Package org.joml

Class Matrix4f

java.lang.Object
org.joml.Matrix4f
All Implemented Interfaces:
Externalizable, Serializable, Cloneable, Matrix4fc
Direct Known Subclasses:
Matrix4fStack

public class Matrix4f extends Object implements Externalizable, Cloneable, Matrix4fc
Contains the definition of a 4x4 matrix of floats, and associated functions to transform it. The matrix is column-major to match OpenGL's interpretation, and it looks like this:

m00 m10 m20 m30
m01 m11 m21 m31
m02 m12 m22 m32
m03 m13 m23 m33

Author:
Richard Greenlees, Kai Burjack
See Also:
  • Field Summary

  • Constructor Summary

    Constructors
    Constructor
    Description
    Create a new Matrix4f and set it to identity.
    Matrix4f(float m00, float m01, float m02, float m03, float m10, float m11, float m12, float m13, float m20, float m21, float m22, float m23, float m30, float m31, float m32, float m33)
    Create a new 4x4 matrix using the supplied float values.
    Create a new Matrix4f by reading its 16 float components from the given FloatBuffer at the buffer's current position.
    Create a new Matrix4f by setting its uppper left 3x3 submatrix to the values of the given Matrix3fc and the rest to identity.
    Create a new Matrix4f and make it a copy of the given matrix.
    Create a new Matrix4f and make it a copy of the given matrix.
    Create a new Matrix4f and set its upper 4x3 submatrix to the given matrix mat and all other elements to identity.
    Matrix4f(Vector4fc col0, Vector4fc col1, Vector4fc col2, Vector4fc col3)
    Create a new Matrix4f and initialize its four columns using the supplied vectors.
  • Method Summary

    Modifier and Type
    Method
    Description
    add(Matrix4fc other)
    Component-wise add this and other.
    add(Matrix4fc other, Matrix4f dest)
    Component-wise add this and other and store the result in dest.
    Component-wise add the upper 4x3 submatrices of this and other.
    add4x3(Matrix4fc other, Matrix4f dest)
    Component-wise add the upper 4x3 submatrices of this and other and store the result in dest.
    affineSpan(Vector3f corner, Vector3f xDir, Vector3f yDir, Vector3f zDir)
    Compute the extents of the coordinate system before this affine transformation was applied and store the resulting corner coordinates in corner and the span vectors in xDir, yDir and zDir.
    arcball(float radius, float centerX, float centerY, float centerZ, float angleX, float angleY)
    Apply an arcball view transformation to this matrix with the given radius and center (centerX, centerY, centerZ) position of the arcball and the specified X and Y rotation angles.
    arcball(float radius, float centerX, float centerY, float centerZ, float angleX, float angleY, Matrix4f dest)
    Apply an arcball view transformation to this matrix with the given radius and center (centerX, centerY, centerZ) position of the arcball and the specified X and Y rotation angles, and store the result in dest.
    arcball(float radius, Vector3fc center, float angleX, float angleY)
    Apply an arcball view transformation to this matrix with the given radius and center position of the arcball and the specified X and Y rotation angles.
    arcball(float radius, Vector3fc center, float angleX, float angleY, Matrix4f dest)
    Apply an arcball view transformation to this matrix with the given radius and center position of the arcball and the specified X and Y rotation angles, and store the result in dest.
    assume(int properties)
    Assume the given properties about this matrix.
    Set this matrix to a cylindrical billboard transformation that rotates the local +Z axis of a given object with position objPos towards a target position at targetPos while constraining a cylindrical rotation around the given up vector.
    Set this matrix to a spherical billboard transformation that rotates the local +Z axis of a given object with position objPos towards a target position at targetPos using a shortest arc rotation by not preserving any up vector of the object.
    Set this matrix to a spherical billboard transformation that rotates the local +Z axis of a given object with position objPos towards a target position at targetPos.
     
    Compute the cofactor matrix of the upper left 3x3 submatrix of this.
    Compute the cofactor matrix of the upper left 3x3 submatrix of this and store it into dest.
    Compute the cofactor matrix of the upper left 3x3 submatrix of this and store it into dest.
    float
    Return the determinant of this matrix.
    float
    Return the determinant of the upper left 3x3 submatrix of this matrix.
    float
    Return the determinant of this matrix by assuming that it represents an affine transformation and thus its last row is equal to (0, 0, 0, 1).
    Compute and set the matrix properties returned by properties() based on the current matrix element values.
    boolean
     
    boolean
    equals(Matrix4fc m, float delta)
    Compare the matrix elements of this matrix with the given matrix using the given delta and return whether all of them are equal within a maximum difference of delta.
    fma4x3(Matrix4fc other, float otherFactor)
    Component-wise add the upper 4x3 submatrices of this and other by first multiplying each component of other's 4x3 submatrix by otherFactor and adding that result to this.
    fma4x3(Matrix4fc other, float otherFactor, Matrix4f dest)
    Component-wise add the upper 4x3 submatrices of this and other by first multiplying each component of other's 4x3 submatrix by otherFactor, adding that to this and storing the final result in dest.
    frustum(float left, float right, float bottom, float top, float zNear, float zFar)
    Apply an arbitrary perspective projection frustum transformation for a right-handed coordinate system using OpenGL's NDC z range of [-1..+1] to this matrix.
    frustum(float left, float right, float bottom, float top, float zNear, float zFar, boolean zZeroToOne)
    Apply an arbitrary perspective projection frustum transformation for a right-handed coordinate system using the given NDC z range to this matrix.
    frustum(float left, float right, float bottom, float top, float zNear, float zFar, boolean zZeroToOne, Matrix4f dest)
    Apply an arbitrary perspective projection frustum transformation for a right-handed coordinate system using the given NDC z range to this matrix and store the result in dest.
    frustum(float left, float right, float bottom, float top, float zNear, float zFar, Matrix4f dest)
    Apply an arbitrary perspective projection frustum transformation for a right-handed coordinate system using OpenGL's NDC z range of [-1..+1] to this matrix and store the result in dest.
    Compute the axis-aligned bounding box of the frustum described by this matrix and store the minimum corner coordinates in the given min and the maximum corner coordinates in the given max vector.
    frustumCorner(int corner, Vector3f point)
    Compute the corner coordinates of the frustum defined by this matrix, which can be a projection matrix or a combined modelview-projection matrix, and store the result in the given point.
    frustumLH(float left, float right, float bottom, float top, float zNear, float zFar)
    Apply an arbitrary perspective projection frustum transformation for a left-handed coordinate system using the given NDC z range to this matrix.
    frustumLH(float left, float right, float bottom, float top, float zNear, float zFar, boolean zZeroToOne)
    Apply an arbitrary perspective projection frustum transformation for a left-handed coordinate system using the given NDC z range to this matrix.
    frustumLH(float left, float right, float bottom, float top, float zNear, float zFar, boolean zZeroToOne, Matrix4f dest)
    Apply an arbitrary perspective projection frustum transformation for a left-handed coordinate system using the given NDC z range to this matrix and store the result in dest.
    frustumLH(float left, float right, float bottom, float top, float zNear, float zFar, Matrix4f dest)
    Apply an arbitrary perspective projection frustum transformation for a left-handed coordinate system using OpenGL's NDC z range of [-1..+1] to this matrix and store the result in dest.
    frustumPlane(int plane, Vector4f dest)
    Calculate a frustum plane of this matrix, which can be a projection matrix or a combined modelview-projection matrix, and store the result in the given planeEquation.
    frustumRayDir(float x, float y, Vector3f dir)
    Obtain the direction of a ray starting at the center of the coordinate system and going through the near frustum plane.
    float[]
    get(float[] arr)
    Store this matrix into the supplied float array in column-major order.
    float[]
    get(float[] arr, int offset)
    Store this matrix into the supplied float array in column-major order at the given offset.
    float
    get(int column, int row)
    Get the matrix element value at the given column and row.
    com.google.gwt.typedarrays.shared.Float32Array
    get(int index, com.google.gwt.typedarrays.shared.Float32Array buffer)
    Store this matrix in column-major order into the supplied Float32Array at the given index.
    get(int index, ByteBuffer buffer)
    Store this matrix in column-major order into the supplied ByteBuffer starting at the specified absolute buffer position/index.
    get(int index, FloatBuffer buffer)
    Store this matrix in column-major order into the supplied FloatBuffer starting at the specified absolute buffer position/index.
    com.google.gwt.typedarrays.shared.Float32Array
    get(com.google.gwt.typedarrays.shared.Float32Array buffer)
    Store this matrix in column-major order into the supplied Float32Array.
    get(ByteBuffer buffer)
    Store this matrix in column-major order into the supplied ByteBuffer at the current buffer position.
    get(FloatBuffer buffer)
    Store this matrix in column-major order into the supplied FloatBuffer at the current buffer position.
    get(Matrix4d dest)
    Get the current values of this matrix and store them into dest.
    get(Matrix4f dest)
    Get the current values of this matrix and store them into dest.
    Get the current values of the upper left 3x3 submatrix of this matrix and store them into dest.
    Get the current values of the upper left 3x3 submatrix of this matrix and store them into dest.
    get3x4(int index, ByteBuffer buffer)
    Store the left 3x4 submatrix in column-major order into the supplied ByteBuffer starting at the specified absolute buffer position/index.
    get3x4(int index, FloatBuffer buffer)
    Store the left 3x4 submatrix in column-major order into the supplied FloatBuffer starting at the specified absolute buffer position/index.
    Store the left 3x4 submatrix in column-major order into the supplied ByteBuffer at the current buffer position.
    Store the left 3x4 submatrix in column-major order into the supplied FloatBuffer at the current buffer position.
    get4x3(int index, ByteBuffer buffer)
    Store the upper 4x3 submatrix in column-major order into the supplied ByteBuffer starting at the specified absolute buffer position/index.
    get4x3(int index, FloatBuffer buffer)
    Store the upper 4x3 submatrix in column-major order into the supplied FloatBuffer starting at the specified absolute buffer position/index.
    Store the upper 4x3 submatrix in column-major order into the supplied ByteBuffer at the current buffer position.
    Store the upper 4x3 submatrix in column-major order into the supplied FloatBuffer at the current buffer position.
    Get the current values of the upper 4x3 submatrix of this matrix and store them into dest.
    get4x3Transposed(int index, ByteBuffer buffer)
    Store the upper 4x3 submatrix of this matrix in row-major order into the supplied ByteBuffer starting at the specified absolute buffer position/index.
    get4x3Transposed(int index, FloatBuffer buffer)
    Store the upper 4x3 submatrix of this matrix in row-major order into the supplied FloatBuffer starting at the specified absolute buffer position/index.
    Store the upper 4x3 submatrix of this matrix in row-major order into the supplied ByteBuffer at the current buffer position.
    Store the upper 4x3 submatrix of this matrix in row-major order into the supplied FloatBuffer at the current buffer position.
    getColumn(int column, Vector3f dest)
    Get the first three components of the column at the given column index, starting with 0.
    getColumn(int column, Vector4f dest)
    Get the column at the given column index, starting with 0.
    Extract the Euler angles from the rotation represented by the upper left 3x3 submatrix of this and store the extracted Euler angles in dest.
    Extract the Euler angles from the rotation represented by the upper left 3x3 submatrix of this and store the extracted Euler angles in dest.
    Get the current values of this matrix and store the represented rotation into the given Quaterniond.
    Get the current values of this matrix and store the represented rotation into the given Quaternionf.
    Get the rotational component of this matrix and store the represented rotation into the given AxisAngle4d.
    Get the rotational component of this matrix and store the represented rotation into the given AxisAngle4f.
    getRow(int row, Vector3f dest)
    Get the first three components of the row at the given row index, starting with 0.
    getRow(int row, Vector4f dest)
    Get the row at the given row index, starting with 0.
    float
    getRowColumn(int row, int column)
    Get the matrix element value at the given row and column.
    Get the scaling factors of this matrix for the three base axes.
    getToAddress(long address)
    Store this matrix in column-major order at the given off-heap address.
    Get only the translation components (m30, m31, m32) of this matrix and store them in the given vector xyz.
    getTransposed(int index, ByteBuffer buffer)
    Store the transpose of this matrix in column-major order into the supplied ByteBuffer starting at the specified absolute buffer position/index.
    getTransposed(int index, FloatBuffer buffer)
    Store the transpose of this matrix in column-major order into the supplied FloatBuffer starting at the specified absolute buffer position/index.
    Store the transpose of this matrix in column-major order into the supplied ByteBuffer at the current buffer position.
    Store the transpose of this matrix in column-major order into the supplied FloatBuffer at the current buffer position.
    Get the current values of this matrix and store the represented rotation into the given Quaterniond.
    Get the current values of this matrix and store the represented rotation into the given Quaternionf.
    int
     
