified absolute buffer position/index.
    Matrix4x3f.set(ByteBuffer buffer)
    Set the values of this matrix by reading 12 float values from the given ByteBuffer in column-major order, starting at its current position.
    Matrix4x3f.set(FloatBuffer buffer)
    Set the values of this matrix by reading 12 float values from the given FloatBuffer in column-major order, starting at its current position.
    Matrix4x3f.set(AxisAngle4d axisAngle)
    Set this matrix to be equivalent to the rotation specified by the given AxisAngle4d.
    Matrix4x3f.set(AxisAngle4f axisAngle)
    Set this matrix to be equivalent to the rotation specified by the given AxisAngle4f.
    Matrix4x3f.set(Matrix3fc mat)
    Set the left 3x3 submatrix of this Matrix4x3f to the given Matrix3fc and the rest to identity.
    Matrix4x3f.set(Matrix4fc m)
    Store the values of the upper 4x3 submatrix of m into this matrix.
    Matrix4x3f.set(Matrix4x3fc m)
    Store the values of the given matrix m into this matrix.
    Matrix4x3f.set(Quaterniondc q)
    Set this matrix to be equivalent to the rotation - and possibly scaling - specified by the given Quaterniondc.
    Matrix4x3f.set(Quaternionfc q)
    Set this matrix to be equivalent to the rotation - and possibly scaling - specified by the given Quaternionfc.
    Matrix4x3f.set(Vector3fc col0, Vector3fc col1, Vector3fc col2, Vector3fc col3)
    Set the four columns of this matrix to the supplied vectors, respectively.
    Matrix4x3f.set3x3(Matrix3fc mat)
    Set the left 3x3 submatrix of this Matrix4x3f to the given Matrix3fc and don't change the other elements.
    Matrix4x3f.set3x3(Matrix4x3fc mat)
    Set the left 3x3 submatrix of this Matrix4x3f to that of the given Matrix4x3fc and don't change the other elements.
    Matrix4x3f.setColumn(int column, Vector3fc src)
    Set the column at the given column index, starting with 0.
    Matrix4x3f.setFromAddress(long address)
    Set the values of this matrix by reading 12 float values from off-heap memory in column-major order, starting at the given address.
    Matrix4x3f.setLookAlong(float dirX, float dirY, float dirZ, float upX, float upY, float upZ)
    Set this matrix to a rotation transformation to make -z point along dir.
    Matrix4x3f.setLookAlong(Vector3fc dir, Vector3fc up)
    Set this matrix to a rotation transformation to make -z point along dir.
    Matrix4x3f.setLookAt(float eyeX, float eyeY, float eyeZ, float centerX, float centerY, float centerZ, float upX, float upY, float upZ)
    Set this matrix to be a "lookat" transformation for a right-handed coordinate system, that aligns -z with center - eye.
    Matrix4x3f.setLookAt(Vector3fc eye, Vector3fc center, Vector3fc up)
    Set this matrix to be a "lookat" transformation for a right-handed coordinate system, that aligns -z with center - eye.
    Matrix4x3f.setLookAtLH(float eyeX, float eyeY, float eyeZ, float centerX, float centerY, float centerZ, float upX, float upY, float upZ)
    Set this matrix to be a "lookat" transformation for a left-handed coordinate system, that aligns +z with center - eye.
    Matrix4x3f.setLookAtLH(Vector3fc eye, Vector3fc center, Vector3fc up)
    Set this matrix to be a "lookat" transformation for a left-handed coordinate system, that aligns +z with center - eye.
    Matrix4x3f.setOrtho(float left, float right, float bottom, float top, float zNear, float zFar)
    Set this matrix to be an orthographic projection transformation for a right-handed coordinate system using OpenGL's NDC z range of [-1..+1].
    Matrix4x3f.setOrtho(float left, float right, float bottom, float top, float zNear, float zFar, boolean zZeroToOne)
    Set this matrix to be an orthographic projection transformation for a right-handed coordinate system using the given NDC z range.
    Matrix4x3f.setOrtho2D(float left, float right, float bottom, float top)
    Set this matrix to be an orthographic projection transformation for a right-handed coordinate system.
    Matrix4x3f.setOrtho2DLH(float left, float right, float bottom, float top)
    Set this matrix to be an orthographic projection transformation for a left-handed coordinate system.
    Matrix4x3f.setOrthoLH(float left, float right, float bottom, float top, float zNear, float zFar)
    Set this matrix to be an orthographic projection transformation for a left-handed coordinate system using OpenGL's NDC z range of [-1..+1].
    Matrix4x3f.setOrthoLH(float left, float right, float bottom, float top, float zNear, float zFar, boolean zZeroToOne)
    Set this matrix to be an orthographic projection transformation for a left-handed coordinate system using the given NDC z range.
    Matrix4x3f.setOrthoSymmetric(float width, float height, float zNear, float zFar)
    Set this matrix to be a symmetric orthographic projection transformation for a right-handed coordinate system using OpenGL's NDC z range of [-1..+1].
    Matrix4x3f.setOrthoSymmetric(float width, float height, float zNear, float zFar, boolean zZeroToOne)
    Set this matrix to be a symmetric orthographic projection transformation for a right-handed coordinate system using the given NDC z range.
    Matrix4x3f.setOrthoSymmetricLH(float width, float height, float zNear, float zFar)
    Set this matrix to be a symmetric orthographic projection transformation for a left-handed coordinate system using OpenGL's NDC z range of [-1..+1].
    Matrix4x3f.setOrthoSymmetricLH(float width, float height, float zNear, float zFar, boolean zZeroToOne)
    Set this matrix to be a symmetric orthographic projection transformation for a left-handed coordinate system using the given NDC z range.
    Matrix4x3f.setRotationXYZ(float angleX, float angleY, float angleZ)
    Set only the left 3x3 submatrix of this matrix to a rotation of angleX radians about the X axis, followed by a rotation of angleY radians about the Y axis and followed by a rotation of angleZ radians about the Z axis.
    Matrix4x3f.setRotationYXZ(float angleY, float angleX, float angleZ)
    Set only the left 3x3 submatrix of this matrix to a rotation of angleY radians about the Y axis, followed by a rotation of angleX radians about the X axis and followed by a rotation of angleZ radians about the Z axis.
    Matrix4x3f.setRotationZYX(float angleZ, float angleY, float angleX)
    Set only the left 3x3 submatrix of this matrix to a rotation of angleZ radians about the Z axis, followed by a rotation of angleY radians about the Y axis and followed by a rotation of angleX radians about the X axis.
    Matrix4x3f.setRow(int row, Vector4fc src)
    Set the row at the given row index, starting with 0.
    Matrix4x3f.setTranslation(float x, float y, float z)
    Set only the translation components (m30, m31, m32) of this matrix to the given values (x, y, z).
    Matrix4x3f.setTranslation(Vector3fc xyz)
    Set only the translation components (m30, m31, m32) of this matrix to the values (xyz.x, xyz.y, xyz.z).
    Matrix4x3f.shadow(float lightX, float lightY, float lightZ, float lightW, float a, float b, float c, float d)
    Apply a projection transformation to this matrix that projects onto the plane specified via the general plane equation x*a + y*b + z*c + d = 0 as if casting a shadow from a given light position/direction (lightX, lightY, lightZ, lightW).
    Matrix4x3f.shadow(float lightX, float lightY, float lightZ, float lightW, float a, float b, float c, float d, Matrix4x3f dest)
     