    Reset this matrix to the identity.
    Invert this matrix.
    Invert this matrix and write the result into dest.
    Invert this matrix by assuming that it is an affine transformation (i.e.
    Invert this matrix by assuming that it is an affine transformation (i.e.
    If this is an arbitrary perspective projection matrix obtained via one of the frustum() methods or via setFrustum(), then this method builds the inverse of this.
    If this is an arbitrary perspective projection matrix obtained via one of the frustum() methods or via setFrustum(), then this method builds the inverse of this and stores it into the given dest.
    Invert this orthographic projection matrix.
    Invert this orthographic projection matrix and store the result into the given dest.
    If this is a perspective projection matrix obtained via one of the perspective() methods or via setPerspective(), that is, if this is a symmetrical perspective frustum transformation, then this method builds the inverse of this.
    If this is a perspective projection matrix obtained via one of the perspective() methods or via setPerspective(), that is, if this is a symmetrical perspective frustum transformation, then this method builds the inverse of this and stores it into the given dest.
    If this is a perspective projection matrix obtained via one of the perspective() methods or via setPerspective(), that is, if this is a symmetrical perspective frustum transformation and the given view matrix is affine and has unit scaling (for example by being obtained via lookAt()), then this method builds the inverse of this * view and stores it into the given dest.
    If this is a perspective projection matrix obtained via one of the perspective() methods or via setPerspective(), that is, if this is a symmetrical perspective frustum transformation and the given view matrix has unit scaling, then this method builds the inverse of this * view and stores it into the given dest.
    boolean
    Determine whether this matrix describes an affine transformation.
    boolean
    Determine whether all matrix elements are finite floating-point values, that is, they are not NaN and not infinity.
    lerp(Matrix4fc other, float t)
    Linearly interpolate this and other using the given interpolation factor t and store the result in this.
    lerp(Matrix4fc other, float t, Matrix4f dest)
    Linearly interpolate this and other using the given interpolation factor t and store the result in dest.
    lookAlong(float dirX, float dirY, float dirZ, float upX, float upY, float upZ)
    Apply a rotation transformation to this matrix to make -z point along dir.
    lookAlong(float dirX, float dirY, float dirZ, float upX, float upY, float upZ, Matrix4f dest)
    Apply a rotation transformation to this matrix to make -z point along dir and store the result in dest.
    Apply a rotation transformation to this matrix to make -z point along dir.
    Apply a rotation transformation to this matrix to make -z point along dir and store the result in dest.
    lookAt(float eyeX, float eyeY, float eyeZ, float centerX, float centerY, float centerZ, float upX, float upY, float upZ)
    Apply a "lookat" transformation to this matrix for a right-handed coordinate system, that aligns -z with center - eye.
    lookAt(float eyeX, float eyeY, float eyeZ, float centerX, float centerY, float centerZ, float upX, float upY, float upZ, Matrix4f dest)
    Apply a "lookat" transformation to this matrix for a right-handed coordinate system, that aligns -z with center - eye and store the result in dest.
    lookAt(Vector3fc eye, Vector3fc center, Vector3fc up)
    Apply a "lookat" transformation to this matrix for a right-handed coordinate system, that aligns -z with center - eye.
    lookAt(Vector3fc eye, Vector3fc center, Vector3fc up, Matrix4f dest)
    Apply a "lookat" transformation to this matrix for a right-handed coordinate system, that aligns -z with center - eye and store the result in dest.
    lookAtLH(float eyeX, float eyeY, float eyeZ, float centerX, float centerY, float centerZ, float upX, float upY, float upZ)
    Apply a "lookat" transformation to this matrix for a left-handed coordinate system, that aligns +z with center - eye.
    lookAtLH(float eyeX, float eyeY, float eyeZ, float centerX, float centerY, float centerZ, float upX, float upY, float upZ, Matrix4f dest)
    Apply a "lookat" transformation to this matrix for a left-handed coordinate system, that aligns +z with center - eye and store the result in dest.
    Apply a "lookat" transformation to this matrix for a left-handed coordinate system, that aligns +z with center - eye.
    lookAtLH(Vector3fc eye, Vector3fc center, Vector3fc up, Matrix4f dest)
    Apply a "lookat" transformation to this matrix for a left-handed coordinate system, that aligns +z with center - eye and store the result in dest.
    lookAtPerspective(float eyeX, float eyeY, float eyeZ, float centerX, float centerY, float centerZ, float upX, float upY, float upZ, Matrix4f dest)
    Apply a "lookat" transformation to this matrix for a right-handed coordinate system, that aligns -z with center - eye and store the result in dest.
    lookAtPerspectiveLH(float eyeX, float eyeY, float eyeZ, float centerX, float centerY, float centerZ, float upX, float upY, float upZ, Matrix4f dest)
    Apply a "lookat" transformation to this matrix for a left-handed coordinate system, that aligns +z with center - eye and store the result in dest.
    float
    m00()
    Return the value of the matrix element at column 0 and row 0.
    m00(float m00)
    Set the value of the matrix element at column 0 and row 0.
    float
    m01()
    Return the value of the matrix element at column 0 and row 1.
    m01(float m01)
    Set the value of the matrix element at column 0 and row 1.
    float
    m02()
    Return the value of the matrix element at column 0 and row 2.
    m02(float m02)
    Set the value of the matrix element at column 0 and row 2.
    float
    m03()
    Return the value of the matrix element at column 0 and row 3.
    m03(float m03)
    Set the value of the matrix element at column 0 and row 3.
    float
    m10()
    Return the value of the matrix element at column 1 and row 0.
    m10(float m10)
    Set the value of the matrix element at column 1 and row 0.
    float
    m11()
    Return the value of the matrix element at column 1 and row 1.
    m11(float m11)
    Set the value of the matrix element at column 1 and row 1.
    float
    m12()
    Return the value of the matrix element at column 1 and row 2.
    m12(float m12)
    Set the value of the matrix element at column 1 and row 2.
    float
    m13()
    Return the value of the matrix element at column 1 and row 3.
    m13(float m13)
    Set the value of the matrix element at column 1 and row 3.
    float
    m20()
    Return the value of the matrix element at column 2 and row 0.
    m20(float m20)
    Set the value of the matrix element at column 2 and row 0.
    float
    m21()
    Return the value of the matrix element at column 2 and row 1.
    m21(float m21)
    Set the value of the matrix element at column 2 and row 1.
    float
    m22()
    Return the value of the matrix element at column 2 and row 2.
    m22(float m22)
    Set the value of the matrix element at column 2 and row 2.
    float
    m23()
    Return the value of the matrix element at column 2 and row 3.
    m23(float m23)
    Set the value of the matrix element at column 2 and row 3.
    float
    m30()
    Return the value of the matrix element at column 3 and row 0.
    m30(float m30)
    Set the value of the matrix element at column 3 and row 0.
    float
    m31()
    Return the value of the matrix element at column 3 and row 1.
    m31(float m31)
    Set the value of the matrix element at column 3 and row 1.
    float
    m32()
    Return the value of the matrix element at column 3 and row 2.
    m32(float m32)
    Set the value of the matrix element at column 3 and row 2.
    float
    m33()
    Return the value of the matrix element at column 3 and row 3.
    m33(float m33)
    Set the value of the matrix element at column 3 and row 3.
    Multiply this by the matrix
    Multiply this by the matrix
    Multiply this by the matrix
    Multiply this by the matrix
    Multiply this by the matrix
    Multiply this by the matrix
    Multiply this by the matrix
    Multiply this by the matrix
    Multiply this by the matrix
    Multiply this by the matrix
    Multiply this by the matrix
    Multiply this by the matrix
    Multiply this by the matrix
    Multiply this by the matrix
    Multiply this by the matrix
    Multiply this by the matrix
    Multiply this by the matrix
    Multiply this by the matrix
    Multiply this by the matrix
    Multiply this by the matrix
    Multiply this by the matrix
    Multiply this by the matrix
    Multiply this by the matrix
    Multiply this by the matrix
    Multiply this by the matrix
    Multiply this by the matrix
    Multiply this by the matrix
    Multiply this by the matrix
    Multiply this by the matrix
    Multiply this by the matrix
    Multiply this by the matrix
    Multiply this by the matrix
    Multiply this by the matrix
    Multiply this by the matrix
    Multiply this by the matrix
    Multiply this by the matrix
    Multiply this by the matrix
    Multiply this by the matrix
    Multiply this by the matrix
    Multiply this by the matrix
    Multiply this by the matrix
    Multiply this by the matrix
    Multiply this by the matrix
    Multiply this by the matrix
    Multiply this by the matrix
    Multiply this by the matrix
    Multiply this by the matrix
    Multiply this by the matrix
    Multiply this by the matrix
    Multiply this by the matrix
    Multiply this by the matrix
    Multiply this by the matrix
    Multiply this by the matrix
    Multiply this by the matrix
    Multiply this by the matrix
    Multiply this by the matrix
    Multiply this by the matrix
    Multiply this by the matrix
    Multiply this by the matrix
    Multiply this by the matrix
    Multiply this by the matrix
    Multiply this by the matrix
    Multiply this by the matrix
    Multiply this by the matrix
    Multiply this by the matrix
    Multiply this by the matrix
    Multiply this by the matrix
    Multiply this by the matrix
    Multiply this by the matrix
    Multiply this by the matrix
    Multiply this by the matrix
    Multiply this by the matrix
    Multiply this by the matrix
    Multiply this by the matrix
    Multiply this by the matrix
    Multiply this by the matrix
    Multiply this by the matrix
    Multiply this by the matrix
    Multiply this by the matrix
    Multiply this by the matrix
    Multiply this by the matrix
    Multiply this by the matrix
    Multiply this by the matrix
    Multiply this by the matrix
    Multiply this by the matrix
    Multiply this by the matrix
    Multiply this by the matrix
    Multiply this by the matrix
    mul(float r00, float r01, float r02, float r03, float r10, float r11, float r12, float r13, float r20, float r21, float r22, float r23, float r30, float r31, float r32, float r33)
    Multiply this matrix by the matrix with the supplied elements.
    mul(float r00, float r01, float r02, float r03, float r10, float r11, float r12, float r13, float r20, float r21, float r22, float r23, float r30, float r31, float r32, float r33, Matrix4f dest)
    Multiply this matrix by the matrix with the supplied elements and store the result in dest.
    Multiply this matrix by the supplied right matrix and store the result in this.
    mul(Matrix3x2fc right, Matrix4f dest)
    Multiply this matrix by the supplied right matrix and store the result in dest.
    mul(Matrix4fc right)
    Multiply this matrix by the supplied right matrix and store the result in this.
    mul(Matrix4fc right, Matrix4f dest)
    Multiply this matrix by the supplied right matrix and store the result in dest.
    Multiply this matrix by the supplied right matrix and store the result in this.
    mul(Matrix4x3fc right, Matrix4f dest)
    Multiply this matrix by the supplied right matrix and store the result in dest.
    mul0(Matrix4fc right)
    Multiply this matrix by the supplied right matrix.
    mul0(Matrix4fc right, Matrix4f dest)
    Multiply this matrix by the supplied right matrix and store the result in dest.
    mul3x3(float r00, float r01, float r02, float r10, float r11, float r12, float r20, float r21, float r22)
    Multiply this matrix by the 3x3 matrix with the supplied elements expanded to a 4x4 matrix with all other matrix elements set to identity.
    mul3x3(float r00, float r01, float r02, float r10, float r11, float r12, float r20, float r21, float r22, Matrix4f dest)
    Multiply this matrix by the 3x3 matrix with the supplied elements expanded to a 4x4 matrix with all other matrix elements set to identity, and store the result in dest.
    Component-wise multiply the upper 4x3 submatrices of this by other.
    Component-wise multiply the upper 4x3 submatrices of this by other and store the result in dest.
    Multiply this matrix by the supplied right matrix, both of which are assumed to be affine, and store the result in this.
    Multiply this matrix by the supplied right matrix, both of which are assumed to be affine, and store the result in dest.
    Multiply this matrix by the supplied right matrix, which is assumed to be affine, and store the result in this.
    Multiply this matrix by the supplied right matrix, which is assumed to be affine, and store the result in dest.
    Component-wise multiply this by other.
    Component-wise multiply this by other and store the result in dest.
    Pre-multiply this matrix by the supplied left matrix and store the result in this.
    Pre-multiply this matrix by the supplied left matrix and store the result in dest.
    Pre-multiply this matrix by the supplied left matrix, both of which are assumed to be affine, and store the result in this.
    Pre-multiply this matrix by the supplied left matrix, both of which are assumed to be affine, and store the result in dest.
    Multiply this orthographic projection matrix by the supplied affine view matrix.
    Multiply this orthographic projection matrix by the supplied affine view matrix and store the result in dest.
    Multiply this symmetric perspective projection matrix by the supplied affine view matrix.
    Multiply this symmetric perspective projection matrix by the supplied affine view matrix and store the result in dest.
    Multiply this symmetric perspective projection matrix by the supplied view matrix.
    Multiply this symmetric perspective projection matrix by the supplied view matrix and store the result in dest.
    Multiply this matrix, which is assumed to only contain a translation, by the supplied right matrix, which is assumed to be affine, and store the result in dest.
    Multiply this by the matrix
    Multiply this by the matrix
    Multiply this by the matrix
    Multiply this by the matrix
    Multiply this by the matrix
    Multiply this by the matrix
    Compute a normal matrix from the upper left 3x3 submatrix of this and store it into the upper left 3x3 submatrix of this.
    Compute a normal matrix from the upper left 3x3 submatrix of this and store it into dest.
    Compute a normal matrix from the upper left 3x3 submatrix of this and store it into the upper left 3x3 submatrix of dest.
    Normalize the upper left 3x3 submatrix of this matrix.
    Normalize the upper left 3x3 submatrix of this matrix and store the result in dest.
    Normalize the upper left 3x3 submatrix of this matrix and store the result in dest.
    Obtain the direction of +X before the transformation represented by this orthogonal matrix is applied.
    Obtain the direction of +Y before the transformation represented by this orthogonal matrix is applied.
    Obtain the direction of +Z before the transformation represented by this orthogonal matrix is applied.
    obliqueZ(float a, float b)
    Apply an oblique projection transformation to this matrix with the given values for a and b.
    obliqueZ(float a, float b, Matrix4f dest)
    Apply an oblique projection transformation to this matrix with the given values for a and b and store the result in dest.
    Obtain the position that gets transformed to the origin by this matrix.
    Obtain the position that gets transformed to the origin by this affine matrix.
    ortho(float left, float right, float bottom, float top, float zNear, float zFar)
    Apply an orthographic projection transformation for a right-handed coordinate system using OpenGL's NDC z range of [-1..+1] to this matrix.
    ortho(float left, float right, float bottom, float top, float zNear, float zFar, boolean zZeroToOne)
    Apply an orthographic projection transformation for a right-handed coordinate system using the given NDC z range to this matrix.
    ortho(float left, float right, float bottom, float top, float zNear, float zFar, boolean zZeroToOne, Matrix4f dest)
    Apply an orthographic projection transformation for a right-handed coordinate system using the given NDC z range to this matrix and store the result in dest.
    ortho(float left, float right, float bottom, float top, float zNear, float zFar, Matrix4f dest)
    Apply an orthographic projection transformation for a right-handed coordinate system using OpenGL's NDC z range of [-1..+1] to this matrix and store the result in dest.
    ortho2D(float left, float right, float bottom, float top)
    Apply an orthographic projection transformation for a right-handed coordinate system to this matrix.
    ortho2D(float left, float right, float bottom, float top, Matrix4f dest)
    Apply an orthographic projection transformation for a right-handed coordinate system to this matrix and store the result in dest.
    ortho2DLH(float left, float right, float bottom, float top)
    Apply an orthographic projection transformation for a left-handed coordinate system to this matrix.
    ortho2DLH(float left, float right, float bottom, float top, Matrix4f dest)
    Apply an orthographic projection transformation for a left-handed coordinate system to this matrix and store the result in dest.
    Build an ortographic projection transformation that fits the view-projection transformation represented by this into the given affine view transformation.
    orthoLH(float left, float right, float bottom, float top, float zNear, float zFar)
    Apply an orthographic projection transformation for a left-handed coordiante system using OpenGL's NDC z range of [-1..+1] to this matrix.
    orthoLH(float left, float right, float bottom, float top, float zNear, float zFar, boolean zZeroToOne)
    Apply an orthographic projection transformation for a left-handed coordiante system using the given NDC z range to this matrix.
    orthoLH(float left, float right, float bottom, float top, float zNear, float zFar, boolean zZeroToOne, Matrix4f dest)
    Apply an orthographic projection transformation for a left-handed coordiante system using the given NDC z range to this matrix and store the result in dest.
    orthoLH(float left, float right, float bottom, float top, float zNear, float zFar, Matrix4f dest)
    Apply an orthographic projection transformation for a left-handed coordiante system using OpenGL's NDC z range of [-1..+1] to this matrix and store the result in dest.
    orthoSymmetric(float width, float height, float zNear, float zFar)
    Apply a symmetric orthographic projection transformation for a right-handed coordinate system using OpenGL's NDC z range of [-1..+1] to this matrix.
    orthoSymmetric(float width, float height, float zNear, float zFar, boolean zZeroToOne)
    Apply a symmetric orthographic projection transformation for a right-handed coordinate system using the given NDC z range to this matrix.
    orthoSymmetric(float width, float height, float zNear, float zFar, boolean zZeroToOne, Matrix4f dest)
    Apply a symmetric orthographic projection transformation for a right-handed coordinate system using the given NDC z range to this matrix and store the result in dest.
    orthoSymmetric(float width, float height, float zNear, float zFar, Matrix4f dest)
    Apply a symmetric orthographic projection transformation for a right-handed coordinate system using OpenGL's NDC z range of [-1..+1] to this matrix and store the result in dest.
    orthoSymmetricLH(float width, float height, float zNear, float zFar)
    Apply a symmetric orthographic projection transformation for a left-handed coordinate system using OpenGL's NDC z range of [-1..+1] to this matrix.
    orthoSymmetricLH(float width, float height, float zNear, float zFar, boolean zZeroToOne)
    Apply a symmetric orthographic projection transformation for a left-handed coordinate system using the given NDC z range to this matrix.
    orthoSymmetricLH(float width, float height, float zNear, float zFar, boolean zZeroToOne, Matrix4f dest)
    Apply a symmetric orthographic projection transformation for a left-handed coordinate system using the given NDC z range to this matrix and store the result in dest.
    orthoSymmetricLH(float width, float height, float zNear, float zFar, Matrix4f dest)
    Apply a symmetric orthographic projection transformation for a left-handed coordinate system using OpenGL's NDC z range of [-1..+1] to this matrix and store the result in dest.
    perspective(float fovy, float aspect, float zNear, float zFar)
    Apply a symmetric perspective projection frustum transformation for a right-handed coordinate system using OpenGL's NDC z range of [-1..+1] to this matrix.
    perspective(float fovy, float aspect, float zNear, float zFar, boolean zZeroToOne)
    Apply a symmetric perspective projection frustum transformation using for a right-handed coordinate system using the given NDC z range to this matrix.
    perspective(float fovy, float aspect, float zNear, float zFar, boolean zZeroToOne, Matrix4f dest)
    Apply a symmetric perspective projection frustum transformation for a right-handed coordinate system using the given NDC z range to this matrix and store the result in dest.
    perspective(float fovy, float aspect, float zNear, float zFar, Matrix4f dest)
    Apply a symmetric perspective projection frustum transformation for a right-handed coordinate system using OpenGL's NDC z range of [-1..+1] to this matrix and store the result in dest.
    float
    Extract the far clip plane distance from this perspective projection matrix.
    float
    Return the vertical field-of-view angle in radians of this perspective transformation matrix.
    perspectiveFrustumSlice(float near, float far, Matrix4f dest)
    Change the near and far clip plane distances of this perspective frustum transformation matrix and store the result in dest.
    Compute the eye/origin of the inverse of the perspective frustum transformation defined by this matrix, which can be the inverse of a projection matrix or the inverse of a combined modelview-projection matrix, and store the result in the given dest.
    perspectiveLH(float fovy, float aspect, float zNear, float zFar)
    Apply a symmetric perspective projection frustum transformation for a left-handed coordinate system using OpenGL's NDC z range of [-1..+1] to this matrix.
    perspectiveLH(float fovy, float aspect, float zNear, float zFar, boolean zZeroToOne)
    Apply a symmetric perspective projection frustum transformation for a left-handed coordinate system using the given NDC z range to this matrix.
    perspectiveLH(float fovy, float aspect, float zNear, float zFar, boolean zZeroToOne, Matrix4f dest)
    Apply a symmetric perspective projection frustum transformation for a left-handed coordinate system using the given NDC z range to this matrix and store the result in dest.
    perspectiveLH(float fovy, float aspect, float zNear, float zFar, Matrix4f dest)
    Apply a symmetric perspective projection frustum transformation for a left-handed coordinate system using OpenGL's NDC z range of [-1..+1] to this matrix and store the result in dest.
    float
    Extract the near clip plane distance from this perspective projection matrix.
    perspectiveOffCenter(float fovy, float offAngleX, float offAngleY, float aspect, float zNear, float zFar)
    Apply an asymmetric off-center perspective projection frustum transformation for a right-handed coordinate system using OpenGL's NDC z range of [-1..+1] to this matrix.
    perspectiveOffCenter(float fovy, float offAngleX, float offAngleY, float aspect, float zNear, float zFar, boolean zZeroToOne)
    Apply an asymmetric off-center perspective projection frustum transformation using for a right-handed coordinate system using the given NDC z range to this matrix.
    perspectiveOffCenter(float fovy, float offAngleX, float offAngleY, float aspect, float zNear, float zFar, boolean zZeroToOne, Matrix4f dest)
    Apply an asymmetric off-center perspective projection frustum transformation for a right-handed coordinate system using the given NDC z range to this matrix and store the result in dest.
    perspectiveOffCenter(float fovy, float offAngleX, float offAngleY, float aspect, float zNear, float zFar, Matrix4f dest)
    Apply an asymmetric off-center perspective projection frustum transformation for a right-handed coordinate system using OpenGL's NDC z range of [-1..+1] to this matrix and store the result in dest.
    perspectiveOffCenterFov(float angleLeft, float angleRight, float angleDown, float angleUp, float zNear, float zFar)
    Apply an asymmetric off-center perspective projection frustum transformation for a right-handed coordinate system using OpenGL's NDC z range of [-1..+1] to this matrix.
    perspectiveOffCenterFov(float angleLeft, float angleRight, float angleDown, float angleUp, float zNear, float zFar, boolean zZeroToOne)
    Apply an asymmetric off-center perspective projection frustum transformation for a right-handed coordinate system using the given NDC z range to this matrix.
    perspectiveOffCenterFov(float angleLeft, float angleRight, float angleDown, float angleUp, float zNear, float zFar, boolean zZeroToOne, Matrix4f dest)
    Apply an asymmetric off-center perspective projection frustum transformation for a right-handed coordinate system using the given NDC z range to this matrix and store the result in dest.
    perspectiveOffCenterFov(float angleLeft, float angleRight, float angleDown, float angleUp, float zNear, float zFar, Matrix4f dest)
    Apply an asymmetric off-center perspective projection frustum transformation for a right-handed coordinate system using OpenGL's NDC z range of [-1..+1] to this matrix and store the result in dest.
    perspectiveOffCenterFovLH(float angleLeft, float angleRight, float angleDown, float angleUp, float zNear, float zFar)
    Apply an asymmetric off-center perspective projection frustum transformation for a left-handed coordinate system using OpenGL's NDC z range of [-1..+1] to this matrix.
    perspectiveOffCenterFovLH(float angleLeft, float angleRight, float angleDown, float angleUp, float zNear, float zFar, boolean zZeroToOne)
    Apply an asymmetric off-center perspective projection frustum transformation for a left-handed coordinate system using the given NDC z range to this matrix.
    perspectiveOffCenterFovLH(float angleLeft, float angleRight, float angleDown, float angleUp, float zNear, float zFar, boolean zZeroToOne, Matrix4f dest)
    Apply an asymmetric off-center perspective projection frustum transformation for a left-handed coordinate system using the given NDC z range to this matrix and store the result in dest.
    perspectiveOffCenterFovLH(float angleLeft, float angleRight, float angleDown, float angleUp, float zNear, float zFar, Matrix4f dest)
    Apply an asymmetric off-center perspective projection frustum transformation for a left-handed coordinate system using OpenGL's NDC z range of [-1..+1] to this matrix and store the result in dest.
    static void
    perspectiveOffCenterViewFromRectangle(Vector3f eye, Vector3f p, Vector3f x, Vector3f y, float nearFarDist, boolean zeroToOne, Matrix4f projDest, Matrix4f viewDest)
    Create a view and off-center perspective projection matrix from a given eye position, a given bottom left corner position p of the near plane rectangle and the extents of the near plane rectangle along its local x and y axes, and store the resulting matrices in projDest and viewDest.
    Compute the eye/origin of the perspective frustum transformation defined by this matrix, which can be a projection matrix or a combined modelview-projection matrix, and store the result in the given origin.
    perspectiveRect(float width, float height, float zNear, float zFar)
    Apply a symmetric perspective projection frustum transformation for a right-handed coordinate system using OpenGL's NDC z range of [-1..+1] to this matrix.
    perspectiveRect(float width, float height, float zNear, float zFar, boolean zZeroToOne)
    Apply a symmetric perspective projection frustum transformation using for a right-handed coordinate system using the given NDC z range to this matrix.
    perspectiveRect(float width, float height, float zNear, float zFar, boolean zZeroToOne, Matrix4f dest)
    Apply a symmetric perspective projection frustum transformation for a right-handed coordinate system using the given NDC z range to this matrix and store the result in dest.
    perspectiveRect(float width, float height, float zNear, float zFar, Matrix4f dest)
    Apply a symmetric perspective projection frustum transformation for a right-handed coordinate system using OpenGL's NDC z range of [-1..+1] to this matrix and store the result in dest.
    pick(float x, float y, float width, float height, int[] viewport)
    Apply a picking transformation to this matrix using the given window coordinates (x, y) as the pick center and the given (width, height) as the size of the picking region in window coordinates.
    pick(float x, float y, float width, float height, int[] viewport, Matrix4f dest)
    Apply a picking transformation to this matrix using the given window coordinates (x, y) as the pick center and the given (width, height) as the size of the picking region in window coordinates, and store the result in dest.
    Obtain the direction of +X before the transformation represented by this matrix is applied.
    Obtain the direction of +Y before the transformation represented by this matrix is applied.
    Obtain the direction of +Z before the transformation represented by this matrix is applied.
    project(float x, float y, float z, int[] viewport, Vector3f winCoordsDest)
    Project the given (x, y, z) position via this matrix using the specified viewport and store the resulting window coordinates in winCoordsDest.
    project(float x, float y, float z, int[] viewport, Vector4f winCoordsDest)
    Project the given (x, y, z) position via this matrix using the specified viewport and store the resulting window coordinates in winCoordsDest.
    project(Vector3fc position, int[] viewport, Vector3f winCoordsDest)
    Project the given position via this matrix using the specified viewport and store the resulting window coordinates in winCoordsDest.
    project(Vector3fc position, int[] viewport, Vector4f winCoordsDest)
    Project the given position via this matrix using the specified viewport and store the resulting window coordinates in winCoordsDest.
    projectedGridRange(Matrix4fc projector, float sLower, float sUpper, Matrix4f dest)
    Compute the range matrix for the Projected Grid transformation as described in chapter "2.4.2 Creating the range conversion matrix" of the paper Real-time water rendering - Introducing the projected grid concept based on the inverse of the view-projection matrix which is assumed to be this, and store that range matrix into dest.
    int
    Return the assumed properties of this matrix.
    void
     
    reflect(float a, float b, float c, float d)
    Apply a mirror/reflection transformation to this matrix that reflects about the given plane specified via the equation x*a + y*b + z*c + d = 0.
    reflect(float nx, float ny, float nz, float px, float py, float pz)
    Apply a mirror/reflection transformation to this matrix that reflects about the given plane specified via the plane normal and a point on the plane.
    reflect(float nx, float ny, float nz, float px, float py, float pz, Matrix4f dest)
    Apply a mirror/reflection transformation to this matrix that reflects about the given plane specified via the plane normal and a point on the plane, and store the result in dest.
    reflect(float a, float b, float c, float d, Matrix4f dest)
    Apply a mirror/reflection transformation to this matrix that reflects about the given plane specified via the equation x*a + y*b + z*c + d = 0 and store the result in dest.
    reflect(Quaternionfc orientation, Vector3fc point)
    Apply a mirror/reflection transformation to this matrix that reflects about a plane specified via the plane orientation and a point on the plane.
    reflect(Quaternionfc orientation, Vector3fc point, Matrix4f dest)
    Apply a mirror/reflection transformation to this matrix that reflects about a plane specified via the plane orientation and a point on the plane, and store the result in dest.
    reflect(Vector3fc normal, Vector3fc point)
    Apply a mirror/reflection transformation to this matrix that reflects about the given plane specified via the plane normal and a point on the plane.
    reflect(Vector3fc normal, Vector3fc point, Matrix4f dest)
    Apply a mirror/reflection transformation to this matrix that reflects about the given plane specified via the plane normal and a point on the plane, and store the result in dest.
    reflection(float a, float b, float c, float d)
    Set this matrix to a mirror/reflection transformation that reflects about the given plane specified via the equation x*a + y*b + z*c + d = 0.
    reflection(float nx, float ny, float nz, float px, float py, float pz)
    Set this matrix to a mirror/reflection transformation that reflects about the given plane specified via the plane normal and a point on the plane.
    reflection(Quaternionfc orientation, Vector3fc point)
    Set this matrix to a mirror/reflection transformation that reflects about a plane specified via the plane orientation and a point on the plane.
    reflection(Vector3fc normal, Vector3fc point)
    Set this matrix to a mirror/reflection transformation that reflects about the given plane specified via the plane normal and a point on the plane.
    rotate(float ang, float x, float y, float z)
    Apply rotation to this matrix by rotating the given amount of radians about the specified (x, y, z) axis.
    rotate(float ang, float x, float y, float z, Matrix4f dest)
    Apply rotation to this matrix by rotating the given amount of radians about the specified (x, y, z) axis and store the result in dest.
    rotate(float angle, Vector3fc axis)
    Apply a rotation transformation, rotating the given radians about the specified axis, to this matrix.
    rotate(float angle, Vector3fc axis, Matrix4f dest)
    Apply a rotation transformation, rotating the given radians about the specified axis and store the result in dest.
    rotate(AxisAngle4f axisAngle)
    Apply a rotation transformation, rotating about the given AxisAngle4f, to this matrix.
    rotate(AxisAngle4f axisAngle, Matrix4f dest)
    Apply a rotation transformation, rotating about the given AxisAngle4f and store the result in dest.
    Apply the rotation transformation of the given Quaternionfc to this matrix.
    Apply the rotation transformation of the given Quaternionfc to this matrix and store the result in dest.
    rotateAffine(float ang, float x, float y, float z)
    Apply rotation to this affine matrix by rotating the given amount of radians about the specified (x, y, z) axis.
    rotateAffine(float ang, float x, float y, float z, Matrix4f dest)
    Apply rotation to this affine matrix by rotating the given amount of radians about the specified (x, y, z) axis and store the result in dest.
    Apply the rotation transformation of the given Quaternionfc to this matrix.
    Apply the rotation transformation of the given Quaternionfc to this affine matrix and store the result in dest.
    rotateAffineXYZ(float angleX, float angleY, float angleZ)
    Apply rotation of angleX radians about the X axis, followed by a rotation of angleY radians about the Y axis and followed by a rotation of angleZ radians about the Z axis.
    rotateAffineXYZ(float angleX, float angleY, float angleZ, Matrix4f dest)
    Apply rotation of angleX radians about the X axis, followed by a rotation of angleY radians about the Y axis and followed by a rotation of angleZ radians about the Z axis and store the result in dest.
    rotateAffineYXZ(float angleY, float angleX, float angleZ)
    Apply rotation of angleY radians about the Y axis, followed by a rotation of angleX radians about the X axis and followed by a rotation of angleZ radians about the Z axis.
    rotateAffineYXZ(float angleY, float angleX, float angleZ, Matrix4f dest)
    Apply rotation of angleY radians about the Y axis, followed by a rotation of angleX radians about the X axis and followed by a rotation of angleZ radians about the Z axis and store the result in dest.
    rotateAffineZYX(float angleZ, float angleY, float angleX)
    Apply rotation of angleZ radians about the Z axis, followed by a rotation of angleY radians about the Y axis and followed by a rotation of angleX radians about the X axis.
    rotateAffineZYX(float angleZ, float angleY, float angleX, Matrix4f dest)
    Apply rotation of angleZ radians about the Z axis, followed by a rotation of angleY radians about the Y axis and followed by a rotation of angleX radians about the X axis and store the result in dest.
    rotateAround(Quaternionfc quat, float ox, float oy, float oz)
    Apply the rotation transformation of the given Quaternionfc to this matrix while using (ox, oy, oz) as the rotation origin.
    rotateAround(Quaternionfc quat, float ox, float oy, float oz, Matrix4f dest)
    Apply the rotation - and possibly scaling - transformation of the given Quaternionfc to this matrix while using (ox, oy, oz) as the rotation origin, and store the result in dest.
    rotateAroundAffine(Quaternionfc quat, float ox, float oy, float oz, Matrix4f dest)
    Apply the rotation - and possibly scaling - transformation of the given Quaternionfc to this affine matrix while using (ox, oy, oz) as the rotation origin, and store the result in dest.
    rotateAroundLocal(Quaternionfc quat, float ox, float oy, float oz)
    Pre-multiply the rotation transformation of the given Quaternionfc to this matrix while using (ox, oy, oz) as the rotation origin.
    rotateAroundLocal(Quaternionfc quat, float ox, float oy, float oz, Matrix4f dest)
    Pre-multiply the rotation - and possibly scaling - transformation of the given Quaternionfc to this matrix while using (ox, oy, oz) as the rotation origin, and store the result in dest.
    rotateLocal(float ang, float x, float y, float z)
    Pre-multiply a rotation to this matrix by rotating the given amount of radians about the specified (x, y, z) axis.
    rotateLocal(float ang, float x, float y, float z, Matrix4f dest)
    Pre-multiply a rotation to this matrix by rotating the given amount of radians about the specified (x, y, z) axis and store the result in dest.
    Pre-multiply the rotation transformation of the given Quaternionfc to this matrix.
    Pre-multiply the rotation transformation of the given Quaternionfc to this matrix and store the result in dest.
    rotateLocalX(float ang)
    Pre-multiply a rotation to this matrix by rotating the given amount of radians about the X axis.
    rotateLocalX(float ang, Matrix4f dest)
    Pre-multiply a rotation around the X axis to this matrix by rotating the given amount of radians about the X axis and store the result in dest.
    rotateLocalY(float ang)
    Pre-multiply a rotation to this matrix by rotating the given amount of radians about the Y axis.
    rotateLocalY(float ang, Matrix4f dest)
    Pre-multiply a rotation around the Y axis to this matrix by rotating the given amount of radians about the Y axis and store the result in dest.
    rotateLocalZ(float ang)
    Pre-multiply a rotation to this matrix by rotating the given amount of radians about the Z axis.
    rotateLocalZ(float ang, Matrix4f dest)
    Pre-multiply a rotation around the Z axis to this matrix by rotating the given amount of radians about the Z axis and store the result in dest.
    rotateTowards(float dirX, float dirY, float dirZ, float upX, float upY, float upZ)
    Apply a model transformation to this matrix for a right-handed coordinate system, that aligns the local +Z axis with (dirX, dirY, dirZ).
    rotateTowards(float dirX, float dirY, float dirZ, float upX, float upY, float upZ, Matrix4f dest)
    Apply a model transformation to this matrix for a right-handed coordinate system, that aligns the local +Z axis with (dirX, dirY, dirZ) and store the result in dest.
    Apply a model transformation to this matrix for a right-handed coordinate system, that aligns the local +Z axis with dir.
    Apply a model transformation to this matrix for a right-handed coordinate system, that aligns the local +Z axis with dir and store the result in dest.
    rotateTowardsXY(float dirX, float dirY)
    Apply rotation about the Z axis to align the local +X towards (dirX, dirY).
    rotateTowardsXY(float dirX, float dirY, Matrix4f dest)
    Apply rotation about the Z axis to align the local +X towards (dirX, dirY) and store the result in dest.
    rotateTranslation(float ang, float x, float y, float z, Matrix4f dest)
    Apply rotation to this matrix, which is assumed to only contain a translation, by rotating the given amount of radians about the specified (x, y, z) axis and store the result in dest.
    Apply the rotation transformation of the given Quaternionfc to this matrix, which is assumed to only contain a translation, and store the result in dest.
    rotateX(float ang)
    Apply rotation about the X axis to this matrix by rotating the given amount of radians.
    rotateX(float ang, Matrix4f dest)
    Apply rotation about the X axis to this matrix by rotating the given amount of radians and store the result in dest.
    rotateXYZ(float angleX, float angleY, float angleZ)
    Apply rotation of angleX radians about the X axis, followed by a rotation of angleY radians about the Y axis and followed by a rotation of angleZ radians about the Z axis.
    rotateXYZ(float angleX, float angleY, float angleZ, Matrix4f dest)
    Apply rotation of angleX radians about the X axis, followed by a rotation of angleY radians about the Y axis and followed by a rotation of angleZ radians about the Z axis and store the result in dest.
    Apply rotation of angles.x radians about the X axis, followed by a rotation of angles.y radians about the Y axis and followed by a rotation of angles.z radians about the Z axis.
    rotateY(float ang)
    Apply rotation about the Y axis to this matrix by rotating the given amount of radians.
    rotateY(float ang, Matrix4f dest)
    Apply rotation about the Y axis to this matrix by rotating the given amount of radians and store the result in dest.
    rotateYXZ(float angleY, float angleX, float angleZ)
    Apply rotation of angleY radians about the Y axis, followed by a rotation of angleX radians about the X axis and followed by a rotation of angleZ radians about the Z axis.
    rotateYXZ(float angleY, float angleX, float angleZ, Matrix4f dest)
    Apply rotation of angleY radians about the Y axis, followed by a rotation of angleX radians about the X axis and followed by a rotation of angleZ radians about the Z axis and store the result in dest.
    Apply rotation of angles.y radians about the Y axis, followed by a rotation of angles.x radians about the X axis and followed by a rotation of angles.z radians about the Z axis.
    rotateZ(float ang)
    Apply rotation about the Z axis to this matrix by rotating the given amount of radians.
    rotateZ(float ang, Matrix4f dest)
    Apply rotation about the Z axis to this matrix by rotating the given amount of radians and store the result in dest.
    rotateZYX(float angleZ, float angleY, float angleX)
    Apply rotation of angleZ radians about the Z axis, followed by a rotation of angleY radians about the Y axis and followed by a rotation of angleX radians about the X axis.
    rotateZYX(float angleZ, float angleY, float angleX, Matrix4f dest)
    Apply rotation of angleZ radians about the Z axis, followed by a rotation of angleY radians about the Y axis and followed by a rotation of angleX radians about the X axis and store the result in dest.
    Apply rotation of angles.z radians about the Z axis, followed by a rotation of angles.y radians about the Y axis and followed by a rotation of angles.x radians about the X axis.
    rotation(float angle, float x, float y, float z)
    Set this matrix to a rotation matrix which rotates the given radians about a given axis.
    rotation(float angle, Vector3fc axis)
    Set this matrix to a rotation matrix which rotates the given radians about a given axis.
    rotation(AxisAngle4f axisAngle)
    Set this matrix to a rotation transformation using the given AxisAngle4f.
    Set this matrix to the rotation transformation of the given Quaternionfc.
    rotationAround(Quaternionfc quat, float ox, float oy, float oz)
    Set this matrix to a transformation composed of a rotation of the specified Quaternionfc while using (ox, oy, oz) as the rotation origin.
    rotationTowards(float dirX, float dirY, float dirZ, float upX, float upY, float upZ)
    Set this matrix to a model transformation for a right-handed coordinate system, that aligns the local -z axis with (dirX, dirY, dirZ).
    Set this matrix to a model transformation for a right-handed coordinate system, that aligns the local -z axis with dir.
    rotationTowardsXY(float dirX, float dirY)
    Set this matrix to a rotation transformation about the Z axis to align the local +X towards (dirX, dirY).
    rotationX(float ang)
    Set this matrix to a rotation transformation about the X axis.
    rotationXYZ(float angleX, float angleY, float angleZ)
    Set this matrix to a rotation of angleX radians about the X axis, followed by a rotation of angleY radians about the Y axis and followed by a rotation of angleZ radians about the Z axis.
    rotationY(float ang)
    Set this matrix to a rotation transformation about the Y axis.
    rotationYXZ(float angleY, float angleX, float angleZ)
    Set this matrix to a rotation of angleY radians about the Y axis, followed by a rotation of angleX radians about the X axis and followed by a rotation of angleZ radians about the Z axis.
    rotationZ(float ang)
    Set this matrix to a rotation transformation about the Z axis.
    rotationZYX(float angleZ, float angleY, float angleX)
    Set this matrix to a rotation of angleZ radians about the Z axis, followed by a rotation of angleY radians about the Y axis and followed by a rotation of angleX radians about the X axis.
    scale(float xyz)
    Apply scaling to this matrix by uniformly scaling all base axes by the given xyz factor.
    scale(float x, float y, float z)
    Apply scaling to this matrix by scaling the base axes by the given sx, sy and sz factors.
    scale(float x, float y, float z, Matrix4f dest)
    Apply scaling to this matrix by scaling the base axes by the given x, y and z factors and store the result in dest.
    scale(float xyz, Matrix4f dest)
    Apply scaling to this matrix by uniformly scaling all base axes by the given xyz factor and store the result in dest.
    Apply scaling to this matrix by scaling the base axes by the given xyz.x, xyz.y and xyz.z factors, respectively.
    scale(Vector3fc xyz, Matrix4f dest)
    Apply scaling to this matrix by scaling the base axes by the given xyz.x, xyz.y and xyz.z factors, respectively and store the result in dest.
    scaleAround(float factor, float ox, float oy, float oz)
    Apply scaling to this matrix by scaling all three base axes by the given factor while using (ox, oy, oz) as the scaling origin.
    scaleAround(float sx, float sy, float sz, float ox, float oy, float oz)
    Apply scaling to this matrix by scaling the base axes by the given sx, sy and sz factors while using (ox, oy, oz) as the scaling origin.
    scaleAround(float sx, float sy, float sz, float ox, float oy, float oz, Matrix4f dest)
    Apply scaling to this matrix by scaling the base axes by the given sx, sy and sz factors while using (ox, oy, oz) as the scaling origin, and store the result in dest.
    scaleAround(float factor, float ox, float oy, float oz, Matrix4f dest)
    Apply scaling to this matrix by scaling all three base axes by the given factor while using (ox, oy, oz) as the scaling origin, and store the result in dest.
    scaleAroundLocal(float factor, float ox, float oy, float oz)
    Pre-multiply scaling to this matrix by scaling all three base axes by the given factor while using (ox, oy, oz) as the scaling origin.
    scaleAroundLocal(float sx, float sy, float sz, float ox, float oy, float oz)
    Pre-multiply scaling to this matrix by scaling the base axes by the given sx, sy and sz factors while using (ox, oy, oz) as the scaling origin.
    scaleAroundLocal(float sx, float sy, float sz, float ox, float oy, float oz, Matrix4f dest)
    Pre-multiply scaling to this matrix by scaling the base axes by the given sx, sy and sz factors while using the given (ox, oy, oz) as the scaling origin, and store the result in dest.
    scaleAroundLocal(float factor, float ox, float oy, float oz, Matrix4f dest)
    Pre-multiply scaling to this matrix by scaling all three base axes by the given factor while using (ox, oy, oz) as the scaling origin, and store the result in dest.
    scaleLocal(float xyz)
    Pre-multiply scaling to this matrix by scaling the base axes by the given xyz factor.
    scaleLocal(float x, float y, float z)
    Pre-multiply scaling to this matrix by scaling the base axes by the given x, y and z factors.
    scaleLocal(float x, float y, float z, Matrix4f dest)
    Pre-multiply scaling to this matrix by scaling the base axes by the given x, y and z factors and store the result in dest.
    scaleLocal(float xyz, Matrix4f dest)
    Pre-multiply scaling to this matrix by scaling all base axes by the given xyz factor, and store the result in dest.
    scaleXY(float x, float y)
    Apply scaling to this matrix by scaling the X axis by x and the Y axis by y.
    scaleXY(float x, float y, Matrix4f dest)
    Apply scaling to this matrix by by scaling the X axis by x and the Y axis by y and store the result in dest.
    scaling(float factor)
    Set this matrix to be a simple scale matrix, which scales all axes uniformly by the given factor.
    scaling(float x, float y, float z)
    Set this matrix to be a simple scale matrix.
    Set this matrix to be a simple scale matrix which scales the base axes by xyz.x, xyz.y and xyz.z respectively.
    set(float[] m)
    Set the values in the matrix using a float array that contains the matrix elements in column-major order.
    set(float[] m, int off)
    Set the values in the matrix using a float array that contains the matrix elements in column-major order.
    set(float m00, float m01, float m02, float m03, float m10, float m11, float m12, float m13, float m20, float m21, float m22, float m23, float m30, float m31, float m32, float m33)
    Set the values within this matrix to the supplied float values.
    set(int column, int row, float value)
    Set the matrix element at the given column and row to the specified value.
    set(int index, ByteBuffer buffer)
    Set the values of this matrix by reading 16 float values from the given ByteBuffer in column-major order, starting at the specified absolute buffer position/index.
    set(int index, FloatBuffer buffer)
    Set the values of this matrix by reading 16 float values from the given FloatBuffer in column-major order, starting at the specified absolute buffer position/index.
    set(ByteBuffer buffer)
    Set the values of this matrix by reading 16 float values from the given ByteBuffer in column-major order, starting at its current position.
    set(FloatBuffer buffer)
    Set the values of this matrix by reading 16 float values from the given FloatBuffer in column-major order, starting at its current position.
    set(AxisAngle4d axisAngle)
    Set this matrix to be equivalent to the rotation specified by the given AxisAngle4d.
    set(AxisAngle4f axisAngle)
    Set this matrix to be equivalent to the rotation specified by the given AxisAngle4f.
    Set the upper left 3x3 submatrix of this Matrix4f to the given Matrix3fc and the rest to identity.
    Store the values of the given matrix m into this matrix.
    Store the values of the given matrix m into this matrix.
    Store the values of the given matrix m into this matrix and set the other matrix elements to identity.
    Set this matrix to be equivalent to the rotation specified by the given Quaterniondc.
    Set this matrix to be equivalent to the rotation specified by the given Quaternionfc.
    set(Vector4fc col0, Vector4fc col1, Vector4fc col2, Vector4fc col3)
    Set the four columns of this matrix to the supplied vectors, respectively.
    Set the upper left 3x3 submatrix of this Matrix4f to the given Matrix3fc and don't change the other elements.
    Set the upper left 3x3 submatrix of this Matrix4f to that of the given Matrix4f and don't change the other elements.
    Set the upper 4x3 submatrix of this Matrix4f to the upper 4x3 submatrix of the given Matrix4f and don't change the other elements.
    Set the upper 4x3 submatrix of this Matrix4f to the given Matrix4x3fc and don't change the other elements.
    setColumn(int column, Vector4fc src)
    Set the column at the given column index, starting with 0.
    setFromAddress(long address)
    Set the values of this matrix by reading 16 float values from off-heap memory in column-major order, starting at the given address.
    setFromIntrinsic(float alphaX, float alphaY, float gamma, float u0, float v0, int imgWidth, int imgHeight, float near, float far)
    Set this matrix to represent a perspective projection equivalent to the given intrinsic camera calibration parameters.
    setFrustum(float left, float right, float bottom, float top, float zNear, float zFar)
    Set this matrix to be an arbitrary perspective projection frustum transformation for a right-handed coordinate system using OpenGL's NDC z range of [-1..+1].
    setFrustum(float left, float right, float bottom, float top, float zNear, float zFar, boolean zZeroToOne)
    Set this matrix to be an arbitrary perspective projection frustum transformation for a right-handed coordinate system using the given NDC z range.
    setFrustumLH(float left, float right, float bottom, float top, float zNear, float zFar)
    Set this matrix to be an arbitrary perspective projection frustum transformation for a left-handed coordinate system using OpenGL's NDC z range of [-1..+1].
    setFrustumLH(float left, float right, float bottom, float top, float zNear, float zFar, boolean zZeroToOne)
    Set this matrix to be an arbitrary perspective projection frustum transformation for a left-handed coordinate system using OpenGL's NDC z range of [-1..+1].
    setLookAlong(float dirX, float dirY, float dirZ, float upX, float upY, float upZ)
    Set this matrix to a rotation transformation to make -z point along dir.
    Set this matrix to a rotation transformation to make -z point along dir.
    setLookAt(float eyeX, float eyeY, float eyeZ, float centerX, float centerY, float centerZ, float upX, float upY, float upZ)
    Set this matrix to be a "lookat" transformation for a right-handed coordinate system, that aligns -z with center - eye.
    Set this matrix to be a "lookat" transformation for a right-handed coordinate system, that aligns -z with center - eye.
    setLookAtLH(float eyeX, float eyeY, float eyeZ, float centerX, float centerY, float centerZ, float upX, float upY, float upZ)
    Set this matrix to be a "lookat" transformation for a left-handed coordinate system, that aligns +z with center - eye.
    Set this matrix to be a "lookat" transformation for a left-handed coordinate system, that aligns +z with center - eye.
    setOrtho(float left, float right, float bottom, float top, float zNear, float zFar)
    Set this matrix to be an orthographic projection transformation for a right-handed coordinate system using OpenGL's NDC z range of [-1..+1].
    setOrtho(float left, float right, float bottom, float top, float zNear, float zFar, boolean zZeroToOne)
    Set this matrix to be an orthographic projection transformation for a right-handed coordinate system using the given NDC z range.
    setOrtho2D(float left, float right, float bottom, float top)
    Set this matrix to be an orthographic projection transformation for a right-handed coordinate system.
    setOrtho2DLH(float left, float right, float bottom, float top)
    Set this matrix to be an orthographic projection transformation for a left-handed coordinate system.
    setOrthoLH(float left, float right, float bottom, float top, float zNear, float zFar)
    Set this matrix to be an orthographic projection transformation for a left-handed coordinate system using OpenGL's NDC z range of [-1..+1].
    setOrthoLH(float left, float right, float bottom, float top, float zNear, float zFar, boolean zZeroToOne)
    Set this matrix to be an orthographic projection transformation for a left-handed coordinate system using the given NDC z range.
    setOrthoSymmetric(float width, float height, float zNear, float zFar)
    Set this matrix to be a symmetric orthographic projection transformation for a right-handed coordinate system using OpenGL's NDC z range of [-1..+1].
    setOrthoSymmetric(float width, float height, float zNear, float zFar, boolean zZeroToOne)
    Set this matrix to be a symmetric orthographic projection transformation for a right-handed coordinate system using the given NDC z range.
    setOrthoSymmetricLH(float width, float height, float zNear, float zFar)
    Set this matrix to be a symmetric orthographic projection transformation for a left-handed coordinate system using OpenGL's NDC z range of [-1..+1].
    setOrthoSymmetricLH(float width, float height, float zNear, float zFar, boolean zZeroToOne)
    Set this matrix to be a symmetric orthographic projection transformation for a left-handed coordinate system using the given NDC z range.
    setPerspective(float fovy, float aspect, float zNear, float zFar)
    Set this matrix to be a symmetric perspective projection frustum transformation for a right-handed coordinate system using OpenGL's NDC z range of [-1..+1].
    setPerspective(float fovy, float aspect, float zNear, float zFar, boolean zZeroToOne)
    Set this matrix to be a symmetric perspective projection frustum transformation for a right-handed coordinate system using the given NDC z range.
    setPerspectiveLH(float fovy, float aspect, float zNear, float zFar)
    Set this matrix to be a symmetric perspective projection frustum transformation for a left-handed coordinate system using OpenGL's NDC z range of [-1..+1].
    setPerspectiveLH(float fovy, float aspect, float zNear, float zFar, boolean zZeroToOne)
    Set this matrix to be a symmetric perspective projection frustum transformation for a left-handed coordinate system using the given NDC z range of [-1..+1].
    setPerspectiveOffCenter(float fovy, float offAngleX, float offAngleY, float aspect, float zNear, float zFar)
    Set this matrix to be an asymmetric off-center perspective projection frustum transformation for a right-handed coordinate system using OpenGL's NDC z range of [-1..+1].
    setPerspectiveOffCenter(float fovy, float offAngleX, float offAngleY, float aspect, float zNear, float zFar, boolean zZeroToOne)
    Set this matrix to be an asymmetric off-center perspective projection frustum transformation for a right-handed coordinate system using the given NDC z range.
    setPerspectiveOffCenterFov(float angleLeft, float angleRight, float angleDown, float angleUp, float zNear, float zFar)
    Set this matrix to be an asymmetric off-center perspective projection frustum transformation for a right-handed coordinate system using OpenGL's NDC z range of [-1..+1].
    setPerspectiveOffCenterFov(float angleLeft, float angleRight, float angleDown, float angleUp, float zNear, float zFar, boolean zZeroToOne)
    Set this matrix to be an asymmetric off-center perspective projection frustum transformation for a right-handed coordinate system using the given NDC z range.
    setPerspectiveOffCenterFovLH(float angleLeft, float angleRight, float angleDown, float angleUp, float zNear, float zFar)
    Set this matrix to be an asymmetric off-center perspective projection frustum transformation for a left-handed coordinate system using OpenGL's NDC z range of [-1..+1].
    setPerspectiveOffCenterFovLH(float angleLeft, float angleRight, float angleDown, float angleUp, float zNear, float zFar, boolean zZeroToOne)
    Set this matrix to be an asymmetric off-center perspective projection frustum transformation for a left-handed coordinate system using the given NDC z range.
    setPerspectiveRect(float width, float height, float zNear, float zFar)
    Set this matrix to be a symmetric perspective projection frustum transformation for a right-handed coordinate system using OpenGL's NDC z range of [-1..+1].
    setPerspectiveRect(float width, float height, float zNear, float zFar, boolean zZeroToOne)
    Set this matrix to be a symmetric perspective projection frustum transformation for a right-handed coordinate system using the given NDC z range.
    setRotationXYZ(float angleX, float angleY, float angleZ)
    Set only the upper left 3x3 submatrix of this matrix to a rotation of angleX radians about the X axis, followed by a rotation of angleY radians about the Y axis and followed by a rotation of angleZ radians about the Z axis.
    setRotationYXZ(float angleY, float angleX, float angleZ)
    Set only the upper left 3x3 submatrix of this matrix to a rotation of angleY radians about the Y axis, followed by a rotation of angleX radians about the X axis and followed by a rotation of angleZ radians about the Z axis.
    setRotationZYX(float angleZ, float angleY, float angleX)
    Set only the upper left 3x3 submatrix of this matrix to a rotation of angleZ radians about the Z axis, followed by a rotation of angleY radians about the Y axis and followed by a rotation of angleX radians about the X axis.
    setRow(int row, Vector4fc src)
    Set the row at the given row index, starting with 0.
    setRowColumn(int row, int column, float value)
    Set the matrix element at the given row and column to the specified value.
    setTranslation(float x, float y, float z)
    Set only the translation components (m30, m31, m32) of this matrix to the given values (x, y, z).
    Set only the translation components (m30, m31, m32) of this matrix to the values (xyz.x, xyz.y, xyz.z).
    setTransposed(float[] m)
    Set the values in the matrix using a float array that contains the matrix elements in row-major order.
    setTransposed(float[] m, int off)
    Set the values in the matrix using a float array that contains the matrix elements in row-major order.
    Set the values of this matrix by reading 16 float values from the given ByteBuffer in row-major order, starting at its current position.
    Set the values of this matrix by reading 16 float values from the given FloatBuffer in row-major order, starting at its current position.
    Store the values of the transpose of the given matrix m into this matrix.
    Set the values of this matrix by reading 16 float values from off-heap memory in row-major order, starting at the given address.
    shadow(float lightX, float lightY, float lightZ, float lightW, float a, float b, float c, float d)
    Apply a projection transformation to this matrix that projects onto the plane specified via the general plane equation x*a + y*b + z*c + d = 0 as if casting a shadow from a given light position/direction (lightX, lightY, lightZ, lightW).
    shadow(float lightX, float lightY, float lightZ, float lightW, float a, float b, float c, float d, Matrix4f dest)
    Apply a projection transformation to this matrix that projects onto the plane specified via the general plane equation x*a + y*b + z*c + d = 0 as if casting a shadow from a given light position/direction (lightX, lightY, lightZ, lightW) and store the result in dest.
    shadow(float lightX, float lightY, float lightZ, float lightW, Matrix4f planeTransform)
    Apply a projection transformation to this matrix that projects onto the plane with the general plane equation y = 0 as if casting a shadow from a given light position/direction (lightX, lightY, lightZ, lightW).
    shadow(float lightX, float lightY, float lightZ, float lightW, Matrix4fc planeTransform, Matrix4f dest)
    Apply a projection transformation to this matrix that projects onto the plane with the general plane equation y = 0 as if casting a shadow from a given light position/direction (lightX, lightY, lightZ, lightW) and store the result in dest.
    shadow(Vector4f light, float a, float b, float c, float d)
    Apply a projection transformation to this matrix that projects onto the plane specified via the general plane equation x*a + y*b + z*c + d = 0 as if casting a shadow from a given light position/direction light.
    shadow(Vector4f light, float a, float b, float c, float d, Matrix4f dest)
    Apply a projection transformation to this matrix that projects onto the plane specified via the general plane equation x*a + y*b + z*c + d = 0 as if casting a shadow from a given light position/direction light and store the result in dest.
    shadow(Vector4f light, Matrix4f planeTransform)
    Apply a projection transformation to this matrix that projects onto the plane with the general plane equation y = 0 as if casting a shadow from a given light position/direction light.
    shadow(Vector4f light, Matrix4fc planeTransform, Matrix4f dest)
    Apply a projection transformation to this matrix that projects onto the plane with the general plane equation y = 0 as if casting a shadow from a given light position/direction light and store the result in dest.
    sub(Matrix4fc subtrahend)
    Component-wise subtract subtrahend from this.
    sub(Matrix4fc subtrahend, Matrix4f dest)
    Component-wise subtract subtrahend from this and store the result in dest.
    sub4x3(Matrix4f subtrahend)
    Component-wise subtract the upper 4x3 submatrices of subtrahend from this.
    sub4x3(Matrix4fc subtrahend, Matrix4f dest)
    Component-wise subtract the upper 4x3 submatrices of subtrahend from this and store the result in dest.
    swap(Matrix4f other)
    Exchange the values of this matrix with the given other matrix.
    boolean
    testAab(float minX, float minY, float minZ, float maxX, float maxY, float maxZ)
    Test whether the given axis-aligned box is partly or completely within or outside of the frustum defined by this matrix.
    boolean
    testPoint(float x, float y, float z)
    Test whether the given point (x, y, z) is within the frustum defined by this matrix.
    boolean
    testSphere(float x, float y, float z, float r)
    Test whether the given sphere is partly or completely within or outside of the frustum defined by this matrix.
    tile(int x, int y, int w, int h)
    This method is equivalent to calling: translate(w-1-2*x, h-1-2*y, 0).scale(w, h, 1)
    tile(int x, int y, int w, int h, Matrix4f dest)
    This method is equivalent to calling: translate(w-1-2*x, h-1-2*y, 0, dest).scale(w, h, 1)
    Return a string representation of this matrix.
    Return a string representation of this matrix by formatting the matrix elements with the given NumberFormat.
    transform(float x, float y, float z, float w, Vector4f dest)
    Transform/multiply the vector (x, y, z, w) by this matrix and store the result in dest.
    Transform/multiply the given vector by this matrix and store the result in that vector.
    Transform/multiply the given vector by this matrix and store the result in dest.
    transformAab(float minX, float minY, float minZ, float maxX, float maxY, float maxZ, Vector3f outMin, Vector3f outMax)
    Transform the axis-aligned box given as the minimum corner (minX, minY, minZ) and maximum corner (maxX, maxY, maxZ) by this affine matrix and compute the axis-aligned box of the result whose minimum corner is stored in outMin and maximum corner stored in outMax.
    transformAab(Vector3fc min, Vector3fc max, Vector3f outMin, Vector3f outMax)
    Transform the axis-aligned box given as the minimum corner min and maximum corner max by this affine matrix and compute the axis-aligned box of the result whose minimum corner is stored in outMin and maximum corner stored in outMax.
    transformAffine(float x, float y, float z, float w, Vector4f dest)
    Transform/multiply the 4D-vector (x, y, z, w) by assuming that this matrix represents an affine transformation (i.e.
    Transform/multiply the given 4D-vector by assuming that this matrix represents an affine transformation (i.e.
    Transform/multiply the given 4D-vector by assuming that this matrix represents an affine transformation (i.e.
    transformDirection(float x, float y, float z, Vector3f dest)
    Transform/multiply the given 3D-vector (x, y, z), as if it was a 4D-vector with w=0, by this matrix and store the result in dest.
    Transform/multiply the given 3D-vector, as if it was a 4D-vector with w=0, by this matrix and store the result in that vector.
    Transform/multiply the given 3D-vector, as if it was a 4D-vector with w=0, by this matrix and store the result in dest.
    transformPosition(float x, float y, float z, Vector3f dest)
    Transform/multiply the 3D-vector (x, y, z), as if it was a 4D-vector with w=1, by this matrix and store the result in dest.
    Transform/multiply the given 3D-vector, as if it was a 4D-vector with w=1, by this matrix and store the result in that vector.
    Transform/multiply the given 3D-vector, as if it was a 4D-vector with w=1, by this matrix and store the result in dest.
    transformProject(float x, float y, float z, float w, Vector3f dest)
    Transform/multiply the vector (x, y, z, w) by this matrix, perform perspective divide and store (x, y, z) of the result in dest.
    transformProject(float x, float y, float z, float w, Vector4f dest)
    Transform/multiply the vector (x, y, z, w) by this matrix, perform perspective divide and store the result in dest.
    transformProject(float x, float y, float z, Vector3f dest)
    Transform/multiply the vector (x, y, z) by this matrix, perform perspective divide and store the result in dest.
    Transform/multiply the given vector by this matrix, perform perspective divide and store the result in that vector.
    Transform/multiply the given vector by this matrix, perform perspective divide and store the result in dest.
    Transform/multiply the given vector by this matrix, perform perspective divide and store the result in that vector.
    Transform/multiply the given vector by this matrix, perform perspective divide and store the result in dest.
    Transform/multiply the given vector by this matrix, perform perspective divide and store the result in dest.
    transformTranspose(float x, float y, float z, float w, Vector4f dest)
    Transform/multiply the vector (x, y, z, w) by the transpose of this matrix and store the result in dest.
    Transform/multiply the given vector by the transpose of this matrix and store the result in that vector.
    Transform/multiply the given vector by the transpose of this matrix and store the result in dest.
    translate(float x, float y, float z)
    Apply a translation to this matrix by translating by the given number of units in x, y and z.
    translate(float x, float y, float z, Matrix4f dest)
    Apply a translation to this matrix by translating by the given number of units in x, y and z and store the result in dest.
    Apply a translation to this matrix by translating by the given number of units in x, y and z.
    translate(Vector3fc offset, Matrix4f dest)
    Apply a translation to this matrix by translating by the given number of units in x, y and z and store the result in dest.
    translateLocal(float x, float y, float z)
    Pre-multiply a translation to this matrix by translating by the given number of units in x, y and z.
    translateLocal(float x, float y, float z, Matrix4f dest)
    Pre-multiply a translation to this matrix by translating by the given number of units in x, y and z and store the result in dest.
    Pre-multiply a translation to this matrix by translating by the given number of units in x, y and z.
    Pre-multiply a translation to this matrix by translating by the given number of units in x, y and z and store the result in dest.
    translation(float x, float y, float z)
    Set this matrix to be a simple translation matrix.
    Set this matrix to be a simple translation matrix.
    translationRotate(float tx, float ty, float tz, float qx, float qy, float qz, float qw)
    Set this matrix to T * R, where T is a translation by the given (tx, ty, tz) and R is a rotation - and possibly scaling - transformation specified by the quaternion (qx, qy, qz, qw).
    translationRotate(float tx, float ty, float tz, Quaternionfc quat)
    Set this matrix to T * R, where T is a translation by the given (tx, ty, tz) and R is a rotation - and possibly scaling - transformation specified by the given quaternion.
    Set this matrix to T * R, where T is the given translation and R is a rotation transformation specified by the given quaternion.
    translationRotateInvert(float tx, float ty, float tz, float qx, float qy, float qz, float qw)
    Set this matrix to (T * R)-1, where T is a translation by the given (tx, ty, tz) and R is a rotation transformation specified by the quaternion (qx, qy, qz, qw).
    Set this matrix to (T * R)-1, where T is the given translation and R is a rotation transformation specified by the given quaternion.
    translationRotateScale(float tx, float ty, float tz, float qx, float qy, float qz, float qw, float scale)
    Set this matrix to T * R * S, where T is a translation by the given (tx, ty, tz), R is a rotation transformation specified by the quaternion (qx, qy, qz, qw), and S is a scaling transformation which scales all three axes by scale.
    translationRotateScale(float tx, float ty, float tz, float qx, float qy, float qz, float qw, float sx, float sy, float sz)
    Set this matrix to T * R * S, where T is a translation by the given (tx, ty, tz), R is a rotation transformation specified by the quaternion (qx, qy, qz, qw), and S is a scaling transformation which scales the three axes x, y and z by (sx, sy, sz).
    translationRotateScale(Vector3fc translation, Quaternionfc quat, float scale)
    Set this matrix to T * R * S, where T is the given translation, R is a rotation transformation specified by the given quaternion, and S is a scaling transformation which scales all three axes by scale.
    Set this matrix to T * R * S, where T is the given translation, R is a rotation transformation specified by the given quaternion, and S is a scaling transformation which scales the axes by scale.
    translationRotateScaleInvert(float tx, float ty, float tz, float qx, float qy, float qz, float qw, float sx, float sy, float sz)
    Set this matrix to (T * R * S)-1, where T is a translation by the given (tx, ty, tz), R is a rotation transformation specified by the quaternion (qx, qy, qz, qw), and S is a scaling transformation which scales the three axes x, y and z by (sx, sy, sz).
    translationRotateScaleInvert(Vector3fc translation, Quaternionfc quat, float scale)
    Set this matrix to (T * R * S)-1, where T is the given translation, R is a rotation transformation specified by the given quaternion, and S is a scaling transformation which scales all three axes by scale.
    Set this matrix to (T * R * S)-1, where T is the given translation, R is a rotation transformation specified by the given quaternion, and S is a scaling transformation which scales the axes by scale.
    translationRotateScaleMulAffine(float tx, float ty, float tz, float qx, float qy, float qz, float qw, float sx, float sy, float sz, Matrix4f m)
    Set this matrix to T * R * S * M, where T is a translation by the given (tx, ty, tz), R is a rotation - and possibly scaling - transformation specified by the quaternion (qx, qy, qz, qw), S is a scaling transformation which scales the three axes x, y and z by (sx, sy, sz) and M is an affine matrix.
    Set this matrix to T * R * S * M, where T is the given translation, R is a rotation - and possibly scaling - transformation specified by the given quaternion, S is a scaling transformation which scales the axes by scale and M is an affine matrix.
    translationRotateTowards(float posX, float posY, float posZ, float dirX, float dirY, float dirZ, float upX, float upY, float upZ)
    Set this matrix to a model transformation for a right-handed coordinate system, that translates to the given (posX, posY, posZ) and aligns the local -z axis with (dirX, dirY, dirZ).
    Set this matrix to a model transformation for a right-handed coordinate system, that translates to the given pos and aligns the local -z axis with dir.
    Transpose this matrix.
    Transpose this matrix and store the result in dest.
    Transpose only the upper left 3x3 submatrix of this matrix.
    Transpose only the upper left 3x3 submatrix of this matrix and store the result in dest.
    Transpose only the upper left 3x3 submatrix of this matrix and store the result in dest.
    trapezoidCrop(float p0x, float p0y, float p1x, float p1y, float p2x, float p2y, float p3x, float p3y)
    Set this matrix to a perspective transformation that maps the trapezoid spanned by the four corner coordinates (p0x, p0y), (p1x, p1y), (p2x, p2y) and (p3x, p3y) to the unit square [(-1, -1)..(+1, +1)].
    unproject(float winX, float winY, float winZ, int[] viewport, Vector3f dest)
    Unproject the given window coordinates (winX, winY, winZ) by this matrix using the specified viewport.
    unproject(float winX, float winY, float winZ, int[] viewport, Vector4f dest)
    Unproject the given window coordinates (winX, winY, winZ) by this matrix using the specified viewport.
    unproject(Vector3fc winCoords, int[] viewport, Vector3f dest)
    Unproject the given window coordinates winCoords by this matrix using the specified viewport.
    unproject(Vector3fc winCoords, int[] viewport, Vector4f dest)
    Unproject the given window coordinates winCoords by this matrix using the specified viewport.
    unprojectInv(float winX, float winY, float winZ, int[] viewport, Vector3f dest)
    Unproject the given window coordinates (winX, winY, winZ) by this matrix using the specified viewport.
    unprojectInv(float winX, float winY, float winZ, int[] viewport, Vector4f dest)
    Unproject the given window coordinates (winX, winY, winZ) by this matrix using the specified viewport.
    unprojectInv(Vector3fc winCoords, int[] viewport, Vector3f dest)
    Unproject the given window coordinates winCoords by this matrix using the specified viewport.
    unprojectInv(Vector3fc winCoords, int[] viewport, Vector4f dest)
    Unproject the given window coordinates winCoords by this matrix using the specified viewport.
    unprojectInvRay(float winX, float winY, int[] viewport, Vector3f originDest, Vector3f dirDest)
    Unproject the given 2D window coordinates (winX, winY) by this matrix using the specified viewport and compute the origin and the direction of the resulting ray which starts at NDC z = -1.0 and goes through NDC z = +1.0.
    unprojectInvRay(Vector2fc winCoords, int[] viewport, Vector3f originDest, Vector3f dirDest)
    Unproject the given window coordinates winCoords by this matrix using the specified viewport and compute the origin and the direction of the resulting ray which starts at NDC z = -1.0 and goes through NDC z = +1.0.
    unprojectRay(float winX, float winY, int[] viewport, Vector3f originDest, Vector3f dirDest)
    Unproject the given 2D window coordinates (winX, winY) by this matrix using the specified viewport and compute the origin and the direction of the resulting ray which starts at NDC z = -1.0 and goes through NDC z = +1.0.
    unprojectRay(Vector2fc winCoords, int[] viewport, Vector3f originDest, Vector3f dirDest)
    Unproject the given 2D window coordinates winCoords by this matrix using the specified viewport and compute the origin and the direction of the resulting ray which starts at NDC z = -1.0 and goes through NDC z = +1.0.
    withLookAtUp(float upX, float upY, float upZ)
    Apply a transformation to this matrix to ensure that the local Y axis (as obtained by positiveY(Vector3f)) will be coplanar to the plane spanned by the local Z axis (as obtained by positiveZ(Vector3f)) and the given vector (upX, upY, upZ).
    withLookAtUp(float upX, float upY, float upZ, Matrix4f dest)
    Apply a transformation to this matrix to ensure that the local Y axis (as obtained by Matrix4fc.positiveY(Vector3f)) will be coplanar to the plane spanned by the local Z axis (as obtained by Matrix4fc.positiveZ(Vector3f)) and the given vector (upX, upY, upZ), and store the result in dest.
    Apply a transformation to this matrix to ensure that the local Y axis (as obtained by positiveY(Vector3f)) will be coplanar to the plane spanned by the local Z axis (as obtained by positiveZ(Vector3f)) and the given vector up.
    Apply a transformation to this matrix to ensure that the local Y axis (as obtained by Matrix4fc.positiveY(Vector3f)) will be coplanar to the plane spanned by the local Z axis (as obtained by Matrix4fc.positiveZ(Vector3f)) and the given vector up, and store the result in dest.
    void
     