    Matrix4x3f.shadow(float lightX, float lightY, float lightZ, float lightW, Matrix4x3f planeTransform)
    Apply a projection transformation to this matrix that projects onto the plane with the general plane equation y = 0 as if casting a shadow from a given light position/direction (lightX, lightY, lightZ, lightW).
    Matrix4x3f.shadow(float lightX, float lightY, float lightZ, float lightW, Matrix4x3fc planeTransform, Matrix4x3f dest)
     
    Matrix4x3f.shadow(Vector4fc light, float a, float b, float c, float d)
    Apply a projection transformation to this matrix that projects onto the plane specified via the general plane equation x*a + y*b + z*c + d = 0 as if casting a shadow from a given light position/direction light.
    Matrix4x3f.shadow(Vector4fc light, float a, float b, float c, float d, Matrix4x3f dest)
     
    Matrix4x3f.shadow(Vector4fc light, Matrix4x3fc planeTransform)
    Apply a projection transformation to this matrix that projects onto the plane with the general plane equation y = 0 as if casting a shadow from a given light position/direction light.
    Matrix4x3f.shadow(Vector4fc light, Matrix4x3fc planeTransform, Matrix4x3f dest)
     
    Matrix4x3fc.shadow(float lightX, float lightY, float lightZ, float lightW, float a, float b, float c, float d, Matrix4x3f dest)
    Apply a projection transformation to this matrix that projects onto the plane specified via the general plane equation x*a + y*b + z*c + d = 0 as if casting a shadow from a given light position/direction (lightX, lightY, lightZ, lightW) and store the result in dest.
    Matrix4x3fc.shadow(float lightX, float lightY, float lightZ, float lightW, Matrix4x3fc planeTransform, Matrix4x3f dest)
    Apply a projection transformation to this matrix that projects onto the plane with the general plane equation y = 0 as if casting a shadow from a given light position/direction (lightX, lightY, lightZ, lightW) and store the result in dest.
    Matrix4x3fc.shadow(Vector4fc light, float a, float b, float c, float d, Matrix4x3f dest)
    Apply a projection transformation to this matrix that projects onto the plane specified via the general plane equation x*a + y*b + z*c + d = 0 as if casting a shadow from a given light position/direction light and store the result in dest.
    Matrix4x3fc.shadow(Vector4fc light, Matrix4x3fc planeTransform, Matrix4x3f dest)
    Apply a projection transformation to this matrix that projects onto the plane with the general plane equation y = 0 as if casting a shadow from a given light position/direction light and store the result in dest.
    Matrix4x3f.sub(Matrix4x3fc subtrahend)
    Component-wise subtract subtrahend from this.
    Matrix4x3f.sub(Matrix4x3fc subtrahend, Matrix4x3f dest)
     
    Matrix4x3fc.sub(Matrix4x3fc subtrahend, Matrix4x3f dest)
    Component-wise subtract subtrahend from this and store the result in dest.
    Matrix4x3f.swap(Matrix4x3f other)
    Exchange the values of this matrix with the given other matrix.
    Matrix4x3f.transformAab(float minX, float minY, float minZ, float maxX, float maxY, float maxZ, Vector3f outMin, Vector3f outMax)
     
    Matrix4x3f.transformAab(Vector3fc min, Vector3fc max, Vector3f outMin, Vector3f outMax)
     