    Set all the values within this matrix to 0.

    Methods inherited from class java.lang.Object

    finalize, getClass, notify, notifyAll, wait, wait, wait
  • Constructor Details

    • Matrix4f

      public Matrix4f()
      Create a new Matrix4f and set it to identity.
    • Matrix4f

      public Matrix4f(Matrix3fc mat)
      Create a new Matrix4f by setting its uppper left 3x3 submatrix to the values of the given Matrix3fc and the rest to identity.
      Parameters:
      mat - the Matrix3fc
    • Matrix4f

      public Matrix4f(Matrix4fc mat)
      Create a new Matrix4f and make it a copy of the given matrix.
      Parameters:
      mat - the Matrix4fc to copy the values from
    • Matrix4f

      public Matrix4f(Matrix4x3fc mat)
      Create a new Matrix4f and set its upper 4x3 submatrix to the given matrix mat and all other elements to identity.
      Parameters:
      mat - the Matrix4x3fc to copy the values from
    • Matrix4f

      public Matrix4f(Matrix4dc mat)
      Create a new Matrix4f and make it a copy of the given matrix.

      Note that due to the given Matrix4dc storing values in double-precision and the constructed Matrix4f storing them in single-precision, there is the possibility of losing precision.

      Parameters:
      mat - the Matrix4dc to copy the values from
    • Matrix4f

      public Matrix4f(float m00, float m01, float m02, float m03, float m10, float m11, float m12, float m13, float m20, float m21, float m22, float m23, float m30, float m31, float m32, float m33)
      Create a new 4x4 matrix using the supplied float values.

      The matrix layout will be:

      m00, m10, m20, m30
      m01, m11, m21, m31
      m02, m12, m22, m32
      m03, m13, m23, m33

      Parameters:
      m00 - the value of m00
      m01 - the value of m01
      m02 - the value of m02
      m03 - the value of m03
      m10 - the value of m10
      m11 - the value of m11
      m12 - the value of m12
      m13 - the value of m13
      m20 - the value of m20
      m21 - the value of m21
      m22 - the value of m22
      m23 - the value of m23
      m30 - the value of m30
      m31 - the value of m31
      m32 - the value of m32
      m33 - the value of m33
    • Matrix4f

      public Matrix4f(FloatBuffer buffer)
      Create a new Matrix4f by reading its 16 float components from the given FloatBuffer at the buffer's current position.

      That FloatBuffer is expected to hold the values in column-major order.

      The buffer's position will not be changed by this method.