    Matrix4x3fc.transformAab(float minX, float minY, float minZ, float maxX, float maxY, float maxZ, Vector3f outMin, Vector3f outMax)
    Transform the axis-aligned box given as the minimum corner (minX, minY, minZ) and maximum corner (maxX, maxY, maxZ) by this matrix and compute the axis-aligned box of the result whose minimum corner is stored in outMin and maximum corner stored in outMax.
    Matrix4x3fc.transformAab(Vector3fc min, Vector3fc max, Vector3f outMin, Vector3f outMax)
    Transform the axis-aligned box given as the minimum corner min and maximum corner max by this matrix and compute the axis-aligned box of the result whose minimum corner is stored in outMin and maximum corner stored in outMax.
    Matrix4x3f.translate(float x, float y, float z)
    Apply a translation to this matrix by translating by the given number of units in x, y and z.
    Matrix4x3f.translate(float x, float y, float z, Matrix4x3f dest)
    Apply a translation to this matrix by translating by the given number of units in x, y and z and store the result in dest.
    Matrix4x3f.translate(Vector3fc offset)
    Apply a translation to this matrix by translating by the given number of units in x, y and z.
    Matrix4x3f.translate(Vector3fc offset, Matrix4x3f dest)
    Apply a translation to this matrix by translating by the given number of units in x, y and z and store the result in dest.
    Matrix4x3fc.translate(float x, float y, float z, Matrix4x3f dest)
    Apply a translation to this matrix by translating by the given number of units in x, y and z and store the result in dest.
    Matrix4x3fc.translate(Vector3fc offset, Matrix4x3f dest)
    Apply a translation to this matrix by translating by the given number of units in x, y and z and store the result in dest.
    Matrix4x3f.translateLocal(float x, float y, float z)
    Pre-multiply a translation to this matrix by translating by the given number of units in x, y and z.
    Matrix4x3f.translateLocal(float x, float y, float z, Matrix4x3f dest)
    Pre-multiply a translation to this matrix by translating by the given number of units in x, y and z and store the result in dest.
    Matrix4x3f.translateLocal(Vector3fc offset)
    Pre-multiply a translation to this matrix by translating by the given number of units in x, y and z.
    Matrix4x3f.translateLocal(Vector3fc offset, Matrix4x3f dest)
    Pre-multiply a translation to this matrix by translating by the given number of units in x, y and z and store the result in dest.
    Matrix4x3fc.translateLocal(float x, float y, float z, Matrix4x3f dest)
    Pre-multiply a translation to this matrix by translating by the given number of units in x, y and z and store the result in dest.
    Matrix4x3fc.translateLocal(Vector3fc offset, Matrix4x3f dest)
    Pre-multiply a translation to this matrix by translating by the given number of units in x, y and z and store the result in dest.
    Matrix4x3f.translation(float x, float y, float z)
    Set this matrix to be a simple translation matrix.
    Matrix4x3f.translation(Vector3fc offset)
    Set this matrix to be a simple translation matrix.
    Matrix4x3f.translationRotate(float tx, float ty, float tz, Quaternionfc quat)
    Set this matrix to T * R, where T is a translation by the given (tx, ty, tz) and R is a rotation transformation specified by the given quaternion.
    Matrix4x3f.translationRotateMul(float tx, float ty, float tz, float qx, float qy, float qz, float qw, Matrix4x3fc mat)
    Set this matrix to T * R * M, where T is a translation by the given (tx, ty, tz), R is a rotation - and possibly scaling - transformation specified by the quaternion (qx, qy, qz, qw) and M is the given matrix mat
    Matrix4x3f.translationRotateMul(float tx, float ty, float tz, Quaternionfc quat, Matrix4x3fc mat)
    Set this matrix to T * R * M, where T is a translation by the given (tx, ty, tz), R is a rotation - and possibly scaling - transformation specified by the given quaternion and M is the given matrix mat.
    Matrix4x3f.translationRotateScale(float tx, float ty, float tz, float qx, float qy, float qz, float qw, float sx, float sy, float sz)
    Set this matrix to T * R * S, where T is a translation by the given (tx, ty, tz), R is a rotation transformation specified by the quaternion (qx, qy, qz, qw), and S is a scaling transformation which scales the three axes x, y and z by (sx, sy, sz).
    Matrix4x3f.translationRotateScale(Vector3fc translation, Quaternionfc quat, Vector3fc scale)
    Set this matrix to T * R * S, where T is the given translation, R is a rotation transformation specified by the given quaternion, and S is a scaling transformation which scales the axes by scale.
    Matrix4x3f.translationRotateScaleMul(float tx, float ty, float tz, float qx, float qy, float qz, float qw, float sx, float sy, float sz, Matrix4x3f m)
    Set this matrix to T * R * S * M, where T is a translation by the given (tx, ty, tz), R is a rotation transformation specified by the quaternion (qx, qy, qz, qw), S is a scaling transformation which scales the three axes x, y and z by (sx, sy, sz).
    Matrix4x3f.translationRotateScaleMul(Vector3fc translation, Quaternionfc quat, Vector3fc scale, Matrix4x3f m)
    Set this matrix to T * R * S * M, where T is the given translation, R is a rotation transformation specified by the given quaternion, S is a scaling transformation which scales the axes by scale.
    Matrix4x3f.translationRotateTowards(float posX, float posY, float posZ, float dirX, float dirY, float dirZ, float upX, float upY, float upZ)
    Set this matrix to a model transformation for a right-handed coordinate system, that translates to the given (posX, posY, posZ) and aligns the local -z axis with (dirX, dirY, dirZ).
    Set this matrix to a model transformation for a right-handed coordinate system, that translates to the given pos and aligns the local -z axis with dir.
    Matrix4x3f.transpose3x3()
    Transpose only the left 3x3 submatrix of this matrix and set the rest of the matrix elements to identity.
    Matrix4x3f.transpose3x3(Matrix4x3f dest)
     
    Matrix4x3fc.transpose3x3(Matrix4x3f dest)
    Transpose only the left 3x3 submatrix of this matrix and store the result in dest.
    Matrix4x3f.withLookAtUp(float upX, float upY, float upZ)
    Apply a transformation to this matrix to ensure that the local Y axis (as obtained by positiveY(Vector3f)) will be coplanar to the plane spanned by the local Z axis (as obtained by positiveZ(Vector3f)) and the given vector (upX, upY, upZ).
    Matrix4x3f.withLookAtUp(float upX, float upY, float upZ, Matrix4x3f dest)
     
    Matrix4x3f.withLookAtUp(Vector3fc up)
    Apply a transformation to this matrix to ensure that the local Y axis (as obtained by positiveY(Vector3f)) will be coplanar to the plane spanned by the local Z axis (as obtained by positiveZ(Vector3f)) and the given vector up.
    Matrix4x3f.withLookAtUp(Vector3fc up, Matrix4x3f dest)
     
    Matrix4x3fc.withLookAtUp(float upX, float upY, float upZ, Matrix4x3f dest)
    Apply a transformation to this matrix to ensure that the local Y axis (as obtained by Matrix4x3fc.positiveY(Vector3f)) will be coplanar to the plane spanned by the local Z axis (as obtained by Matrix4x3fc.positiveZ(Vector3f)) and the given vector (upX, upY, upZ), and store the result in dest.
    Matrix4x3fc.withLookAtUp(Vector3fc up, Matrix4x3f dest)
    Apply a transformation to this matrix to ensure that the local Y axis (as obtained by Matrix4x3fc.positiveY(Vector3f)) will be coplanar to the plane spanned by the local Z axis (as obtained by Matrix4x3fc.positiveZ(Vector3f)) and the given vector up, and store the result in dest.
    Matrix4x3f.zero()
    Set all the values within this matrix to 0.
    Methods in org.joml with parameters of type Matrix4x3f
    Modifier and Type
    Method
    Description
    Matrix4x3f.add(Matrix4x3fc other, Matrix4x3f dest)
     