      Parameters:
      buffer - the FloatBuffer to read the matrix values from
    • Matrix4f

      public Matrix4f(Vector4fc col0, Vector4fc col1, Vector4fc col2, Vector4fc col3)
      Create a new Matrix4f and initialize its four columns using the supplied vectors.
      Parameters:
      col0 - the first column
      col1 - the second column
      col2 - the third column
      col3 - the fourth column
  • Method Details

    • assume

      public Matrix4f assume(int properties)
      Parameters:
      properties - bitset of the properties to assume about this matrix
      Returns:
      this
    • determineProperties

      public Matrix4f determineProperties()
      Compute and set the matrix properties returned by properties() based on the current matrix element values.
      Returns:
      this
    • properties

      public int properties()
      Description copied from interface: Matrix4fc
      Return the assumed properties of this matrix. This is a bit-combination of Matrix4fc.PROPERTY_IDENTITY, Matrix4fc.PROPERTY_AFFINE, Matrix4fc.PROPERTY_TRANSLATION and Matrix4fc.PROPERTY_PERSPECTIVE.
      Specified by:
      properties in interface Matrix4fc
      Returns:
      the properties of the matrix
    • m00

      public float m00()
      Description copied from interface: Matrix4fc
      Return the value of the matrix element at column 0 and row 0.
      Specified by:
      m00 in interface Matrix4fc
      Returns:
      the value of the matrix element
    • m01

      public float m01()
      Description copied from interface: Matrix4fc
      Return the value of the matrix element at column 0 and row 1.
      Specified by:
      m01 in interface Matrix4fc
      Returns:
      the value of the matrix element
    • m02

      public float m02()
      Description copied from interface: Matrix4fc
      Return the value of the matrix element at column 0 and row 2.
      Specified by:
      m02 in interface Matrix4fc
      Returns:
      the value of the matrix element
    • m03

      public float m03()
      Description copied from interface: Matrix4fc
      Return the value of the matrix element at column 0 and row 3.
      Specified by:
      m03 in interface Matrix4fc
      Returns:
      the value of the matrix element
    • m10

      public float m10()
      Description copied from interface: Matrix4fc
      Return the value of the matrix element at column 1 and row 0.
      Specified by:
      m10 in interface Matrix4fc
      Returns:
      the value of the matrix element
    • m11

      public float m11()
      Description copied from interface: Matrix4fc
      Return the value of the matrix element at column 1 and row 1.
      Specified by:
      m11 in interface Matrix4fc
      Returns:
      the value of the matrix element
    • m12

      public float m12()
      Description copied from interface: Matrix4fc
      Return the value of the matrix element at column 1 and row 2.
      Specified by:
      m12 in interface Matrix4fc
      Returns:
      the value of the matrix element
    • m13

      public float m13()
      Description copied from interface: Matrix4fc
      Return the value of the matrix element at column 1 and row 3.
      Specified by:
      m13 in interface Matrix4fc
      Returns:
      the value of the matrix element
    • m20

      public float m20()
      Description copied from interface: Matrix4fc
      Return the value of the matrix element at column 2 and row 0.
      Specified by:
      m20 in interface Matrix4fc
      Returns:
      the value of the matrix element
    • m21

      public float m21()
      Description copied from interface: Matrix4fc
      Return the value of the matrix element at column 2 and row 1.
      Specified by:
      m21 in interface Matrix4fc
      Returns:
      the value of the matrix element
    • m22

      public float m22()
      Description copied from interface: Matrix4fc
      Return the value of the matrix element at column 2 and row 2.
      Specified by:
      m22 in interface Matrix4fc
      Returns:
      the value of the matrix element
    • m23

      public float m23()
      Description copied from interface: Matrix4fc
      Return the value of the matrix element at column 2 and row 3.
      Specified by:
      m23 in interface Matrix4fc
      Returns:
      the value of the matrix element
    • m30

      public float m30()
      Description copied from interface: Matrix4fc
      Return the value of the matrix element at column 3 and row 0.
      Specified by:
      m30 in interface Matrix4fc
      Returns:
      the value of the matrix element
    • m31

      public float m31()
      Description copied from interface: Matrix4fc
      Return the value of the matrix element at column 3 and row 1.
      Specified by:
      m31 in interface Matrix4fc
      Returns:
      the value of the matrix element
    • m32

      public float m32()
      Description copied from interface: Matrix4fc
      Return the value of the matrix element at column 3 and row 2.
      Specified by:
      m32 in interface Matrix4fc
      Returns:
      the value of the matrix element
    • m33

      public float m33()
      Description copied from interface: Matrix4fc
      Return the value of the matrix element at column 3 and row 3.
      Specified by:
      m33 in interface Matrix4fc
      Returns:
      the value of the matrix element
    • m00

      public Matrix4f m00(float m00)
      Set the value of the matrix element at column 0 and row 0.
      Parameters:
      m00 - the new value
      Returns:
      this
    • m01

      public Matrix4f m01(float m01)
      Set the value of the matrix element at column 0 and row 1.
      Parameters:
      m01 - the new value
      Returns:
      this
    • m02

      public Matrix4f m02(float m02)
      Set the value of the matrix element at column 0 and row 2.
      Parameters:
      m02 - the new value
      Returns:
      this
    • m03

      public Matrix4f m03(float m03)
      Set the value of the matrix element at column 0 and row 3.
      Parameters:
      m03 - the new value
      Returns:
      this
    • m10

      public Matrix4f m10(float m10)
      Set the value of the matrix element at column 1 and row 0.
      Parameters:
      m10 - the new value
      Returns:
      this
    • m11

      public Matrix4f m11(float m11)
      Set the value of the matrix element at column 1 and row 1.
      Parameters:
      m11 - the new value
      Returns:
      this
    • m12

      public Matrix4f m12(float m12)
      Set the value of the matrix element at column 1 and row 2.
      Parameters:
      m12 - the new value
      Returns:
      this
    • m13

      public Matrix4f m13(float m13)
      Set the value of the matrix element at column 1 and row 3.
      Parameters:
      m13 - the new value
      Returns:
      this
    • m20

      public Matrix4f m20(float m20)
      Set the value of the matrix element at column 2 and row 0.
      Parameters:
      m20 - the new value
      Returns:
      this
    • m21

      public Matrix4f m21(float m21)
      Set the value of the matrix element at column 2 and row 1.
      Parameters:
      m21 - the new value
      Returns:
      this
    • m22

      public Matrix4f m22(float m22)
      Set the value of the matrix element at column 2 and row 2.
      Parameters:
      m22 - the new value
      Returns:
      this
    • m23

      public Matrix4f m23(float m23)
      Set the value of the matrix element at column 2 and row 3.
      Parameters:
      m23 - the new value
      Returns:
      this
    • m30

      public Matrix4f m30(float m30)
      Set the value of the matrix element at column 3 and row 0.
      Parameters:
      m30 - the new value
      Returns:
      this
    • m31

      public Matrix4f m31(float m31)
      Set the value of the matrix element at column 3 and row 1.
      Parameters:
      m31 - the new value
      Returns:
      this
    • m32

      public Matrix4f m32(float m32)
      Set the value of the matrix element at column 3 and row 2.
      Parameters:
      m32 - the new value
      Returns:
      this
    • m33

      public Matrix4f m33(float m33)
      Set the value of the matrix element at column 3 and row 3.
      Parameters:
      m33 - the new value
      Returns:
      this
    • identity

      public Matrix4f identity()
      Reset this matrix to the identity.

      Please note that if a call to identity() is immediately followed by a call to: translate, rotate, scale, perspective, frustum, ortho, ortho2D, lookAt, lookAlong, or any of their overloads, then the call to identity() can be omitted and the subsequent call replaced with: translation, rotation, scaling, setPerspective, setFrustum, setOrtho, setOrtho2D, setLookAt, setLookAlong, or any of their overloads.

      Returns:
      this
    • set

      public Matrix4f set(Matrix4fc m)
      Store the values of the given matrix m into this matrix.
      Parameters:
      m - the matrix to copy the values from
      Returns:
      this
      See Also:
    • setTransposed

      public Matrix4f setTransposed(Matrix4fc m)
      Store the values of the transpose of the given matrix m into this matrix.
      Parameters:
      m - the matrix to copy the transposed values from
      Returns:
      this
    • set

      public Matrix4f set(Matrix4x3fc m)
      Store the values of the given matrix m into this matrix and set the other matrix elements to identity.
      Parameters:
      m - the matrix to copy the values from
      Returns:
      this
      See Also:
    • set

      public Matrix4f set(Matrix4dc m)
      Store the values of the given matrix m into this matrix.

      Note that due to the given matrix m storing values in double-precision and this matrix storing them in single-precision, there is the possibility to lose precision.

      Parameters:
      m - the matrix to copy the values from
      Returns:
      this
      See Also:
    • set

      public Matrix4f set(Matrix3fc mat)
      Set the upper left 3x3 submatrix of this Matrix4f to the given Matrix3fc and the rest to identity.
      Parameters:
      mat - the Matrix3fc
      Returns:
      this
      See Also:
    • set

      public Matrix4f set(AxisAngle4f axisAngle)
      Set this matrix to be equivalent to the rotation specified by the given AxisAngle4f.
      Parameters:
      axisAngle - the AxisAngle4f
      Returns:
      this
    • set

      public Matrix4f set(AxisAngle4d axisAngle)
      Set this matrix to be equivalent to the rotation specified by the given AxisAngle4d.
      Parameters:
      axisAngle - the AxisAngle4d
      Returns:
      this
    • set

      public Matrix4f set(Quaternionfc q)
      Set this matrix to be equivalent to the rotation specified by the given Quaternionfc.

      This method is equivalent to calling: rotation(q)

      Reference: http://www.euclideanspace.com/

      Parameters:
      q - the Quaternionfc
      Returns:
      this
      See Also:
    • set

      public Matrix4f set(Quaterniondc q)
      Set this matrix to be equivalent to the rotation specified by the given Quaterniondc.

      Reference: http://www.euclideanspace.com/

      Parameters:
      q - the Quaterniondc
      Returns:
      this
    • set3x3

      public Matrix4f set3x3(Matrix4f mat)
      Set the upper left 3x3 submatrix of this Matrix4f to that of the given Matrix4f and don't change the other elements.
      Parameters:
      mat - the Matrix4f
      Returns:
      this
    • set4x3

      public Matrix4f set4x3(Matrix4x3fc mat)
      Set the upper 4x3 submatrix of this Matrix4f to the given Matrix4x3fc and don't change the other elements.
      Parameters:
      mat - the Matrix4x3fc
      Returns:
      this
      See Also:
    • set4x3

      public Matrix4f set4x3(Matrix4f mat)
      Set the upper 4x3 submatrix of this Matrix4f to the upper 4x3 submatrix of the given Matrix4f and don't change the other elements.
      Parameters:
      mat - the Matrix4f
      Returns:
      this
    • mul

      public Matrix4f mul(Matrix4fc right)
      Multiply this matrix by the supplied right matrix and store the result in this.

      If M is this matrix and R the right matrix, then the new matrix will be M * R. So when transforming a vector v with the new matrix by using M * R * v, the transformation of the right matrix will be applied first!

      Parameters:
      right - the right operand of the matrix multiplication
      Returns:
      this
    • mul

      public Matrix4f mul(Matrix4fc right, Matrix4f dest)
      Description copied from interface: Matrix4fc
      Multiply this matrix by the supplied right matrix and store the result in dest.

      If M is this matrix and R the right matrix, then the new matrix will be M * R. So when transforming a vector v with the new matrix by using M * R * v, the transformation of the right matrix will be applied first!

      Specified by:
      mul in interface Matrix4fc
      Parameters:
      right - the right operand of the matrix multiplication
      dest - the destination matrix, which will hold the result
      Returns:
      dest
    • mul0

      public Matrix4f mul0(Matrix4fc right)
      Multiply this matrix by the supplied right matrix.

      If M is this matrix and R the right matrix, then the new matrix will be M * R. So when transforming a vector v with the new matrix by using M * R * v, the transformation of the right matrix will be applied first!

      This method neither assumes nor checks for any matrix properties of this or right and will always perform a complete 4x4 matrix multiplication. This method should only be used whenever the multiplied matrices do not have any properties for which there are optimized multiplication methods available.

      Parameters:
      right - the right operand of the matrix multiplication
      Returns:
      this
    • mul0

      public Matrix4f mul0(Matrix4fc right, Matrix4f dest)
      Description copied from interface: Matrix4fc
      Multiply this matrix by the supplied right matrix and store the result in dest.

      If M is this matrix and R the right matrix, then the new matrix will be M * R. So when transforming a vector v with the new matrix by using M * R * v, the transformation of the right matrix will be applied first!

      This method neither assumes nor checks for any matrix properties of this or right and will always perform a complete 4x4 matrix multiplication. This method should only be used whenever the multiplied matrices do not have any properties for which there are optimized multiplication methods available.

      Specified by:
      mul0 in interface Matrix4fc
      Parameters:
      right - the right operand of the matrix multiplication
      dest - the destination matrix, which will hold the result
      Returns:
      dest
    • mul

      public Matrix4f mul(float r00, float r01, float r02, float r03, float r10, float r11, float r12, float r13, float r20, float r21, float r22, float r23, float r30, float r31, float r32, float r33)
      Multiply this matrix by the matrix with the supplied elements.

      If M is this matrix and R the right matrix whose elements are supplied via the parameters, then the new matrix will be M * R. So when transforming a vector v with the new matrix by using M * R * v, the transformation of the right matrix will be applied first!

      Parameters:
      r00 - the m00 element of the right matrix
      r01 - the m01 element of the right matrix
      r02 - the m02 element of the right matrix
      r03 - the m03 element of the right matrix
      r10 - the m10 element of the right matrix
      r11 - the m11 element of the right matrix
      r12 - the m12 element of the right matrix
      r13 - the m13 element of the right matrix
      r20 - the m20 element of the right matrix
      r21 - the m21 element of the right matrix
      r22 - the m22 element of the right matrix
      r23 - the m23 element of the right matrix
      r30 - the m30 element of the right matrix
      r31 - the m31 element of the right matrix
      r32 - the m32 element of the right matrix
      r33 - the m33 element of the right matrix
      Returns:
      this
    • mul

      public Matrix4f mul(float r00, float r01, float r02, float r03, float r10, float r11, float r12, float r13, float r20, float r21, float r22, float r23, float r30, float r31, float r32, float r33, Matrix4f dest)
      Description copied from interface: Matrix4fc
      Multiply this matrix by the matrix with the supplied elements and store the result in dest.

      If M is this matrix and R the right matrix whose elements are supplied via the parameters, then the new matrix will be M * R. So when transforming a vector v with the new matrix by using M * R * v, the transformation of the right matrix will be applied first!

      Specified by:
      mul in interface Matrix4fc
      Parameters:
      r00 - the m00 element of the right matrix
      r01 - the m01 element of the right matrix
      r02 - the m02 element of the right matrix
      r03 - the m03 element of the right matrix
      r10 - the m10 element of the right matrix
      r11 - the m11 element of the right matrix
      r12 - the m12 element of the right matrix
      r13 - the m13 element of the right matrix
      r20 - the m20 element of the right matrix
      r21 - the m21 element of the right matrix
      r22 - the m22 element of the right matrix
      r23 - the m23 element of the right matrix
      r30 - the m30 element of the right matrix
      r31 - the m31 element of the right matrix
      r32 - the m32 element of the right matrix
      r33 - the m33 element of the right matrix
      dest - the destination matrix, which will hold the result
      Returns:
      dest
    • mul3x3

      public Matrix4f mul3x3(float r00, float r01, float r02, float r10, float r11, float r12, float r20, float r21, float r22)
      Multiply this matrix by the 3x3 matrix with the supplied elements expanded to a 4x4 matrix with all other matrix elements set to identity.

      If M is this matrix and R the right matrix whose elements are supplied via the parameters, then the new matrix will be M * R. So when transforming a vector v with the new matrix by using M * R * v, the transformation of the right matrix will be applied first!

      Parameters:
      r00 - the m00 element of the right matrix
      r01 - the m01 element of the right matrix
      r02 - the m02 element of the right matrix
      r10 - the m10 element of the right matrix
      r11 - the m11 element of the right matrix
      r12 - the m12 element of the right matrix
      r20 - the m20 element of the right matrix
      r21 - the m21 element of the right matrix
      r22 - the m22 element of the right matrix
      Returns:
      this
    • mul3x3

      public Matrix4f mul3x3(float r00, float r01, float r02, float r10, float r11, float r12, float r20, float r21, float r22, Matrix4f dest)
      Description copied from interface: Matrix4fc
      Multiply this matrix by the 3x3 matrix with the supplied elements expanded to a 4x4 matrix with all other matrix elements set to identity, and store the result in dest.

      If M is this matrix and R the right matrix whose elements are supplied via the parameters, then the new matrix will be M * R. So when transforming a vector v with the new matrix by using M * R * v, the transformation of the right matrix will be applied first!

      Specified by:
      mul3x3 in interface Matrix4fc
      Parameters:
      r00 - the m00 element of the right matrix
      r01 - the m01 element of the right matrix
      r02 - the m02 element of the right matrix
      r10 - the m10 element of the right matrix
      r11 - the m11 element of the right matrix
      r12 - the m12 element of the right matrix
      r20 - the m20 element of the right matrix
      r21 - the m21 element of the right matrix
      r22 - the m22 element of the right matrix
      dest - the destination matrix, which will hold the result
      Returns:
      this
    • mulLocal

      public Matrix4f mulLocal(Matrix4fc left)
      Pre-multiply this matrix by the supplied left matrix and store the result in this.

      If M is this matrix and L the left matrix, then the new matrix will be L * M. So when transforming a vector v with the new matrix by using L * M * v, the transformation of this matrix will be applied first!

      Parameters:
      left - the left operand of the matrix multiplication
      Returns:
      this
    • mulLocal

      public Matrix4f mulLocal(Matrix4fc left, Matrix4f dest)
      Description copied from interface: Matrix4fc
      Pre-multiply this matrix by the supplied left matrix and store the result in dest.

      If M is this matrix and L the left matrix, then the new matrix will be L * M. So when transforming a vector v with the new matrix by using L * M * v, the transformation of this matrix will be applied first!

      Specified by:
      mulLocal in interface Matrix4fc
      Parameters:
      left - the left operand of the matrix multiplication
      dest - the destination matrix, which will hold the result
      Returns:
      dest
    • mulLocalAffine

      public Matrix4f mulLocalAffine(Matrix4fc left)
      Pre-multiply this matrix by the supplied left matrix, both of which are assumed to be affine, and store the result in this.

      This method assumes that this matrix and the given left matrix both represent an affine transformation (i.e. their last rows are equal to (0, 0, 0, 1)) and can be used to speed up matrix multiplication if the matrices only represent affine transformations, such as translation, rotation, scaling and shearing (in any combination).

      This method will not modify either the last row of this or the last row of left.

      If M is this matrix and L the left matrix, then the new matrix will be L * M. So when transforming a vector v with the new matrix by using L * M * v, the transformation of this matrix will be applied first!

      Parameters:
      left - the left operand of the matrix multiplication (the last row is assumed to be (0, 0, 0, 1))
      Returns:
      this
    • mulLocalAffine

      public Matrix4f mulLocalAffine(Matrix4fc left, Matrix4f dest)
      Description copied from interface: Matrix4fc
      Pre-multiply this matrix by the supplied left matrix, both of which are assumed to be affine, and store the result in dest.

      This method assumes that this matrix and the given left matrix both represent an affine transformation (i.e. their last rows are equal to (0, 0, 0, 1)) and can be used to speed up matrix multiplication if the matrices only represent affine transformations, such as translation, rotation, scaling and shearing (in any combination).

      This method will not modify either the last row of this or the last row of left.

      If M is this matrix and L the left matrix, then the new matrix will be L * M. So when transforming a vector v with the new matrix by using L * M * v, the transformation of this matrix will be applied first!

      Specified by:
      mulLocalAffine in interface Matrix4fc
      Parameters:
      left - the left operand of the matrix multiplication (the last row is assumed to be (0, 0, 0, 1))
      dest - the destination matrix, which will hold the result
      Returns:
      dest
    • mul

      public Matrix4f mul(Matrix4x3fc right)
      Multiply this matrix by the supplied right matrix and store the result in this.

      If M is this matrix and R the right matrix, then the new matrix will be M * R. So when transforming a vector v with the new matrix by using M * R * v, the transformation of the right matrix will be applied first!

      Parameters:
      right - the right operand of the matrix multiplication
      Returns:
      this
    • mul

      public Matrix4f mul(Matrix4x3fc right, Matrix4f dest)
      Description copied from interface: Matrix4fc
      Multiply this matrix by the supplied right matrix and store the result in dest.

      The last row of the right matrix is assumed to be (0, 0, 0, 1).

      If M is this matrix and R the right matrix, then the new matrix will be M * R. So when transforming a vector v with the new matrix by using M * R * v, the transformation of the right matrix will be applied first!

      Specified by:
      mul in interface Matrix4fc
      Parameters:
      right - the right operand of the matrix multiplication
      dest - the destination matrix, which will hold the result
      Returns:
      dest
    • mul

      public Matrix4f mul(Matrix3x2fc right)
      Multiply this matrix by the supplied right matrix and store the result in this.

      If M is this matrix and R the right matrix, then the new matrix will be M * R. So when transforming a vector v with the new matrix by using M * R * v, the transformation of the right matrix will be applied first!

      Parameters:
      right - the right operand of the matrix multiplication
      Returns:
      this
    • mul

      public Matrix4f mul(Matrix3x2fc right, Matrix4f dest)
      Description copied from interface: Matrix4fc
      Multiply this matrix by the supplied right matrix and store the result in dest.

      If M is this matrix and R the right matrix, then the new matrix will be M * R. So when transforming a vector v with the new matrix by using M * R * v, the transformation of the right matrix will be applied first!

      Specified by:
      mul in interface Matrix4fc
      Parameters:
      right - the right operand of the matrix multiplication
      dest - the destination matrix, which will hold the result
      Returns:
      dest
    • mulPerspectiveAffine

      public Matrix4f mulPerspectiveAffine(Matrix4fc view)
      Multiply this symmetric perspective projection matrix by the supplied affine view matrix.

      If P is this matrix and V the view matrix, then the new matrix will be P * V. So when transforming a vector v with the new matrix by using P * V * v, the transformation of the view matrix will be applied first!

      Parameters:
      view - the affine matrix to multiply this symmetric perspective projection matrix by
      Returns:
      this
    • mulPerspectiveAffine

      public Matrix4f mulPerspectiveAffine(Matrix4fc view, Matrix4f dest)
      Description copied from interface: Matrix4fc
      Multiply this symmetric perspective projection matrix by the supplied affine view matrix and store the result in dest.

      If P is this matrix and V the view matrix, then the new matrix will be P * V. So when transforming a vector v with the new matrix by using P * V * v, the transformation of the view matrix will be applied first!

      Specified by:
      mulPerspectiveAffine in interface Matrix4fc
      Parameters:
      view - the affine matrix to multiply this symmetric perspective projection matrix by
      dest - the destination matrix, which will hold the result
      Returns:
      dest
    • mulPerspectiveAffine

      public Matrix4f mulPerspectiveAffine(Matrix4x3fc view)
      Multiply this symmetric perspective projection matrix by the supplied view matrix.

      If P is this matrix and V the view matrix, then the new matrix will be P * V. So when transforming a vector v with the new matrix by using P * V * v, the transformation of the view matrix will be applied first!

      Parameters:
      view - the matrix to multiply this symmetric perspective projection matrix by
      Returns:
      this
    • mulPerspectiveAffine

      public Matrix4f mulPerspectiveAffine(Matrix4x3fc view, Matrix4f dest)
      Description copied from interface: Matrix4fc
      Multiply this symmetric perspective projection matrix by the supplied view matrix and store the result in dest.

      If P is this matrix and V the view matrix, then the new matrix will be P * V. So when transforming a vector v with the new matrix by using P * V * v, the transformation of the view matrix will be applied first!

      Specified by:
      mulPerspectiveAffine in interface Matrix4fc
      Parameters:
      view - the matrix to multiply this symmetric perspective projection matrix by
      dest - the destination matrix, which will hold the result
      Returns:
      dest
    • mulAffineR

      public Matrix4f mulAffineR(Matrix4fc right)
      Multiply this matrix by the supplied right matrix, which is assumed to be affine, and store the result in this.

      This method assumes that the given right matrix represents an affine transformation (i.e. its last row is equal to (0, 0, 0, 1)) and can be used to speed up matrix multiplication if the matrix only represents affine transformations, such as translation, rotation, scaling and shearing (in any combination).

      If M is this matrix and R the right matrix, then the new matrix will be M * R. So when transforming a vector v with the new matrix by using M * R * v, the transformation of the right matrix will be applied first!

      Parameters:
      right - the right operand of the matrix multiplication (the last row is assumed to be (0, 0, 0, 1))
      Returns:
      this
    • mulAffineR

      public Matrix4f mulAffineR(Matrix4fc right, Matrix4f dest)
      Description copied from interface: Matrix4fc
      Multiply this matrix by the supplied right matrix, which is assumed to be affine, and store the result in dest.

      This method assumes that the given right matrix represents an affine transformation (i.e. its last row is equal to (0, 0, 0, 1)) and can be used to speed up matrix multiplication if the matrix only represents affine transformations, such as translation, rotation, scaling and shearing (in any combination).