    Matrix4x3fc.add(Matrix4x3fc other, Matrix4x3f dest)
    Component-wise add this and other and store the result in dest.
    Matrix4x3f.arcball(float radius, float centerX, float centerY, float centerZ, float angleX, float angleY, Matrix4x3f dest)
     
    Matrix4x3f.arcball(float radius, Vector3fc center, float angleX, float angleY, Matrix4x3f dest)
     
    Matrix4x3fc.arcball(float radius, float centerX, float centerY, float centerZ, float angleX, float angleY, Matrix4x3f dest)
    Apply an arcball view transformation to this matrix with the given radius and center (centerX, centerY, centerZ) position of the arcball and the specified X and Y rotation angles, and store the result in dest.
    Matrix4x3fc.arcball(float radius, Vector3fc center, float angleX, float angleY, Matrix4x3f dest)
    Apply an arcball view transformation to this matrix with the given radius and center position of the arcball and the specified X and Y rotation angles, and store the result in dest.
    Matrix4x3f.cofactor3x3(Matrix4x3f dest)
    Compute the cofactor matrix of the left 3x3 submatrix of this and store it into dest.
    Matrix4x3fc.cofactor3x3(Matrix4x3f dest)
    Compute the cofactor matrix of the left 3x3 submatrix of this and store it into dest.
    Matrix4x3f.fma(Matrix4x3fc other, float otherFactor, Matrix4x3f dest)
     
    Matrix4x3fc.fma(Matrix4x3fc other, float otherFactor, Matrix4x3f dest)
    Component-wise add this and other by first multiplying each component of other by otherFactor, adding that to this and storing the final result in dest.
    Matrix4x3f.get(Matrix4x3f dest)
    Get the current values of this matrix and store them into dest.
    Matrix4x3fc.get(Matrix4x3f dest)
    Get the current values of this matrix and store them into dest.
    Quaternionf.get(Matrix4x3f dest)
     
    Quaternionfc.get(Matrix4x3f dest)
    Set the given destination matrix to the rotation represented by this.
    Matrix4f.get4x3(Matrix4x3f dest)
     
    Matrix4fc.get4x3(Matrix4x3f dest)
    Get the current values of the upper 4x3 submatrix of this matrix and store them into dest.
    Matrix4x3f.invert(Matrix4x3f dest)
     
    Matrix4x3fc.invert(Matrix4x3f dest)
    Invert this matrix and write the result into dest.
    Matrix4x3f.invertOrtho(Matrix4x3f dest)
     
    Matrix4x3fc.invertOrtho(Matrix4x3f dest)
    Invert this orthographic projection matrix and store the result into the given dest.
    Matrix4x3f.lerp(Matrix4x3fc other, float t, Matrix4x3f dest)
     
    Matrix4x3fc.lerp(Matrix4x3fc other, float t, Matrix4x3f dest)
    Linearly interpolate this and other using the given interpolation factor t and store the result in dest.
    Matrix4x3f.lookAlong(float dirX, float dirY, float dirZ, float upX, float upY, float upZ, Matrix4x3f dest)
    Apply a rotation transformation to this matrix to make -z point along dir and store the result in dest.
    Matrix4x3f.lookAlong(Vector3fc dir, Vector3fc up, Matrix4x3f dest)
    Apply a rotation transformation to this matrix to make -z point along dir and store the result in dest.
    Matrix4x3fc.lookAlong(float dirX, float dirY, float dirZ, float upX, float upY, float upZ, Matrix4x3f dest)
    Apply a rotation transformation to this matrix to make -z point along dir and store the result in dest.
    Matrix4x3fc.lookAlong(Vector3fc dir, Vector3fc up, Matrix4x3f dest)
    Apply a rotation transformation to this matrix to make -z point along dir and store the result in dest.
    Matrix4x3f.lookAt(float eyeX, float eyeY, float eyeZ, float centerX, float centerY, float centerZ, float upX, float upY, float upZ, Matrix4x3f dest)
    Apply a "lookat" transformation to this matrix for a right-handed coordinate system, that aligns -z with center - eye and store the result in dest.
    Matrix4x3f.lookAt(Vector3fc eye, Vector3fc center, Vector3fc up, Matrix4x3f dest)
    Apply a "lookat" transformation to this matrix for a right-handed coordinate system, that aligns -z with center - eye and store the result in dest.
    Matrix4x3fc.lookAt(float eyeX, float eyeY, float eyeZ, float centerX, float centerY, float centerZ, float upX, float upY, float upZ, Matrix4x3f dest)
    Apply a "lookat" transformation to this matrix for a right-handed coordinate system, that aligns -z with center - eye and store the result in dest.
    Matrix4x3fc.lookAt(Vector3fc eye, Vector3fc center, Vector3fc up, Matrix4x3f dest)
    Apply a "lookat" transformation to this matrix for a right-handed coordinate system, that aligns -z with center - eye and store the result in dest.
    Matrix4x3f.lookAtLH(float eyeX, float eyeY, float eyeZ, float centerX, float centerY, float centerZ, float upX, float upY, float upZ, Matrix4x3f dest)
    Apply a "lookat" transformation to this matrix for a left-handed coordinate system, that aligns +z with center - eye and store the result in dest.
    Matrix4x3f.lookAtLH(Vector3fc eye, Vector3fc center, Vector3fc up, Matrix4x3f dest)
    Apply a "lookat" transformation to this matrix for a left-handed coordinate system, that aligns +z with center - eye and store the result in dest.
    Matrix4x3fc.lookAtLH(float eyeX, float eyeY, float eyeZ, float centerX, float centerY, float centerZ, float upX, float upY, float upZ, Matrix4x3f dest)
    Apply a "lookat" transformation to this matrix for a left-handed coordinate system, that aligns +z with center - eye and store the result in dest.
    Matrix4x3fc.lookAtLH(Vector3fc eye, Vector3fc center, Vector3fc up, Matrix4x3f dest)
    Apply a "lookat" transformation to this matrix for a left-handed coordinate system, that aligns +z with center - eye and store the result in dest.
    Matrix4x3f.mul(Matrix4x3fc right, Matrix4x3f dest)
     
    Matrix4x3fc.mul(Matrix4x3fc right, Matrix4x3f dest)
    Multiply this matrix by the supplied right matrix and store the result in dest.
    Matrix4x3f.mulComponentWise(Matrix4x3fc other, Matrix4x3f dest)
     
    Matrix4x3fc.mulComponentWise(Matrix4x3fc other, Matrix4x3f dest)
    Component-wise multiply this by other and store the result in dest.
    Matrix4x3f.mulOrtho(Matrix4x3fc view, Matrix4x3f dest)
     
    Matrix4x3fc.mulOrtho(Matrix4x3fc view, Matrix4x3f dest)
    Multiply this orthographic projection matrix by the supplied view matrix and store the result in dest.
    Matrix4x3f.mulTranslation(Matrix4x3fc right, Matrix4x3f dest)
     
    Matrix4x3fc.mulTranslation(Matrix4x3fc right, Matrix4x3f dest)
    Multiply this matrix, which is assumed to only contain a translation, by the supplied right matrix and store the result in dest.
    Matrix4x3f.normal(Matrix4x3f dest)
    Compute a normal matrix from the left 3x3 submatrix of this and store it into the left 3x3 submatrix of dest.
    Matrix4x3fc.normal(Matrix4x3f dest)
    Compute a normal matrix from the left 3x3 submatrix of this and store it into the left 3x3 submatrix of dest.
    Matrix4x3f.normalize3x3(Matrix4x3f dest)
     
    Matrix4x3fc.normalize3x3(Matrix4x3f dest)
    Normalize the left 3x3 submatrix of this matrix and store the result in dest.
    Matrix4x3f.obliqueZ(float a, float b, Matrix4x3f dest)
    Apply an oblique projection transformation to this matrix with the given values for a and b and store the result in dest.
    Matrix4x3fc.obliqueZ(float a, float b, Matrix4x3f dest)
    Apply an oblique projection transformation to this matrix with the given values for a and b and store the result in dest.
    Matrix4x3f.ortho(float left, float right, float bottom, float top, float zNear, float zFar, boolean zZeroToOne, Matrix4x3f dest)
    Apply an orthographic projection transformation for a right-handed coordinate system using the given NDC z range to this matrix and store the result in dest.
    Matrix4x3f.ortho(float left, float right, float bottom, float top, float zNear, float zFar, Matrix4x3f dest)
    Apply an orthographic projection transformation for a right-handed coordinate system using OpenGL's NDC z range of [-1..+1] to this matrix and store the result in dest.
    Matrix4x3fc.ortho(float left, float right, float bottom, float top, float zNear, float zFar, boolean zZeroToOne, Matrix4x3f dest)
    Apply an orthographic projection transformation for a right-handed coordinate system using the given NDC z range to this matrix and store the result in dest.
    Matrix4x3fc.ortho(float left, float right, float bottom, float top, float zNear, float zFar, Matrix4x3f dest)
    Apply an orthographic projection transformation for a right-handed coordinate system using OpenGL's NDC z range of [-1..+1] to this matrix and store the result in dest.
    Matrix4x3f.ortho2D(float left, float right, float bottom, float top, Matrix4x3f dest)
    Apply an orthographic projection transformation for a right-handed coordinate system to this matrix and store the result in dest.
    Matrix4x3fc.ortho2D(float left, float right, float bottom, float top, Matrix4x3f dest)
    Apply an orthographic projection transformation for a right-handed coordinate system to this matrix and store the result in dest.
    Matrix4x3f.ortho2DLH(float left, float right, float bottom, float top, Matrix4x3f dest)
    Apply an orthographic projection transformation for a left-handed coordinate system to this matrix and store the result in dest.
    Matrix4x3fc.ortho2DLH(float left, float right, float bottom, float top, Matrix4x3f dest)
    Apply an orthographic projection transformation for a left-handed coordinate system to this matrix and store the result in dest.
    Matrix4x3f.orthoLH(float left, float right, float bottom, float top, float zNear, float zFar, boolean zZeroToOne, Matrix4x3f dest)
    Apply an orthographic projection transformation for a left-handed coordiante system using the given NDC z range to this matrix and store the result in dest.
    Matrix4x3f.orthoLH(float left, float right, float bottom, float top, float zNear, float zFar, Matrix4x3f dest)
    Apply an orthographic projection transformation for a left-handed coordiante system using OpenGL's NDC z range of [-1..+1] to this matrix and store the result in dest.
    Matrix4x3fc.orthoLH(float left, float right, float bottom, float top, float zNear, float zFar, boolean zZeroToOne, Matrix4x3f dest)
    Apply an orthographic projection transformation for a left-handed coordiante system using the given NDC z range to this matrix and store the result in dest.
    Matrix4x3fc.orthoLH(float left, float right, float bottom, float top, float zNear, float zFar, Matrix4x3f dest)
    Apply an orthographic projection transformation for a left-handed coordiante system using OpenGL's NDC z range of [-1..+1] to this matrix and store the result in dest.
    Matrix4x3f.orthoSymmetric(float width, float height, float zNear, float zFar, boolean zZeroToOne, Matrix4x3f dest)
    Apply a symmetric orthographic projection transformation for a right-handed coordinate system using the given NDC z range to this matrix and store the result in dest.
    Matrix4x3f.orthoSymmetric(float width, float height, float zNear, float zFar, Matrix4x3f dest)
    Apply a symmetric orthographic projection transformation for a right-handed coordinate system using OpenGL's NDC z range of [-1..+1] to this matrix and store the result in dest.
    Matrix4x3fc.orthoSymmetric(float width, float height, float zNear, float zFar, boolean zZeroToOne, Matrix4x3f dest)
    Apply a symmetric orthographic projection transformation for a right-handed coordinate system using the given NDC z range to this matrix and store the result in dest.
    Matrix4x3fc.orthoSymmetric(float width, float height, float zNear, float zFar, Matrix4x3f dest)
    Apply a symmetric orthographic projection transformation for a right-handed coordinate system using OpenGL's NDC z range of [-1..+1] to this matrix and store the result in dest.
    Matrix4x3f.orthoSymmetricLH(float width, float height, float zNear, float zFar, boolean zZeroToOne, Matrix4x3f dest)
    Apply a symmetric orthographic projection transformation for a left-handed coordinate system using the given NDC z range to this matrix and store the result in dest.
    Matrix4x3f.orthoSymmetricLH(float width, float height, float zNear, float zFar, Matrix4x3f dest)
    Apply a symmetric orthographic projection transformation for a left-handed coordinate system using OpenGL's NDC z range of [-1..+1] to this matrix and store the result in dest.
    Matrix4x3fc.orthoSymmetricLH(float width, float height, float zNear, float zFar, boolean zZeroToOne, Matrix4x3f dest)
    Apply a symmetric orthographic projection transformation for a left-handed coordinate system using the given NDC z range to this matrix and store the result in dest.
    Matrix4x3fc.orthoSymmetricLH(float width, float height, float zNear, float zFar, Matrix4x3f dest)
    Apply a symmetric orthographic projection transformation for a left-handed coordinate system using OpenGL's NDC z range of [-1..+1] to this matrix and store the result in dest.
    Matrix4x3f.pick(float x, float y, float width, float height, int[] viewport, Matrix4x3f dest)
     