      If M is this matrix and R the right matrix, then the new matrix will be M * R. So when transforming a vector v with the new matrix by using M * R * v, the transformation of the right matrix will be applied first!

      Specified by:
      mulAffineR in interface Matrix4fc
      Parameters:
      right - the right operand of the matrix multiplication (the last row is assumed to be (0, 0, 0, 1))
      dest - the destination matrix, which will hold the result
      Returns:
      dest
    • mulAffine

      public Matrix4f mulAffine(Matrix4fc right)
      Multiply this matrix by the supplied right matrix, both of which are assumed to be affine, and store the result in this.

      This method assumes that this matrix and the given right matrix both represent an affine transformation (i.e. their last rows are equal to (0, 0, 0, 1)) and can be used to speed up matrix multiplication if the matrices only represent affine transformations, such as translation, rotation, scaling and shearing (in any combination).

      This method will not modify either the last row of this or the last row of right.

      If M is this matrix and R the right matrix, then the new matrix will be M * R. So when transforming a vector v with the new matrix by using M * R * v, the transformation of the right matrix will be applied first!

      Parameters:
      right - the right operand of the matrix multiplication (the last row is assumed to be (0, 0, 0, 1))
      Returns:
      this
    • mulAffine

      public Matrix4f mulAffine(Matrix4fc right, Matrix4f dest)
      Description copied from interface: Matrix4fc
      Multiply this matrix by the supplied right matrix, both of which are assumed to be affine, and store the result in dest.

      This method assumes that this matrix and the given right matrix both represent an affine transformation (i.e. their last rows are equal to (0, 0, 0, 1)) and can be used to speed up matrix multiplication if the matrices only represent affine transformations, such as translation, rotation, scaling and shearing (in any combination).

      This method will not modify either the last row of this or the last row of right.

      If M is this matrix and R the right matrix, then the new matrix will be M * R. So when transforming a vector v with the new matrix by using M * R * v, the transformation of the right matrix will be applied first!

      Specified by:
      mulAffine in interface Matrix4fc
      Parameters:
      right - the right operand of the matrix multiplication (the last row is assumed to be (0, 0, 0, 1))
      dest - the destination matrix, which will hold the result
      Returns:
      dest
    • mulTranslationAffine

      public Matrix4f mulTranslationAffine(Matrix4fc right, Matrix4f dest)
      Description copied from interface: Matrix4fc
      Multiply this matrix, which is assumed to only contain a translation, by the supplied right matrix, which is assumed to be affine, and store the result in dest.

      This method assumes that this matrix only contains a translation, and that the given right matrix represents an affine transformation (i.e. its last row is equal to (0, 0, 0, 1)).

      This method will not modify either the last row of this or the last row of right.

      If M is this matrix and R the right matrix, then the new matrix will be M * R. So when transforming a vector v with the new matrix by using M * R * v, the transformation of the right matrix will be applied first!

      Specified by:
      mulTranslationAffine in interface Matrix4fc
      Parameters:
      right - the right operand of the matrix multiplication (the last row is assumed to be (0, 0, 0, 1))
      dest - the destination matrix, which will hold the result
      Returns:
      dest
    • mulOrthoAffine

      public Matrix4f mulOrthoAffine(Matrix4fc view)
      Multiply this orthographic projection matrix by the supplied affine view matrix.

      If M is this matrix and V the view matrix, then the new matrix will be M * V. So when transforming a vector v with the new matrix by using M * V * v, the transformation of the view matrix will be applied first!

      Parameters:
      view - the affine matrix which to multiply this with
      Returns:
      this
    • mulOrthoAffine

      public Matrix4f mulOrthoAffine(Matrix4fc view, Matrix4f dest)
      Description copied from interface: Matrix4fc
      Multiply this orthographic projection matrix by the supplied affine view matrix and store the result in dest.

      If M is this matrix and V the view matrix, then the new matrix will be M * V. So when transforming a vector v with the new matrix by using M * V * v, the transformation of the view matrix will be applied first!

      Specified by:
      mulOrthoAffine in interface Matrix4fc
      Parameters:
      view - the affine matrix which to multiply this with
      dest - the destination matrix, which will hold the result
      Returns:
      dest
    • fma4x3

      public Matrix4f fma4x3(Matrix4fc other, float otherFactor)
      Component-wise add the upper 4x3 submatrices of this and other by first multiplying each component of other's 4x3 submatrix by otherFactor and adding that result to this.

      The matrix other will not be changed.

      Parameters:
      other - the other matrix
      otherFactor - the factor to multiply each of the other matrix's 4x3 components
      Returns:
      this
    • fma4x3

      public Matrix4f fma4x3(Matrix4fc other, float otherFactor, Matrix4f dest)
      Description copied from interface: Matrix4fc
      Component-wise add the upper 4x3 submatrices of this and other by first multiplying each component of other's 4x3 submatrix by otherFactor, adding that to this and storing the final result in dest.

      The other components of dest will be set to the ones of this.

      The matrices this and other will not be changed.

      Specified by:
      fma4x3 in interface Matrix4fc
      Parameters:
      other - the other matrix
      otherFactor - the factor to multiply each of the other matrix's 4x3 components
      dest - will hold the result
      Returns:
      dest
    • add

      public Matrix4f add(Matrix4fc other)
      Component-wise add this and other.
      Parameters:
      other - the other addend
      Returns:
      this
    • add

      public Matrix4f add(Matrix4fc other, Matrix4f dest)
      Description copied from interface: Matrix4fc
      Component-wise add this and other and store the result in dest.
      Specified by:
      add in interface Matrix4fc
      Parameters:
      other - the other addend
      dest - will hold the result
      Returns:
      dest
    • sub

      public Matrix4f sub(Matrix4fc subtrahend)
      Component-wise subtract subtrahend from this.
      Parameters:
      subtrahend - the subtrahend
      Returns:
      this
    • sub

      public Matrix4f sub(Matrix4fc subtrahend, Matrix4f dest)
      Description copied from interface: Matrix4fc
      Component-wise subtract subtrahend from this and store the result in dest.
      Specified by:
      sub in interface Matrix4fc
      Parameters:
      subtrahend - the subtrahend
      dest - will hold the result
      Returns:
      dest
    • mulComponentWise

      public Matrix4f mulComponentWise(Matrix4fc other)
      Component-wise multiply this by other.
      Parameters:
      other - the other matrix
      Returns:
      this
    • mulComponentWise

      public Matrix4f mulComponentWise(Matrix4fc other, Matrix4f dest)
      Description copied from interface: Matrix4fc
      Component-wise multiply this by other and store the result in dest.
      Specified by:
      mulComponentWise in interface Matrix4fc
      Parameters:
      other - the other matrix
      dest - will hold the result
      Returns:
      dest
    • add4x3

      public Matrix4f add4x3(Matrix4fc other)
      Component-wise add the upper 4x3 submatrices of this and other.
      Parameters:
      other - the other addend
      Returns:
      this
    • add4x3

      public Matrix4f add4x3(Matrix4fc other, Matrix4f dest)
      Description copied from interface: Matrix4fc
      Component-wise add the upper 4x3 submatrices of this and other and store the result in dest.

      The other components of dest will be set to the ones of this.

      Specified by:
      add4x3 in interface Matrix4fc
      Parameters:
      other - the other addend
      dest - will hold the result
      Returns:
      dest
    • sub4x3

      public Matrix4f sub4x3(Matrix4f subtrahend)
      Component-wise subtract the upper 4x3 submatrices of subtrahend from this.
      Parameters:
      subtrahend - the subtrahend
      Returns:
      this
    • sub4x3

      public Matrix4f sub4x3(Matrix4fc subtrahend, Matrix4f dest)
      Description copied from interface: Matrix4fc
      Component-wise subtract the upper 4x3 submatrices of subtrahend from this and store the result in dest.

      The other components of dest will be set to the ones of this.

      Specified by:
      sub4x3 in interface Matrix4fc
      Parameters:
      subtrahend - the subtrahend
      dest - will hold the result
      Returns:
      dest
    • mul4x3ComponentWise

      public Matrix4f mul4x3ComponentWise(Matrix4fc other)
      Component-wise multiply the upper 4x3 submatrices of this by other.
      Parameters:
      other - the other matrix
      Returns:
      this
    • mul4x3ComponentWise

      public Matrix4f mul4x3ComponentWise(Matrix4fc other, Matrix4f dest)
      Description copied from interface: Matrix4fc
      Component-wise multiply the upper 4x3 submatrices of this by other and store the result in dest.

      The other components of dest will be set to the ones of this.

      Specified by:
      mul4x3ComponentWise in interface Matrix4fc
      Parameters:
      other - the other matrix
      dest - will hold the result
      Returns:
      dest
    • set

      public Matrix4f set(float m00, float m01, float m02, float m03, float m10, float m11, float m12, float m13, float m20, float m21, float m22, float m23, float m30, float m31, float m32, float m33)
      Set the values within this matrix to the supplied float values. The matrix will look like this:

      m00, m10, m20, m30
      m01, m11, m21, m31
      m02, m12, m22, m32
      m03, m13, m23, m33
      Parameters:
      m00 - the new value of m00
      m01 - the new value of m01
      m02 - the new value of m02
      m03 - the new value of m03
      m10 - the new value of m10
      m11 - the new value of m11
      m12 - the new value of m12
      m13 - the new value of m13
      m20 - the new value of m20
      m21 - the new value of m21
      m22 - the new value of m22
      m23 - the new value of m23
      m30 - the new value of m30
      m31 - the new value of m31
      m32 - the new value of m32
      m33 - the new value of m33
      Returns:
      this
    • set

      public Matrix4f set(float[] m, int off)
      Set the values in the matrix using a float array that contains the matrix elements in column-major order.

      The results will look like this:

      0, 4, 8, 12
      1, 5, 9, 13
      2, 6, 10, 14
      3, 7, 11, 15

      Parameters:
      m - the array to read the matrix values from
      off - the offset into the array
      Returns:
      this
      See Also:
    • set

      public Matrix4f set(float[] m)
      Set the values in the matrix using a float array that contains the matrix elements in column-major order.

      The results will look like this:

      0, 4, 8, 12
      1, 5, 9, 13
      2, 6, 10, 14
      3, 7, 11, 15

      Parameters:
      m - the array to read the matrix values from
      Returns:
      this
      See Also:
    • setTransposed

      public Matrix4f setTransposed(float[] m, int off)
      Set the values in the matrix using a float array that contains the matrix elements in row-major order.

      The results will look like this:

      0, 1, 2, 3
      4, 5, 6, 7
      8, 9, 10, 11
      12, 13, 14, 15

      Parameters:
      m - the array to read the matrix values from
      off - the offset into the array
      Returns:
      this
      See Also:
    • setTransposed

      public Matrix4f setTransposed(float[] m)
      Set the values in the matrix using a float array that contains the matrix elements in row-major order.

      The results will look like this:

      0, 1, 2, 3
      4, 5, 6, 7
      8, 9, 10, 11
      12, 13, 14, 15

      Parameters:
      m - the array to read the matrix values from
      Returns:
      this
      See Also:
    • set

      public Matrix4f set(FloatBuffer buffer)
      Set the values of this matrix by reading 16 float values from the given FloatBuffer in column-major order, starting at its current position.

      The FloatBuffer is expected to contain the values in column-major order.

      The position of the FloatBuffer will not be changed by this method.

      Parameters:
      buffer - the FloatBuffer to read the matrix values from in column-major order
      Returns:
      this
    • set

      public Matrix4f set(ByteBuffer buffer)
      Set the values of this matrix by reading 16 float values from the given ByteBuffer in column-major order, starting at its current position.

      The ByteBuffer is expected to contain the values in column-major order.

      The position of the ByteBuffer will not be changed by this method.

      Parameters:
      buffer - the ByteBuffer to read the matrix values from in column-major order
      Returns:
      this
    • set

      public Matrix4f set(int index, FloatBuffer buffer)
      Set the values of this matrix by reading 16 float values from the given FloatBuffer in column-major order, starting at the specified absolute buffer position/index.

      The FloatBuffer is expected to contain the values in column-major order.

      The position of the FloatBuffer will not be changed by this method.

      Parameters:
      index - the absolute position into the FloatBuffer
      buffer - the FloatBuffer to read the matrix values from in column-major order
      Returns:
      this
    • set

      public Matrix4f set(int index, ByteBuffer buffer)
      Set the values of this matrix by reading 16 float values from the given ByteBuffer in column-major order, starting at the specified absolute buffer position/index.

      The ByteBuffer is expected to contain the values in column-major order.

      The position of the ByteBuffer will not be changed by this method.

      Parameters:
      index - the absolute position into the ByteBuffer
      buffer - the ByteBuffer to read the matrix values from in column-major order
      Returns:
      this
    • setTransposed

      public Matrix4f setTransposed(FloatBuffer buffer)
      Set the values of this matrix by reading 16 float values from the given FloatBuffer in row-major order, starting at its current position.

      The FloatBuffer is expected to contain the values in row-major order.

      The position of the FloatBuffer will not be changed by this method.

      Parameters:
      buffer - the FloatBuffer to read the matrix values from in row-major order
      Returns:
      this
    • setTransposed

      public Matrix4f setTransposed(ByteBuffer buffer)
      Set the values of this matrix by reading 16 float values from the given ByteBuffer in row-major order, starting at its current position.

      The ByteBuffer is expected to contain the values in row-major order.

      The position of the ByteBuffer will not be changed by this method.

      Parameters:
      buffer - the ByteBuffer to read the matrix values from in row-major order
      Returns:
      this
    • setFromAddress

      public Matrix4f setFromAddress(long address)
      Set the values of this matrix by reading 16 float values from off-heap memory in column-major order, starting at the given address.

      This method will throw an UnsupportedOperationException when JOML is used with `-Djoml.nounsafe`.

      This method is unsafe as it can result in a crash of the JVM process when the specified address range does not belong to this process.

      Parameters:
      address - the off-heap memory address to read the matrix values from in column-major order
      Returns:
      this
    • setTransposedFromAddress

      public Matrix4f setTransposedFromAddress(long address)
      Set the values of this matrix by reading 16 float values from off-heap memory in row-major order, starting at the given address.

      This method will throw an UnsupportedOperationException when JOML is used with `-Djoml.nounsafe`.

      This method is unsafe as it can result in a crash of the JVM process when the specified address range does not belong to this process.

      Parameters:
      address - the off-heap memory address to read the matrix values from in row-major order
      Returns:
      this
    • set

      public Matrix4f set(Vector4fc col0, Vector4fc col1, Vector4fc col2, Vector4fc col3)
      Set the four columns of this matrix to the supplied vectors, respectively.
      Parameters:
      col0 - the first column
      col1 - the second column
      col2 - the third column
      col3 - the fourth column
      Returns:
      this
    • determinant

      public float determinant()
      Description copied from interface: Matrix4fc
      Return the determinant of this matrix.

      If this matrix represents an affine transformation, such as translation, rotation, scaling and shearing, and thus its last row is equal to (0, 0, 0, 1), then Matrix4fc.determinantAffine() can be used instead of this method.

      Specified by:
      determinant in interface Matrix4fc
      Returns:
      the determinant
      See Also:
    • determinant3x3

      public float determinant3x3()
      Description copied from interface: Matrix4fc
      Return the determinant of the upper left 3x3 submatrix of this matrix.
      Specified by:
      determinant3x3 in interface Matrix4fc
      Returns:
      the determinant
    • determinantAffine

      public float determinantAffine()
      Description copied from interface: Matrix4fc
      Return the determinant of this matrix by assuming that it represents an affine transformation and thus its last row is equal to (0, 0, 0, 1).
      Specified by:
      determinantAffine in interface Matrix4fc
      Returns:
      the determinant
    • invert

      public Matrix4f invert(Matrix4f dest)
      Description copied from interface: Matrix4fc
      Invert this matrix and write the result into dest.

      If this matrix represents an affine transformation, such as translation, rotation, scaling and shearing, and thus its last row is equal to (0, 0, 0, 1), then Matrix4fc.invertAffine(Matrix4f) can be used instead of this method.

      Specified by:
      invert in interface Matrix4fc
      Parameters:
      dest - will hold the result
      Returns:
      dest
      See Also:
    • invert

      public Matrix4f invert()
      Invert this matrix.

      If this matrix represents an affine transformation, such as translation, rotation, scaling and shearing, and thus its last row is equal to (0, 0, 0, 1), then invertAffine() can be used instead of this method.

      Returns:
      this
      See Also:
    • invertPerspective

      public Matrix4f invertPerspective(Matrix4f dest)
      If this is a perspective projection matrix obtained via one of the perspective() methods or via setPerspective(), that is, if this is a symmetrical perspective frustum transformation, then this method builds the inverse of this and stores it into the given dest.

      This method can be used to quickly obtain the inverse of a perspective projection matrix when being obtained via perspective().

      Specified by:
      invertPerspective in interface Matrix4fc
      Parameters:
      dest - will hold the inverse of this
      Returns:
      dest
      See Also:
    • invertPerspective

      public Matrix4f invertPerspective()
      If this is a perspective projection matrix obtained via one of the perspective() methods or via setPerspective(), that is, if this is a symmetrical perspective frustum transformation, then this method builds the inverse of this.

      This method can be used to quickly obtain the inverse of a perspective projection matrix when being obtained via perspective().

      Returns:
      this
      See Also:
    • invertFrustum

      public Matrix4f invertFrustum(Matrix4f dest)
      If this is an arbitrary perspective projection matrix obtained via one of the frustum() methods or via setFrustum(), then this method builds the inverse of this and stores it into the given dest.

      This method can be used to quickly obtain the inverse of a perspective projection matrix.

      If this matrix represents a symmetric perspective frustum transformation, as obtained via perspective(), then invertPerspective(Matrix4f) should be used instead.

      Specified by:
      invertFrustum in interface Matrix4fc
      Parameters:
      dest - will hold the inverse of this
      Returns:
      dest
      See Also:
    • invertFrustum

      public Matrix4f invertFrustum()
      If this is an arbitrary perspective projection matrix obtained via one of the frustum() methods or via setFrustum(), then this method builds the inverse of this.

      This method can be used to quickly obtain the inverse of a perspective projection matrix.

      If this matrix represents a symmetric perspective frustum transformation, as obtained via perspective(), then invertPerspective() should be used instead.

      Returns:
      this
      See Also:
    • invertOrtho

      public Matrix4f invertOrtho(Matrix4f dest)
      Description copied from interface: Matrix4fc
      Invert this orthographic projection matrix and store the result into the given dest.

      This method can be used to quickly obtain the inverse of an orthographic projection matrix.

      Specified by:
      invertOrtho in interface Matrix4fc
      Parameters:
      dest - will hold the inverse of this
      Returns:
      dest
    • invertOrtho

      public Matrix4f invertOrtho()
      Invert this orthographic projection matrix.

      This method can be used to quickly obtain the inverse of an orthographic projection matrix.

      Returns:
      this
    • invertPerspectiveView

      public Matrix4f invertPerspectiveView(Matrix4fc view, Matrix4f dest)
      If this is a perspective projection matrix obtained via one of the perspective() methods or via setPerspective(), that is, if this is a symmetrical perspective frustum transformation and the given view matrix is affine and has unit scaling (for example by being obtained via lookAt()), then this method builds the inverse of this * view and stores it into the given dest.

      This method can be used to quickly obtain the inverse of the combination of the view and projection matrices, when both were obtained via the common methods perspective() and lookAt() or other methods, that build affine matrices, such as translate and rotate(float, float, float, float), except for scale().

      For the special cases of the matrices this and view mentioned above, this method is equivalent to the following code:

       dest.set(this).mul(view).invert();
       
      Specified by:
      invertPerspectiveView in interface Matrix4fc
      Parameters:
      view - the view transformation (must be affine and have unit scaling)
      dest - will hold the inverse of this * view
      Returns:
      dest
    • invertPerspectiveView

      public Matrix4f invertPerspectiveView(Matrix4x3fc view, Matrix4f dest)
      If this is a perspective projection matrix obtained via one of the perspective() methods or via setPerspective(), that is, if this is a symmetrical perspective frustum transformation and the given view matrix has unit scaling, then this method builds the inverse of this * view and stores it into the given dest.

      This method can be used to quickly obtain the inverse of the combination of the view and projection matrices, when both were obtained via the common methods perspective() and lookAt() or other methods, that build affine matrices, such as translate and rotate(float, float, float, float), except for scale().

      For the special cases of the matrices this and view mentioned above, this method is equivalent to the following code:

       dest.set(this).mul(view).invert();
       
      Specified by:
      invertPerspectiveView in interface Matrix4fc
      Parameters:
      view - the view transformation (must have unit scaling)
      dest - will hold the inverse of this * view
      Returns:
      dest
    • invertAffine

      public Matrix4f invertAffine(Matrix4f dest)
      Description copied from interface: Matrix4fc
      Invert this matrix by assuming that it is an affine transformation (i.e. its last row is equal to (0, 0, 0, 1)) and write the result into dest.
      Specified by:
      invertAffine in interface Matrix4fc
      Parameters:
      dest - will hold the result
      Returns:
      dest
    • invertAffine

      public Matrix4f invertAffine()
      Invert this matrix by assuming that it is an affine transformation (i.e. its last row is equal to (0, 0, 0, 1)).
      Returns:
      this
    • transpose

      public Matrix4f transpose(Matrix4f dest)
      Description copied from interface: Matrix4fc
      Transpose this matrix and store the result in dest.
      Specified by:
      transpose in interface Matrix4fc
      Parameters:
      dest - will hold the result
      Returns:
      dest
    • transpose3x3

      public Matrix4f transpose3x3()
      Transpose only the upper left 3x3 submatrix of this matrix.

      All other matrix elements are left unchanged.

      Returns:
      this
    • transpose3x3

      public Matrix4f transpose3x3(Matrix4f dest)
      Description copied from interface: Matrix4fc
      Transpose only the upper left 3x3 submatrix of this matrix and store the result in dest.

      All other matrix elements are left unchanged.

      Specified by:
      transpose3x3 in interface Matrix4fc
      Parameters:
      dest - will hold the result
      Returns:
      dest
    • transpose3x3

      public Matrix3f transpose3x3(Matrix3f dest)
      Description copied from interface: Matrix4fc
      Transpose only the upper left 3x3 submatrix of this matrix and store the result in dest.
      Specified by:
      transpose3x3 in interface Matrix4fc
      Parameters:
      dest - will hold the result
      Returns:
      dest
    • transpose

      public Matrix4f transpose()
      Transpose this matrix.
      Returns:
      this
    • translation

      public Matrix4f translation(float x, float y, float z)
      Set this matrix to be a simple translation matrix.

      The resulting matrix can be multiplied against another transformation matrix to obtain an additional translation.

      In order to post-multiply a translation transformation directly to a matrix, use translate() instead.