    Matrix4x3fc.pick(float x, float y, float width, float height, int[] viewport, Matrix4x3f dest)
    Apply a picking transformation to this matrix using the given window coordinates (x, y) as the pick center and the given (width, height) as the size of the picking region in window coordinates, and store the result in dest.
    Matrix4x3f.reflect(float nx, float ny, float nz, float px, float py, float pz, Matrix4x3f dest)
     
    Matrix4x3f.reflect(float a, float b, float c, float d, Matrix4x3f dest)
     
    Matrix4x3f.reflect(Quaternionfc orientation, Vector3fc point, Matrix4x3f dest)
     
    Matrix4x3f.reflect(Vector3fc normal, Vector3fc point, Matrix4x3f dest)
     
    Matrix4x3fc.reflect(float nx, float ny, float nz, float px, float py, float pz, Matrix4x3f dest)
    Apply a mirror/reflection transformation to this matrix that reflects about the given plane specified via the plane normal and a point on the plane, and store the result in dest.
    Matrix4x3fc.reflect(float a, float b, float c, float d, Matrix4x3f dest)
    Apply a mirror/reflection transformation to this matrix that reflects about the given plane specified via the equation x*a + y*b + z*c + d = 0 and store the result in dest.
    Matrix4x3fc.reflect(Quaternionfc orientation, Vector3fc point, Matrix4x3f dest)
    Apply a mirror/reflection transformation to this matrix that reflects about a plane specified via the plane orientation and a point on the plane, and store the result in dest.
    Matrix4x3fc.reflect(Vector3fc normal, Vector3fc point, Matrix4x3f dest)
    Apply a mirror/reflection transformation to this matrix that reflects about the given plane specified via the plane normal and a point on the plane, and store the result in dest.
    Matrix4x3f.rotate(float ang, float x, float y, float z, Matrix4x3f dest)
    Apply rotation to this matrix by rotating the given amount of radians about the specified (x, y, z) axis and store the result in dest.
    Matrix4x3f.rotate(float angle, Vector3fc axis, Matrix4x3f dest)
    Apply a rotation transformation, rotating the given radians about the specified axis and store the result in dest.
    Matrix4x3f.rotate(AxisAngle4f axisAngle, Matrix4x3f dest)
    Apply a rotation transformation, rotating about the given AxisAngle4f and store the result in dest.
    Matrix4x3f.rotate(Quaternionfc quat, Matrix4x3f dest)
    Apply the rotation - and possibly scaling - transformation of the given Quaternionfc to this matrix and store the result in dest.
    Matrix4x3fc.rotate(float ang, float x, float y, float z, Matrix4x3f dest)
    Apply rotation to this matrix by rotating the given amount of radians about the specified (x, y, z) axis and store the result in dest.
    Matrix4x3fc.rotate(float angle, Vector3fc axis, Matrix4x3f dest)
    Apply a rotation transformation, rotating the given radians about the specified axis and store the result in dest.
    Matrix4x3fc.rotate(AxisAngle4f axisAngle, Matrix4x3f dest)
    Apply a rotation transformation, rotating about the given AxisAngle4f and store the result in dest.
    Matrix4x3fc.rotate(Quaternionfc quat, Matrix4x3f dest)
    Apply the rotation - and possibly scaling - transformation of the given Quaternionfc to this matrix and store the result in dest.
    Matrix4x3f.rotateAround(Quaternionfc quat, float ox, float oy, float oz, Matrix4x3f dest)
     
    Matrix4x3fc.rotateAround(Quaternionfc quat, float ox, float oy, float oz, Matrix4x3f dest)
    Apply the rotation - and possibly scaling - transformation of the given Quaternionfc to this matrix while using (ox, oy, oz) as the rotation origin, and store the result in dest.
    Matrix4x3f.rotateLocal(float ang, float x, float y, float z, Matrix4x3f dest)
    Pre-multiply a rotation to this matrix by rotating the given amount of radians about the specified (x, y, z) axis and store the result in dest.
    Matrix4x3f.rotateLocal(Quaternionfc quat, Matrix4x3f dest)
    Pre-multiply the rotation - and possibly scaling - transformation of the given Quaternionfc to this matrix and store the result in dest.
    Matrix4x3fc.rotateLocal(float ang, float x, float y, float z, Matrix4x3f dest)
    Pre-multiply a rotation to this matrix by rotating the given amount of radians about the specified (x, y, z) axis and store the result in dest.
    Matrix4x3fc.rotateLocal(Quaternionfc quat, Matrix4x3f dest)
    Pre-multiply the rotation - and possibly scaling - transformation of the given Quaternionfc to this matrix and store the result in dest.
    Matrix4x3f.rotateLocalX(float ang, Matrix4x3f dest)
    Pre-multiply a rotation around the X axis to this matrix by rotating the given amount of radians about the X axis and store the result in dest.
    Matrix4x3f.rotateLocalY(float ang, Matrix4x3f dest)
    Pre-multiply a rotation around the Y axis to this matrix by rotating the given amount of radians about the Y axis and store the result in dest.
    Matrix4x3f.rotateLocalZ(float ang, Matrix4x3f dest)
    Pre-multiply a rotation around the Z axis to this matrix by rotating the given amount of radians about the Z axis and store the result in dest.
    Matrix4x3f.rotateTowards(float dirX, float dirY, float dirZ, float upX, float upY, float upZ, Matrix4x3f dest)
    Apply a model transformation to this matrix for a right-handed coordinate system, that aligns the local +Z axis with (dirX, dirY, dirZ) and store the result in dest.
    Matrix4x3f.rotateTowards(Vector3fc dir, Vector3fc up, Matrix4x3f dest)
    Apply a model transformation to this matrix for a right-handed coordinate system, that aligns the local +Z axis with dir and store the result in dest.
    Matrix4x3fc.rotateTowards(float dirX, float dirY, float dirZ, float upX, float upY, float upZ, Matrix4x3f dest)
    Apply a model transformation to this matrix for a right-handed coordinate system, that aligns the local +Z axis with (dirX, dirY, dirZ) and store the result in dest.
    Matrix4x3fc.rotateTowards(Vector3fc dir, Vector3fc up, Matrix4x3f dest)
    Apply a model transformation to this matrix for a right-handed coordinate system, that aligns the local +Z axis with dir and store the result in dest.
    Matrix4x3f.rotateTranslation(float ang, float x, float y, float z, Matrix4x3f dest)
    Apply rotation to this matrix, which is assumed to only contain a translation, by rotating the given amount of radians about the specified (x, y, z) axis and store the result in dest.
    Matrix4x3f.rotateTranslation(Quaternionfc quat, Matrix4x3f dest)
    Apply the rotation - and possibly scaling - transformation of the given Quaternionfc to this matrix, which is assumed to only contain a translation, and store the result in dest.
    Matrix4x3fc.rotateTranslation(float ang, float x, float y, float z, Matrix4x3f dest)
    Apply rotation to this matrix, which is assumed to only contain a translation, by rotating the given amount of radians about the specified (x, y, z) axis and store the result in dest.
    Matrix4x3fc.rotateTranslation(Quaternionfc quat, Matrix4x3f dest)
    Apply the rotation - and possibly scaling - transformation of the given Quaternionfc to this matrix, which is assumed to only contain a translation, and store the result in dest.
    Matrix4x3f.rotateX(float ang, Matrix4x3f dest)
     
    Matrix4x3fc.rotateX(float ang, Matrix4x3f dest)
    Apply rotation about the X axis to this matrix by rotating the given amount of radians and store the result in dest.
    Matrix4x3f.rotateXYZ(float angleX, float angleY, float angleZ, Matrix4x3f dest)
     
    Matrix4x3fc.rotateXYZ(float angleX, float angleY, float angleZ, Matrix4x3f dest)
    Apply rotation of angleX radians about the X axis, followed by a rotation of angleY radians about the Y axis and followed by a rotation of angleZ radians about the Z axis and store the result in dest.
    Matrix4x3f.rotateY(float ang, Matrix4x3f dest)
     
    Matrix4x3fc.rotateY(float ang, Matrix4x3f dest)
    Apply rotation about the Y axis to this matrix by rotating the given amount of radians and store the result in dest.
    Matrix4x3f.rotateYXZ(float angleY, float angleX, float angleZ, Matrix4x3f dest)
     
    Matrix4x3fc.rotateYXZ(float angleY, float angleX, float angleZ, Matrix4x3f dest)
    Apply rotation of angleY radians about the Y axis, followed by a rotation of angleX radians about the X axis and followed by a rotation of angleZ radians about the Z axis and store the result in dest.
    Matrix4x3f.rotateZ(float ang, Matrix4x3f dest)
     
    Matrix4x3fc.rotateZ(float ang, Matrix4x3f dest)
    Apply rotation about the Z axis to this matrix by rotating the given amount of radians and store the result in dest.
    Matrix4x3f.rotateZYX(float angleZ, float angleY, float angleX, Matrix4x3f dest)
     
    Matrix4x3fc.rotateZYX(float angleZ, float angleY, float angleX, Matrix4x3f dest)
    Apply rotation of angleZ radians about the Z axis, followed by a rotation of angleY radians about the Y axis and followed by a rotation of angleX radians about the X axis and store the result in dest.
    Matrix4x3f.scale(float x, float y, float z, Matrix4x3f dest)
     
    Matrix4x3f.scale(float xyz, Matrix4x3f dest)
     
    Matrix4x3f.scale(Vector3fc xyz, Matrix4x3f dest)
     
    Matrix4x3fc.scale(float x, float y, float z, Matrix4x3f dest)
    Apply scaling to this matrix by scaling the base axes by the given x, y and z factors and store the result in dest.
    Matrix4x3fc.scale(float xyz, Matrix4x3f dest)
    Apply scaling to this matrix by uniformly scaling all base axes by the given xyz factor and store the result in dest.
    Matrix4x3fc.scale(Vector3fc xyz, Matrix4x3f dest)
    Apply scaling to this matrix by scaling the base axes by the given xyz.x, xyz.y and xyz.z factors, respectively and store the result in dest.
    Matrix4x3f.scaleAround(float sx, float sy, float sz, float ox, float oy, float oz, Matrix4x3f dest)
     
    Matrix4x3f.scaleAround(float factor, float ox, float oy, float oz, Matrix4x3f dest)
     
    Matrix4x3fc.scaleAround(float sx, float sy, float sz, float ox, float oy, float oz, Matrix4x3f dest)
    Apply scaling to this matrix by scaling the base axes by the given sx, sy and sz factors while using (ox, oy, oz) as the scaling origin, and store the result in dest.
    Matrix4x3fc.scaleAround(float factor, float ox, float oy, float oz, Matrix4x3f dest)
    Apply scaling to this matrix by scaling all three base axes by the given factor while using (ox, oy, oz) as the scaling origin, and store the result in dest.
    Matrix4x3f.scaleLocal(float x, float y, float z, Matrix4x3f dest)
     
    Matrix4x3fc.scaleLocal(float x, float y, float z, Matrix4x3f dest)
    Pre-multiply scaling to this matrix by scaling the base axes by the given x, y and z factors and store the result in dest.
    Matrix4x3f.scaleXY(float x, float y, Matrix4x3f dest)
     