      Parameters:
      x - the offset to translate in x
      y - the offset to translate in y
      z - the offset to translate in z
      Returns:
      this
      See Also:
    • translation

      public Matrix4f translation(Vector3fc offset)
      Set this matrix to be a simple translation matrix.

      The resulting matrix can be multiplied against another transformation matrix to obtain an additional translation.

      In order to post-multiply a translation transformation directly to a matrix, use translate() instead.

      Parameters:
      offset - the offsets in x, y and z to translate
      Returns:
      this
      See Also:
    • setTranslation

      public Matrix4f setTranslation(float x, float y, float z)
      Set only the translation components (m30, m31, m32) of this matrix to the given values (x, y, z).

      Note that this will only work properly for orthogonal matrices (without any perspective).

      To build a translation matrix instead, use translation(float, float, float). To apply a translation, use translate(float, float, float).

      Parameters:
      x - the offset to translate in x
      y - the offset to translate in y
      z - the offset to translate in z
      Returns:
      this
      See Also:
    • setTranslation

      public Matrix4f setTranslation(Vector3fc xyz)
      Set only the translation components (m30, m31, m32) of this matrix to the values (xyz.x, xyz.y, xyz.z).

      Note that this will only work properly for orthogonal matrices (without any perspective).

      To build a translation matrix instead, use translation(Vector3fc). To apply a translation, use translate(Vector3fc).

      Parameters:
      xyz - the units to translate in (x, y, z)
      Returns:
      this
      See Also:
    • getTranslation

      public Vector3f getTranslation(Vector3f dest)
      Description copied from interface: Matrix4fc
      Get only the translation components (m30, m31, m32) of this matrix and store them in the given vector xyz.
      Specified by:
      getTranslation in interface Matrix4fc
      Parameters:
      dest - will hold the translation components of this matrix
      Returns:
      dest
    • getScale

      public Vector3f getScale(Vector3f dest)
      Description copied from interface: Matrix4fc
      Get the scaling factors of this matrix for the three base axes.
      Specified by:
      getScale in interface Matrix4fc
      Parameters:
      dest - will hold the scaling factors for x, y and z
      Returns:
      dest
    • toString

      public String toString()
      Return a string representation of this matrix.

      This method creates a new DecimalFormat on every invocation with the format string "0.000E0;-".

      Overrides:
      toString in class Object
      Returns:
      the string representation
    • toString

      public String toString(NumberFormat formatter)
      Return a string representation of this matrix by formatting the matrix elements with the given NumberFormat.
      Parameters:
      formatter - the NumberFormat used to format the matrix values with
      Returns:
      the string representation
    • get

      public Matrix4f get(Matrix4f dest)
      Get the current values of this matrix and store them into dest.

      This is the reverse method of set(Matrix4fc) and allows to obtain intermediate calculation results when chaining multiple transformations.

      Specified by:
      get in interface Matrix4fc
      Parameters:
      dest - the destination matrix
      Returns:
      the passed in destination
      See Also:
    • get4x3

      public Matrix4x3f get4x3(Matrix4x3f dest)
      Description copied from interface: Matrix4fc
      Get the current values of the upper 4x3 submatrix of this matrix and store them into dest.
      Specified by:
      get4x3 in interface Matrix4fc
      Parameters:
      dest - the destination matrix
      Returns:
      the passed in destination
      See Also:
    • get

      public Matrix4d get(Matrix4d dest)
      Get the current values of this matrix and store them into dest.

      This is the reverse method of set(Matrix4dc) and allows to obtain intermediate calculation results when chaining multiple transformations.

      Specified by:
      get in interface Matrix4fc
      Parameters:
      dest - the destination matrix
      Returns:
      the passed in destination
      See Also:
    • get3x3

      public Matrix3f get3x3(Matrix3f dest)
      Description copied from interface: Matrix4fc
      Get the current values of the upper left 3x3 submatrix of this matrix and store them into dest.
      Specified by:
      get3x3 in interface Matrix4fc
      Parameters:
      dest - the destination matrix
      Returns:
      the passed in destination
      See Also:
    • get3x3

      public Matrix3d get3x3(Matrix3d dest)
      Description copied from interface: Matrix4fc
      Get the current values of the upper left 3x3 submatrix of this matrix and store them into dest.
      Specified by:
      get3x3 in interface Matrix4fc
      Parameters:
      dest - the destination matrix
      Returns:
      the passed in destination
      See Also:
    • getRotation

      public AxisAngle4f getRotation(AxisAngle4f dest)
      Description copied from interface: Matrix4fc
      Get the rotational component of this matrix and store the represented rotation into the given AxisAngle4f.
      Specified by:
      getRotation in interface Matrix4fc
      Parameters:
      dest - the destination AxisAngle4f
      Returns:
      the passed in destination
      See Also:
    • getRotation

      public AxisAngle4d getRotation(AxisAngle4d dest)
      Description copied from interface: Matrix4fc
      Get the rotational component of this matrix and store the represented rotation into the given AxisAngle4d.
      Specified by:
      getRotation in interface Matrix4fc
      Parameters:
      dest - the destination AxisAngle4d
      Returns:
      the passed in destination
      See Also:
    • getUnnormalizedRotation

      public Quaternionf getUnnormalizedRotation(Quaternionf dest)
      Description copied from interface: Matrix4fc
      Get the current values of this matrix and store the represented rotation into the given Quaternionf.

      This method assumes that the first three column vectors of the upper left 3x3 submatrix are not normalized and thus allows to ignore any additional scaling factor that is applied to the matrix.

      Specified by:
      getUnnormalizedRotation in interface Matrix4fc
      Parameters:
      dest - the destination Quaternionf
      Returns:
      the passed in destination
      See Also:
    • getNormalizedRotation

      public Quaternionf getNormalizedRotation(Quaternionf dest)
      Description copied from interface: Matrix4fc
      Get the current values of this matrix and store the represented rotation into the given Quaternionf.

      This method assumes that the first three column vectors of the upper left 3x3 submatrix are normalized.

      Specified by:
      getNormalizedRotation in interface Matrix4fc
      Parameters:
      dest - the destination Quaternionf
      Returns:
      the passed in destination
      See Also:
    • getUnnormalizedRotation

      public Quaterniond getUnnormalizedRotation(Quaterniond dest)
      Description copied from interface: Matrix4fc
      Get the current values of this matrix and store the represented rotation into the given Quaterniond.

      This method assumes that the first three column vectors of the upper left 3x3 submatrix are not normalized and thus allows to ignore any additional scaling factor that is applied to the matrix.

      Specified by:
      getUnnormalizedRotation in interface Matrix4fc
      Parameters:
      dest - the destination Quaterniond
      Returns:
      the passed in destination
      See Also:
    • getNormalizedRotation

      public Quaterniond getNormalizedRotation(Quaterniond dest)
      Description copied from interface: Matrix4fc
      Get the current values of this matrix and store the represented rotation into the given Quaterniond.

      This method assumes that the first three column vectors of the upper left 3x3 submatrix are normalized.

      Specified by:
      getNormalizedRotation in interface Matrix4fc
      Parameters:
      dest - the destination Quaterniond
      Returns:
      the passed in destination
      See Also:
    • get

      public com.google.gwt.typedarrays.shared.Float32Array get(com.google.gwt.typedarrays.shared.Float32Array buffer)
      Description copied from interface: Matrix4fc
      Store this matrix in column-major order into the supplied Float32Array.
      Specified by:
      get in interface Matrix4fc
      Parameters:
      buffer - will receive the values of this matrix in column-major order
      Returns:
      the passed in buffer
    • get

      public com.google.gwt.typedarrays.shared.Float32Array get(int index, com.google.gwt.typedarrays.shared.Float32Array buffer)
      Description copied from interface: Matrix4fc
      Store this matrix in column-major order into the supplied Float32Array at the given index.
      Specified by:
      get in interface Matrix4fc
      Parameters:
      index - the index at which to store this matrix in the supplied Float32Array
      buffer - will receive the values of this matrix in column-major order
      Returns:
      the passed in buffer
    • get

      public FloatBuffer get(FloatBuffer buffer)
      Description copied from interface: Matrix4fc
      Store this matrix in column-major order into the supplied FloatBuffer at the current buffer position.

      This method will not increment the position of the given FloatBuffer.

      In order to specify the offset into the FloatBuffer at which the matrix is stored, use Matrix4fc.get(int, FloatBuffer), taking the absolute position as parameter.

      Specified by:
      get in interface Matrix4fc
      Parameters:
      buffer - will receive the values of this matrix in column-major order at its current position
      Returns:
      the passed in buffer
      See Also:
    • get

      public FloatBuffer get(int index, FloatBuffer buffer)
      Description copied from interface: Matrix4fc
      Store this matrix in column-major order into the supplied FloatBuffer starting at the specified absolute buffer position/index.

      This method will not increment the position of the given FloatBuffer.

      Specified by:
      get in interface Matrix4fc
      Parameters:
      index - the absolute position into the FloatBuffer
      buffer - will receive the values of this matrix in column-major order
      Returns:
      the passed in buffer
    • get

      public ByteBuffer get(ByteBuffer buffer)
      Description copied from interface: Matrix4fc
      Store this matrix in column-major order into the supplied ByteBuffer at the current buffer position.

      This method will not increment the position of the given ByteBuffer.

      In order to specify the offset into the ByteBuffer at which the matrix is stored, use Matrix4fc.get(int, ByteBuffer), taking the absolute position as parameter.

      Specified by:
      get in interface Matrix4fc
      Parameters:
      buffer - will receive the values of this matrix in column-major order at its current position
      Returns:
      the passed in buffer
      See Also:
    • get

      public ByteBuffer get(int index, ByteBuffer buffer)
      Description copied from interface: Matrix4fc
      Store this matrix in column-major order into the supplied ByteBuffer starting at the specified absolute buffer position/index.

      This method will not increment the position of the given ByteBuffer.

      Specified by:
      get in interface Matrix4fc
      Parameters:
      index - the absolute position into the ByteBuffer
      buffer - will receive the values of this matrix in column-major order
      Returns:
      the passed in buffer
    • get4x3

      public FloatBuffer get4x3(FloatBuffer buffer)
      Description copied from interface: Matrix4fc
      Store the upper 4x3 submatrix in column-major order into the supplied FloatBuffer at the current buffer position.

      This method will not increment the position of the given FloatBuffer.

      In order to specify the offset into the FloatBuffer at which the matrix is stored, use Matrix4fc.get(int, FloatBuffer), taking the absolute position as parameter.

      Specified by:
      get4x3 in interface Matrix4fc
      Parameters:
      buffer - will receive the values of the upper 4x3 submatrix in column-major order at its current position
      Returns:
      the passed in buffer
      See Also:
    • get4x3

      public FloatBuffer get4x3(int index, FloatBuffer buffer)
      Description copied from interface: Matrix4fc
      Store the upper 4x3 submatrix in column-major order into the supplied FloatBuffer starting at the specified absolute buffer position/index.

      This method will not increment the position of the given FloatBuffer.

      Specified by:
      get4x3 in interface Matrix4fc
      Parameters:
      index - the absolute position into the FloatBuffer
      buffer - will receive the values of the upper 4x3 submatrix in column-major order
      Returns:
      the passed in buffer
    • get4x3

      public ByteBuffer get4x3(ByteBuffer buffer)
      Description copied from interface: Matrix4fc
      Store the upper 4x3 submatrix in column-major order into the supplied ByteBuffer at the current buffer position.

      This method will not increment the position of the given ByteBuffer.

      In order to specify the offset into the ByteBuffer at which the matrix is stored, use Matrix4fc.get(int, ByteBuffer), taking the absolute position as parameter.

      Specified by:
      get4x3 in interface Matrix4fc
      Parameters:
      buffer - will receive the values of the upper 4x3 submatrix in column-major order at its current position
      Returns:
      the passed in buffer
      See Also:
    • get4x3

      public ByteBuffer get4x3(int index, ByteBuffer buffer)
      Description copied from interface: Matrix4fc
      Store the upper 4x3 submatrix in column-major order into the supplied ByteBuffer starting at the specified absolute buffer position/index.

      This method will not increment the position of the given ByteBuffer.

      Specified by:
      get4x3 in interface Matrix4fc
      Parameters:
      index - the absolute position into the ByteBuffer
      buffer - will receive the values of the upper 4x3 submatrix in column-major order
      Returns:
      the passed in buffer
    • get3x4

      public FloatBuffer get3x4(FloatBuffer buffer)
      Description copied from interface: Matrix4fc
      Store the left 3x4 submatrix in column-major order into the supplied FloatBuffer at the current buffer position.

      This method will not increment the position of the given FloatBuffer.

      In order to specify the offset into the FloatBuffer at which the matrix is stored, use Matrix4fc.get3x4(int, FloatBuffer), taking the absolute position as parameter.

      Specified by:
      get3x4 in interface Matrix4fc
      Parameters:
      buffer - will receive the values of the left 3x4 submatrix in column-major order at its current position
      Returns:
      the passed in buffer
      See Also:
    • get3x4

      public FloatBuffer get3x4(int index, FloatBuffer buffer)
      Description copied from interface: Matrix4fc
      Store the left 3x4 submatrix in column-major order into the supplied FloatBuffer starting at the specified absolute buffer position/index.

      This method will not increment the position of the given FloatBuffer.

      Specified by:
      get3x4 in interface Matrix4fc
      Parameters:
      index - the absolute position into the FloatBuffer
      buffer - will receive the values of the left 3x4 submatrix in column-major order
      Returns:
      the passed in buffer
    • get3x4

      public ByteBuffer get3x4(ByteBuffer buffer)
      Description copied from interface: Matrix4fc
      Store the left 3x4 submatrix in column-major order into the supplied ByteBuffer at the current buffer position.

      This method will not increment the position of the given ByteBuffer.

      In order to specify the offset into the ByteBuffer at which the matrix is stored, use Matrix4fc.get3x4(int, ByteBuffer), taking the absolute position as parameter.

      Specified by:
      get3x4 in interface Matrix4fc
      Parameters:
      buffer - will receive the values of the left 3x4 submatrix in column-major order at its current position
      Returns:
      the passed in buffer
      See Also:
    • get3x4

      public ByteBuffer get3x4(int index, ByteBuffer buffer)
      Description copied from interface: Matrix4fc
      Store the left 3x4 submatrix in column-major order into the supplied ByteBuffer starting at the specified absolute buffer position/index.

      This method will not increment the position of the given ByteBuffer.

      Specified by:
      get3x4 in interface Matrix4fc
      Parameters:
      index - the absolute position into the ByteBuffer
      buffer - will receive the values of the left 3x4 submatrix in column-major order
      Returns:
      the passed in buffer
    • getTransposed

      public FloatBuffer getTransposed(FloatBuffer buffer)
      Description copied from interface: Matrix4fc
      Store the transpose of this matrix in column-major order into the supplied FloatBuffer at the current buffer position.

      This method will not increment the position of the given FloatBuffer.

      In order to specify the offset into the FloatBuffer at which the matrix is stored, use Matrix4fc.getTransposed(int, FloatBuffer), taking the absolute position as parameter.

      Specified by:
      getTransposed in interface Matrix4fc
      Parameters:
      buffer - will receive the values of this matrix in column-major order at its current position
      Returns:
      the passed in buffer
      See Also:
    • getTransposed

      public FloatBuffer getTransposed(int index, FloatBuffer buffer)
      Description copied from interface: Matrix4fc
      Store the transpose of this matrix in column-major order into the supplied FloatBuffer starting at the specified absolute buffer position/index.

      This method will not increment the position of the given FloatBuffer.

      Specified by:
      getTransposed in interface Matrix4fc
      Parameters:
      index - the absolute position into the FloatBuffer
      buffer - will receive the values of this matrix in column-major order
      Returns:
      the passed in buffer
    • getTransposed

      public ByteBuffer getTransposed(ByteBuffer buffer)
      Description copied from interface: Matrix4fc
      Store the transpose of this matrix in column-major order into the supplied ByteBuffer at the current buffer position.

      This method will not increment the position of the given ByteBuffer.

      In order to specify the offset into the ByteBuffer at which the matrix is stored, use Matrix4fc.getTransposed(int, ByteBuffer), taking the absolute position as parameter.

      Specified by:
      getTransposed in interface Matrix4fc
      Parameters:
      buffer - will receive the values of this matrix in column-major order at its current position
      Returns:
      the passed in buffer
      See Also:
    • getTransposed

      public ByteBuffer getTransposed(int index, ByteBuffer buffer)
      Description copied from interface: Matrix4fc
      Store the transpose of this matrix in column-major order into the supplied ByteBuffer starting at the specified absolute buffer position/index.

      This method will not increment the position of the given ByteBuffer.

      Specified by:
      getTransposed in interface Matrix4fc
      Parameters:
      index - the absolute position into the ByteBuffer
      buffer - will receive the values of this matrix in column-major order
      Returns:
      the passed in buffer
    • get4x3Transposed

      public FloatBuffer get4x3Transposed(FloatBuffer buffer)
      Description copied from interface: Matrix4fc
      Store the upper 4x3 submatrix of this matrix in row-major order into the supplied FloatBuffer at the current buffer position.

      This method will not increment the position of the given FloatBuffer.

      In order to specify the offset into the FloatBuffer at which the matrix is stored, use Matrix4fc.get4x3Transposed(int, FloatBuffer), taking the absolute position as parameter.

      Specified by:
      get4x3Transposed in interface Matrix4fc
      Parameters:
      buffer - will receive the values of the upper 4x3 submatrix in row-major order at its current position
      Returns:
      the passed in buffer
      See Also:
    • get4x3Transposed

      public FloatBuffer get4x3Transposed(int index, FloatBuffer buffer)
      Description copied from interface: Matrix4fc
      Store the upper 4x3 submatrix of this matrix in row-major order into the supplied FloatBuffer starting at the specified absolute buffer position/index.

      This method will not increment the position of the given FloatBuffer.

      Specified by:
      get4x3Transposed in interface Matrix4fc
      Parameters:
      index - the absolute position into the FloatBuffer
      buffer - will receive the values of the upper 4x3 submatrix in row-major order
      Returns:
      the passed in buffer
    • get4x3Transposed

      public ByteBuffer get4x3Transposed(ByteBuffer buffer)
      Description copied from interface: Matrix4fc
      Store the upper 4x3 submatrix of this matrix in row-major order into the supplied ByteBuffer at the current buffer position.

      This method will not increment the position of the given ByteBuffer.

      In order to specify the offset into the ByteBuffer at which the matrix is stored, use Matrix4fc.get4x3Transposed(int, ByteBuffer), taking the absolute position as parameter.

      Specified by:
      get4x3Transposed in interface Matrix4fc
      Parameters:
      buffer - will receive the values of the upper 4x3 submatrix in row-major order at its current position
      Returns:
      the passed in buffer
      See Also:
    • get4x3Transposed

      public ByteBuffer get4x3Transposed(int index, ByteBuffer buffer)
      Description copied from interface: Matrix4fc
      Store the upper 4x3 submatrix of this matrix in row-major order into the supplied ByteBuffer starting at the specified absolute buffer position/index.

      This method will not increment the position of the given ByteBuffer.

      Specified by:
      get4x3Transposed in interface Matrix4fc
      Parameters:
      index - the absolute position into the ByteBuffer
      buffer - will receive the values of the upper 4x3 submatrix in row-major order
      Returns:
      the passed in buffer
    • getToAddress

      public Matrix4fc getToAddress(long address)
      Description copied from interface: Matrix4fc
      Store this matrix in column-major order at the given off-heap address.

      This method will throw an UnsupportedOperationException when JOML is used with `-Djoml.nounsafe`.

      This method is unsafe as it can result in a crash of the JVM process when the specified address range does not belong to this process.

      Specified by:
      getToAddress in interface Matrix4fc
      Parameters:
      address - the off-heap address where to store this matrix
      Returns:
      this
    • get

      public float[] get(float[] arr, int offset)
      Description copied from interface: Matrix4fc
      Store this matrix into the supplied float array in column-major order at the given offset.
      Specified by:
      get in interface Matrix4fc
      Parameters:
      arr - the array to write the matrix values into
      offset - the offset into the array
      Returns:
      the passed in array
    • get

      public float[] get(float[] arr)
      Description copied from interface: Matrix4fc
      Store this matrix into the supplied float array in column-major order.

      In order to specify an explicit offset into the array, use the method Matrix4fc.get(float[], int).

      Specified by:
      get in interface Matrix4fc
      Parameters:
      arr - the array to write the matrix values into
      Returns:
      the passed in array
      See Also:
    • zero

      public Matrix4f zero()
      Set all the values within this matrix to 0.
      Returns:
      this
    • scaling

      public Matrix4f scaling(float factor)
      Set this matrix to be a simple scale matrix, which scales all axes uniformly by the given factor.

      The resulting matrix can be multiplied against another transformation matrix to obtain an additional scaling.

      In order to post-multiply a scaling transformation directly to a matrix, use scale() instead.

      Parameters:
      factor - the scale factor in x, y and z
      Returns:
      this
      See Also:
    • scaling

      public Matrix4f scaling(float x, float y, float z)
      Set this matrix to be a simple scale matrix.

      The resulting matrix can be multiplied against another transformation matrix to obtain an additional scaling.

      In order to post-multiply a scaling transformation directly to a matrix, use scale() instead.

      Parameters:
      x - the scale in x
      y - the scale in y
      z - the scale in z
      Returns:
      this
      See Also:
    • scaling

      public Matrix4f scaling(Vector3fc xyz)
      Set this matrix to be a simple scale matrix which scales the base axes by xyz.x, xyz.y and xyz.z respectively.

      The resulting matrix can be multiplied against another transformation matrix to obtain an additional scaling.

      In order to post-multiply a scaling transformation directly to a matrix use scale() instead.

      Parameters:
      xyz - the scale in x, y and z respectively
      Returns:
      this
      See Also:
    • rotation

      public Matrix4f rotation(float angle, Vector3fc axis)
      Set this matrix to a rotation matrix which rotates the given radians about a given axis.

      The axis described by the axis vector needs to be a unit vector.

      When used with a right-handed coordinate system, the produced rotation will rotate a vector counter-clockwise around the rotation axis, when viewing along the negative axis direction towards the origin. When used with a left-handed coordinate system, the rotation is clockwise.

      The resulting matrix can be multiplied against another transformation matrix to obtain an additional rotation.

      In order to post-multiply a rotation transformation directly to a matrix, use rotate() instead.

      Parameters:
      angle - the angle in radians
      axis - the axis to rotate about (needs to be normalized)
      Returns:
      this
      See Also:
    • rotation

      public Matrix4f rotation(AxisAngle4f axisAngle)
      Set this matrix to a rotation transformation using the given AxisAngle4f.