    Matrix4x3fc.scaleXY(float x, float y, Matrix4x3f dest)
    Apply scaling to this matrix by by scaling the X axis by x and the Y axis by y and store the result in dest.
    Matrix4x3f.shadow(float lightX, float lightY, float lightZ, float lightW, float a, float b, float c, float d, Matrix4x3f dest)
     
    Matrix4x3f.shadow(float lightX, float lightY, float lightZ, float lightW, Matrix4x3f planeTransform)
    Apply a projection transformation to this matrix that projects onto the plane with the general plane equation y = 0 as if casting a shadow from a given light position/direction (lightX, lightY, lightZ, lightW).
    Matrix4x3f.shadow(float lightX, float lightY, float lightZ, float lightW, Matrix4x3fc planeTransform, Matrix4x3f dest)
     
    Matrix4x3f.shadow(Vector4fc light, float a, float b, float c, float d, Matrix4x3f dest)
     
    Matrix4x3f.shadow(Vector4fc light, Matrix4x3fc planeTransform, Matrix4x3f dest)
     
    Matrix4x3fc.shadow(float lightX, float lightY, float lightZ, float lightW, float a, float b, float c, float d, Matrix4x3f dest)
    Apply a projection transformation to this matrix that projects onto the plane specified via the general plane equation x*a + y*b + z*c + d = 0 as if casting a shadow from a given light position/direction (lightX, lightY, lightZ, lightW) and store the result in dest.
    Matrix4x3fc.shadow(float lightX, float lightY, float lightZ, float lightW, Matrix4x3fc planeTransform, Matrix4x3f dest)
    Apply a projection transformation to this matrix that projects onto the plane with the general plane equation y = 0 as if casting a shadow from a given light position/direction (lightX, lightY, lightZ, lightW) and store the result in dest.
    Matrix4x3fc.shadow(Vector4fc light, float a, float b, float c, float d, Matrix4x3f dest)
    Apply a projection transformation to this matrix that projects onto the plane specified via the general plane equation x*a + y*b + z*c + d = 0 as if casting a shadow from a given light position/direction light and store the result in dest.
    Matrix4x3fc.shadow(Vector4fc light, Matrix4x3fc planeTransform, Matrix4x3f dest)
    Apply a projection transformation to this matrix that projects onto the plane with the general plane equation y = 0 as if casting a shadow from a given light position/direction light and store the result in dest.
    Matrix4x3f.sub(Matrix4x3fc subtrahend, Matrix4x3f dest)
     
    Matrix4x3fc.sub(Matrix4x3fc subtrahend, Matrix4x3f dest)
    Component-wise subtract subtrahend from this and store the result in dest.
    Matrix4x3f.swap(Matrix4x3f other)
    Exchange the values of this matrix with the given other matrix.
    Matrix4x3f.translate(float x, float y, float z, Matrix4x3f dest)
    Apply a translation to this matrix by translating by the given number of units in x, y and z and store the result in dest.
    Matrix4x3f.translate(Vector3fc offset, Matrix4x3f dest)
    Apply a translation to this matrix by translating by the given number of units in x, y and z and store the result in dest.
    Matrix4x3fc.translate(float x, float y, float z, Matrix4x3f dest)
    Apply a translation to this matrix by translating by the given number of units in x, y and z and store the result in dest.
    Matrix4x3fc.translate(Vector3fc offset, Matrix4x3f dest)
    Apply a translation to this matrix by translating by the given number of units in x, y and z and store the result in dest.
    Matrix4x3f.translateLocal(float x, float y, float z, Matrix4x3f dest)
    Pre-multiply a translation to this matrix by translating by the given number of units in x, y and z and store the result in dest.
    Matrix4x3f.translateLocal(Vector3fc offset, Matrix4x3f dest)
    Pre-multiply a translation to this matrix by translating by the given number of units in x, y and z and store the result in dest.
    Matrix4x3fc.translateLocal(float x, float y, float z, Matrix4x3f dest)
    Pre-multiply a translation to this matrix by translating by the given number of units in x, y and z and store the result in dest.
    Matrix4x3fc.translateLocal(Vector3fc offset, Matrix4x3f dest)
    Pre-multiply a translation to this matrix by translating by the given number of units in x, y and z and store the result in dest.
    Matrix4x3f.translationRotateScaleMul(float tx, float ty, float tz, float qx, float qy, float qz, float qw, float sx, float sy, float sz, Matrix4x3f m)
    Set this matrix to T * R * S * M, where T is a translation by the given (tx, ty, tz), R is a rotation transformation specified by the quaternion (qx, qy, qz, qw), S is a scaling transformation which scales the three axes x, y and z by (sx, sy, sz).
    Matrix4x3f.translationRotateScaleMul(Vector3fc translation, Quaternionfc quat, Vector3fc scale, Matrix4x3f m)
    Set this matrix to T * R * S * M, where T is the given translation, R is a rotation transformation specified by the given quaternion, S is a scaling transformation which scales the axes by scale.
    Matrix4x3f.transpose3x3(Matrix4x3f dest)
     
    Matrix4x3fc.transpose3x3(Matrix4x3f dest)
    Transpose only the left 3x3 submatrix of this matrix and store the result in dest.
    Matrix4x3f.withLookAtUp(float upX, float upY, float upZ, Matrix4x3f dest)
     
    Matrix4x3f.withLookAtUp(Vector3fc up, Matrix4x3f dest)
     
    Matrix4x3fc.withLookAtUp(float upX, float upY, float upZ, Matrix4x3f dest)
    Apply a transformation to this matrix to ensure that the local Y axis (as obtained by Matrix4x3fc.positiveY(Vector3f)) will be coplanar to the plane spanned by the local Z axis (as obtained by Matrix4x3fc.positiveZ(Vector3f)) and the given vector (upX, upY, upZ), and store the result in dest.
    Matrix4x3fc.withLookAtUp(Vector3fc up, Matrix4x3f dest)
    Apply a transformation to this matrix to ensure that the local Y axis (as obtained by Matrix4x3fc.positiveY(Vector3f)) will be coplanar to the plane spanned by the local Z axis (as obtained by Matrix4x3fc.positiveZ(Vector3f)) and the given vector up, and store the result in dest.