      When used with a right-handed coordinate system, the produced rotation will rotate a vector counter-clockwise around the rotation axis, when viewing along the negative axis direction towards the origin. When used with a left-handed coordinate system, the rotation is clockwise.

      The resulting matrix can be multiplied against another transformation matrix to obtain an additional rotation.

      In order to apply the rotation transformation to an existing transformation, use rotate() instead.

      Reference: http://en.wikipedia.org

      Parameters:
      axisAngle - the AxisAngle4f (needs to be normalized)
      Returns:
      this
      See Also:
    • rotation

      public Matrix4f rotation(float angle, float x, float y, float z)
      Set this matrix to a rotation matrix which rotates the given radians about a given axis.

      The axis described by the three components needs to be a unit vector.

      When used with a right-handed coordinate system, the produced rotation will rotate a vector counter-clockwise around the rotation axis, when viewing along the negative axis direction towards the origin. When used with a left-handed coordinate system, the rotation is clockwise.

      The resulting matrix can be multiplied against another transformation matrix to obtain an additional rotation.

      In order to apply the rotation transformation to an existing transformation, use rotate() instead.

      Reference: http://en.wikipedia.org

      Parameters:
      angle - the angle in radians
      x - the x-component of the rotation axis
      y - the y-component of the rotation axis
      z - the z-component of the rotation axis
      Returns:
      this
      See Also:
    • rotationX

      public Matrix4f rotationX(float ang)
      Set this matrix to a rotation transformation about the X axis.

      When used with a right-handed coordinate system, the produced rotation will rotate a vector counter-clockwise around the rotation axis, when viewing along the negative axis direction towards the origin. When used with a left-handed coordinate system, the rotation is clockwise.

      Reference: http://en.wikipedia.org

      Parameters:
      ang - the angle in radians
      Returns:
      this
    • rotationY

      public Matrix4f rotationY(float ang)
      Set this matrix to a rotation transformation about the Y axis.

      When used with a right-handed coordinate system, the produced rotation will rotate a vector counter-clockwise around the rotation axis, when viewing along the negative axis direction towards the origin. When used with a left-handed coordinate system, the rotation is clockwise.

      Reference: http://en.wikipedia.org

      Parameters:
      ang - the angle in radians
      Returns:
      this
    • rotationZ

      public Matrix4f rotationZ(float ang)
      Set this matrix to a rotation transformation about the Z axis.

      When used with a right-handed coordinate system, the produced rotation will rotate a vector counter-clockwise around the rotation axis, when viewing along the negative axis direction towards the origin. When used with a left-handed coordinate system, the rotation is clockwise.

      Reference: http://en.wikipedia.org

      Parameters:
      ang - the angle in radians
      Returns:
      this
    • rotationTowardsXY

      public Matrix4f rotationTowardsXY(float dirX, float dirY)
      Set this matrix to a rotation transformation about the Z axis to align the local +X towards (dirX, dirY).

      The vector (dirX, dirY) must be a unit vector.

      Parameters:
      dirX - the x component of the normalized direction
      dirY - the y component of the normalized direction
      Returns:
      this
    • rotationXYZ

      public Matrix4f rotationXYZ(float angleX, float angleY, float angleZ)
      Set this matrix to a rotation of angleX radians about the X axis, followed by a rotation of angleY radians about the Y axis and followed by a rotation of angleZ radians about the Z axis.

      When used with a right-handed coordinate system, the produced rotation will rotate a vector counter-clockwise around the rotation axis, when viewing along the negative axis direction towards the origin. When used with a left-handed coordinate system, the rotation is clockwise.

      This method is equivalent to calling: rotationX(angleX).rotateY(angleY).rotateZ(angleZ)

      Parameters:
      angleX - the angle to rotate about X
      angleY - the angle to rotate about Y
      angleZ - the angle to rotate about Z
      Returns:
      this
    • rotationZYX

      public Matrix4f rotationZYX(float angleZ, float angleY, float angleX)
      Set this matrix to a rotation of angleZ radians about the Z axis, followed by a rotation of angleY radians about the Y axis and followed by a rotation of angleX radians about the X axis.

      When used with a right-handed coordinate system, the produced rotation will rotate a vector counter-clockwise around the rotation axis, when viewing along the negative axis direction towards the origin. When used with a left-handed coordinate system, the rotation is clockwise.

      This method is equivalent to calling: rotationZ(angleZ).rotateY(angleY).rotateX(angleX)

      Parameters:
      angleZ - the angle to rotate about Z
      angleY - the angle to rotate about Y
      angleX - the angle to rotate about X
      Returns:
      this
    • rotationYXZ

      public Matrix4f rotationYXZ(float angleY, float angleX, float angleZ)
      Set this matrix to a rotation of angleY radians about the Y axis, followed by a rotation of angleX radians about the X axis and followed by a rotation of angleZ radians about the Z axis.

      When used with a right-handed coordinate system, the produced rotation will rotate a vector counter-clockwise around the rotation axis, when viewing along the negative axis direction towards the origin. When used with a left-handed coordinate system, the rotation is clockwise.

      This method is equivalent to calling: rotationY(angleY).rotateX(angleX).rotateZ(angleZ)

      Parameters:
      angleY - the angle to rotate about Y
      angleX - the angle to rotate about X
      angleZ - the angle to rotate about Z
      Returns:
      this
    • setRotationXYZ

      public Matrix4f setRotationXYZ(float angleX, float angleY, float angleZ)
      Set only the upper left 3x3 submatrix of this matrix to a rotation of angleX radians about the X axis, followed by a rotation of angleY radians about the Y axis and followed by a rotation of angleZ radians about the Z axis.

      When used with a right-handed coordinate system, the produced rotation will rotate a vector counter-clockwise around the rotation axis, when viewing along the negative axis direction towards the origin. When used with a left-handed coordinate system, the rotation is clockwise.

      Parameters:
      angleX - the angle to rotate about X
      angleY - the angle to rotate about Y
      angleZ - the angle to rotate about Z
      Returns:
      this
    • setRotationZYX

      public Matrix4f setRotationZYX(float angleZ, float angleY, float angleX)
      Set only the upper left 3x3 submatrix of this matrix to a rotation of angleZ radians about the Z axis, followed by a rotation of angleY radians about the Y axis and followed by a rotation of angleX radians about the X axis.

      When used with a right-handed coordinate system, the produced rotation will rotate a vector counter-clockwise around the rotation axis, when viewing along the negative axis direction towards the origin. When used with a left-handed coordinate system, the rotation is clockwise.

      Parameters:
      angleZ - the angle to rotate about Z
      angleY - the angle to rotate about Y
      angleX - the angle to rotate about X
      Returns:
      this
    • setRotationYXZ

      public Matrix4f setRotationYXZ(float angleY, float angleX, float angleZ)
      Set only the upper left 3x3 submatrix of this matrix to a rotation of angleY radians about the Y axis, followed by a rotation of angleX radians about the X axis and followed by a rotation of angleZ radians about the Z axis.

      When used with a right-handed coordinate system, the produced rotation will rotate a vector counter-clockwise around the rotation axis, when viewing along the negative axis direction towards the origin. When used with a left-handed coordinate system, the rotation is clockwise.

      Parameters:
      angleY - the angle to rotate about Y
      angleX - the angle to rotate about X
      angleZ - the angle to rotate about Z
      Returns:
      this
    • rotation

      public Matrix4f rotation(Quaternionfc quat)
      Set this matrix to the rotation transformation of the given Quaternionfc.

      When used with a right-handed coordinate system, the produced rotation will rotate a vector counter-clockwise around the rotation axis, when viewing along the negative axis direction towards the origin. When used with a left-handed coordinate system, the rotation is clockwise.

      The resulting matrix can be multiplied against another transformation matrix to obtain an additional rotation.

      In order to apply the rotation transformation to an existing transformation, use rotate() instead.

      Reference: http://en.wikipedia.org

      Parameters:
      quat - the Quaternionfc
      Returns:
      this
      See Also:
    • translationRotateScale

      public Matrix4f translationRotateScale(float tx, float ty, float tz, float qx, float qy, float qz, float qw, float sx, float sy, float sz)
      Set this matrix to T * R * S, where T is a translation by the given (tx, ty, tz), R is a rotation transformation specified by the quaternion (qx, qy, qz, qw), and S is a scaling transformation which scales the three axes x, y and z by (sx, sy, sz).

      When transforming a vector by the resulting matrix the scaling transformation will be applied first, then the rotation and at last the translation.

      When used with a right-handed coordinate system, the produced rotation will rotate a vector counter-clockwise around the rotation axis, when viewing along the negative axis direction towards the origin. When used with a left-handed coordinate system, the rotation is clockwise.

      This method is equivalent to calling: translation(tx, ty, tz).rotate(quat).scale(sx, sy, sz)

      Parameters:
      tx - the number of units by which to translate the x-component
      ty - the number of units by which to translate the y-component
      tz - the number of units by which to translate the z-component
      qx - the x-coordinate of the vector part of the quaternion
      qy - the y-coordinate of the vector part of the quaternion
      qz - the z-coordinate of the vector part of the quaternion
      qw - the scalar part of the quaternion
      sx - the scaling factor for the x-axis
      sy - the scaling factor for the y-axis
      sz - the scaling factor for the z-axis
      Returns:
      this
      See Also:
    • translationRotateScale

      public Matrix4f translationRotateScale(Vector3fc translation, Quaternionfc quat, Vector3fc scale)
      Set this matrix to T * R * S, where T is the given translation, R is a rotation transformation specified by the given quaternion, and S is a scaling transformation which scales the axes by scale.

      When transforming a vector by the resulting matrix the scaling transformation will be applied first, then the rotation and at last the translation.

      When used with a right-handed coordinate system, the produced rotation will rotate a vector counter-clockwise around the rotation axis, when viewing along the negative axis direction towards the origin. When used with a left-handed coordinate system, the rotation is clockwise.

      This method is equivalent to calling: translation(translation).rotate(quat).scale(scale)

      Parameters:
      translation - the translation
      quat - the quaternion representing a rotation
      scale - the scaling factors
      Returns:
      this
      See Also:
    • translationRotateScale

      public Matrix4f translationRotateScale(float tx, float ty, float tz, float qx, float qy, float qz, float qw, float scale)
      Set this matrix to T * R * S, where T is a translation by the given (tx, ty, tz), R is a rotation transformation specified by the quaternion (qx, qy, qz, qw), and S is a scaling transformation which scales all three axes by scale.

      When transforming a vector by the resulting matrix the scaling transformation will be applied first, then the rotation and at last the translation.

      When used with a right-handed coordinate system, the produced rotation will rotate a vector counter-clockwise around the rotation axis, when viewing along the negative axis direction towards the origin. When used with a left-handed coordinate system, the rotation is clockwise.

      This method is equivalent to calling: translation(tx, ty, tz).rotate(quat).scale(scale)

      Parameters:
      tx - the number of units by which to translate the x-component
      ty - the number of units by which to translate the y-component
      tz - the number of units by which to translate the z-component
      qx - the x-coordinate of the vector part of the quaternion
      qy - the y-coordinate of the vector part of the quaternion
      qz - the z-coordinate of the vector part of the quaternion
      qw - the scalar part of the quaternion
      scale - the scaling factor for all three axes
      Returns:
      this
      See Also:
    • translationRotateScale

      public Matrix4f translationRotateScale(Vector3fc translation, Quaternionfc quat, float scale)
      Set this matrix to T * R * S, where T is the given translation, R is a rotation transformation specified by the given quaternion, and S is a scaling transformation which scales all three axes by scale.

      When transforming a vector by the resulting matrix the scaling transformation will be applied first, then the rotation and at last the translation.

      When used with a right-handed coordinate system, the produced rotation will rotate a vector counter-clockwise around the rotation axis, when viewing along the negative axis direction towards the origin. When used with a left-handed coordinate system, the rotation is clockwise.

      This method is equivalent to calling: translation(translation).rotate(quat).scale(scale)

      Parameters:
      translation - the translation
      quat - the quaternion representing a rotation
      scale - the scaling factors
      Returns:
      this
      See Also:
    • translationRotateScaleInvert

      public Matrix4f translationRotateScaleInvert(float tx, float ty, float tz, float qx, float qy, float qz, float qw, float sx, float sy, float sz)
      Set this matrix to (T * R * S)-1, where T is a translation by the given (tx, ty, tz), R is a rotation transformation specified by the quaternion (qx, qy, qz, qw), and S is a scaling transformation which scales the three axes x, y and z by (sx, sy, sz).

      This method is equivalent to calling: translationRotateScale(...).invert()

      Parameters:
      tx - the number of units by which to translate the x-component
      ty - the number of units by which to translate the y-component
      tz - the number of units by which to translate the z-component
      qx - the x-coordinate of the vector part of the quaternion
      qy - the y-coordinate of the vector part of the quaternion
      qz - the z-coordinate of the vector part of the quaternion
      qw - the scalar part of the quaternion
      sx - the scaling factor for the x-axis
      sy - the scaling factor for the y-axis
      sz - the scaling factor for the z-axis
      Returns:
      this
      See Also:
    • translationRotateScaleInvert

      public Matrix4f translationRotateScaleInvert(Vector3fc translation, Quaternionfc quat, Vector3fc scale)
      Set this matrix to (T * R * S)-1, where T is the given translation, R is a rotation transformation specified by the given quaternion, and S is a scaling transformation which scales the axes by scale.

      This method is equivalent to calling: translationRotateScale(...).invert()

      Parameters:
      translation - the translation
      quat - the quaternion representing a rotation
      scale - the scaling factors
      Returns:
      this
      See Also:
    • translationRotateScaleInvert

      public Matrix4f translationRotateScaleInvert(Vector3fc translation, Quaternionfc quat, float scale)
      Set this matrix to (T * R * S)-1, where T is the given translation, R is a rotation transformation specified by the given quaternion, and S is a scaling transformation which scales all three axes by scale.

      This method is equivalent to calling: translationRotateScale(...).invert()

      Parameters:
      translation - the translation
      quat - the quaternion representing a rotation
      scale - the scaling factors
      Returns:
      this
      See Also:
    • translationRotateScaleMulAffine

      public Matrix4f translationRotateScaleMulAffine(float tx, float ty, float tz, float qx, float qy, float qz, float qw, float sx, float sy, float sz, Matrix4f m)
      Set this matrix to T * R * S * M, where T is a translation by the given (tx, ty, tz), R is a rotation - and possibly scaling - transformation specified by the quaternion (qx, qy, qz, qw), S is a scaling transformation which scales the three axes x, y and z by (sx, sy, sz) and M is an affine matrix.

      When transforming a vector by the resulting matrix the transformation described by M will be applied first, then the scaling, then rotation and at last the translation.

      When used with a right-handed coordinate system, the produced rotation will rotate a vector counter-clockwise around the rotation axis, when viewing along the negative axis direction towards the origin. When used with a left-handed coordinate system, the rotation is clockwise.

      This method is equivalent to calling: translation(tx, ty, tz).rotate(quat).scale(sx, sy, sz).mulAffine(m)

      Parameters:
      tx - the number of units by which to translate the x-component
      ty - the number of units by which to translate the y-component
      tz - the number of units by which to translate the z-component
      qx - the x-coordinate of the vector part of the quaternion
      qy - the y-coordinate of the vector part of the quaternion
      qz - the z-coordinate of the vector part of the quaternion
      qw - the scalar part of the quaternion
      sx - the scaling factor for the x-axis
      sy - the scaling factor for the y-axis
      sz - the scaling factor for the z-axis
      m - the affine matrix to multiply by
      Returns:
      this
      See Also:
    • translationRotateScaleMulAffine

      public Matrix4f translationRotateScaleMulAffine(Vector3fc translation, Quaternionfc quat, Vector3fc scale, Matrix4f m)
      Set this matrix to T * R * S * M, where T is the given translation, R is a rotation - and possibly scaling - transformation specified by the given quaternion, S is a scaling transformation which scales the axes by scale and M is an affine matrix.

      When transforming a vector by the resulting matrix the transformation described by M will be applied first, then the scaling, then rotation and at last the translation.

      When used with a right-handed coordinate system, the produced rotation will rotate a vector counter-clockwise around the rotation axis, when viewing along the negative axis direction towards the origin. When used with a left-handed coordinate system, the rotation is clockwise.

      This method is equivalent to calling: translation(translation).rotate(quat).scale(scale).mulAffine(m)

      Parameters:
      translation - the translation
      quat - the quaternion representing a rotation
      scale - the scaling factors
      m - the affine matrix to multiply by
      Returns:
      this
      See Also:
    • translationRotate

      public Matrix4f translationRotate(float tx, float ty, float tz, float qx, float qy, float qz, float qw)
      Set this matrix to T * R, where T is a translation by the given (tx, ty, tz) and R is a rotation - and possibly scaling - transformation specified by the quaternion (qx, qy, qz, qw).

      When transforming a vector by the resulting matrix the rotation - and possibly scaling - transformation will be applied first and then the translation.

      When used with a right-handed coordinate system, the produced rotation will rotate a vector counter-clockwise around the rotation axis, when viewing along the negative axis direction towards the origin. When used with a left-handed coordinate system, the rotation is clockwise.

      This method is equivalent to calling: translation(tx, ty, tz).rotate(quat)

      Parameters:
      tx - the number of units by which to translate the x-component
      ty - the number of units by which to translate the y-component
      tz - the number of units by which to translate the z-component
      qx - the x-coordinate of the vector part of the quaternion
      qy - the y-coordinate of the vector part of the quaternion
      qz - the z-coordinate of the vector part of the quaternion
      qw - the scalar part of the quaternion
      Returns:
      this
      See Also:
    • translationRotate

      public Matrix4f translationRotate(float tx, float ty, float tz, Quaternionfc quat)
      Set this matrix to T * R, where T is a translation by the given (tx, ty, tz) and R is a rotation - and possibly scaling - transformation specified by the given quaternion.

      When transforming a vector by the resulting matrix the rotation - and possibly scaling - transformation will be applied first and then the translation.

      When used with a right-handed coordinate system, the produced rotation will rotate a vector counter-clockwise around the rotation axis, when viewing along the negative axis direction towards the origin. When used with a left-handed coordinate system, the rotation is clockwise.

      This method is equivalent to calling: translation(tx, ty, tz).rotate(quat)

      Parameters:
      tx - the number of units by which to translate the x-component
      ty - the number of units by which to translate the y-component
      tz - the number of units by which to translate the z-component
      quat - the quaternion representing a rotation
      Returns:
      this
      See Also:
    • translationRotate

      public Matrix4f translationRotate(Vector3fc translation, Quaternionfc quat)
      Set this matrix to T * R, where T is the given translation and R is a rotation transformation specified by the given quaternion.

      When transforming a vector by the resulting matrix the scaling transformation will be applied first, then the rotation and at last the translation.

      When used with a right-handed coordinate system, the produced rotation will rotate a vector counter-clockwise around the rotation axis, when viewing along the negative axis direction towards the origin. When used with a left-handed coordinate system, the rotation is clockwise.

      This method is equivalent to calling: translation(translation).rotate(quat)

      Parameters:
      translation - the translation
      quat - the quaternion representing a rotation
      Returns:
      this
      See Also:
    • translationRotateInvert

      public Matrix4f translationRotateInvert(float tx, float ty, float tz, float qx, float qy, float qz, float qw)
      Set this matrix to (T * R)-1, where T is a translation by the given (tx, ty, tz) and R is a rotation transformation specified by the quaternion (qx, qy, qz, qw).

      This method is equivalent to calling: translationRotate(...).invert()

      Parameters:
      tx - the number of units by which to translate the x-component
      ty - the number of units by which to translate the y-component
      tz - the number of units by which to translate the z-component
      qx - the x-coordinate of the vector part of the quaternion
      qy - the y-coordinate of the vector part of the quaternion
      qz - the z-coordinate of the vector part of the quaternion
      qw - the scalar part of the quaternion
      Returns:
      this
      See Also:
    • translationRotateInvert

      public Matrix4f translationRotateInvert(Vector3fc translation, Quaternionfc quat)
      Set this matrix to (T * R)-1, where T is the given translation and R is a rotation transformation specified by the given quaternion.

      This method is equivalent to calling: translationRotate(...).invert()

      Parameters:
      translation - the translation
      quat - the quaternion representing a rotation
      Returns:
      this
      See Also:
    • set3x3

      public Matrix4f set3x3(Matrix3fc mat)
      Set the upper left 3x3 submatrix of this Matrix4f to the given Matrix3fc and don't change the other elements.
      Parameters:
      mat - the 3x3 matrix
      Returns:
      this
    • transform

      public Vector4f transform(Vector4f v)
      Description copied from interface: Matrix4fc
      Transform/multiply the given vector by this matrix and store the result in that vector.
      Specified by:
      transform in interface Matrix4fc
      Parameters:
      v - the vector to transform and to hold the final result
      Returns:
      v
      See Also:
    • transform

      public Vector4f transform(Vector4fc v, Vector4f dest)
      Description copied from interface: Matrix4fc
      Transform/multiply the given vector by this matrix and store the result in dest.
      Specified by:
      transform in interface Matrix4fc
      Parameters:
      v - the vector to transform
      dest - will contain the result
      Returns:
      dest
      See Also:
    • transform

      public Vector4f transform(float x, float y, float z, float w, Vector4f dest)
      Description copied from interface: Matrix4fc
      Transform/multiply the vector (x, y, z, w) by this matrix and store the result in dest.
      Specified by:
      transform in interface Matrix4fc
      Parameters:
      x - the x coordinate of the vector to transform
      y - the y coordinate of the vector to transform
      z - the z coordinate of the vector to transform
      w - the w coordinate of the vector to transform
      dest - will contain the result
      Returns:
      dest
    • transformTranspose

      public Vector4f transformTranspose(Vector4f v)
      Description copied from interface: Matrix4fc
      Transform/multiply the given vector by the transpose of this matrix and store the result in that vector.
      Specified by:
      transformTranspose in interface Matrix4fc
      Parameters:
      v - the vector to transform and to hold the final result
      Returns:
      v
      See Also:
    • transformTranspose

      public Vector4f transformTranspose(Vector4fc v, Vector4f dest)
      Description copied from interface: Matrix4fc
      Transform/multiply the given vector by the transpose of this matrix and store the result in dest.
      Specified by:
      transformTranspose in interface Matrix4fc
      Parameters:
      v - the vector to transform
      dest - will contain the result
      Returns:
      dest
      See Also:
    • transformTranspose

      public Vector4f transformTranspose(float x, float y, float z, float w, Vector4f dest)
      Description copied from interface: Matrix4fc
      Transform/multiply the vector (x, y, z, w) by the transpose of this matrix and store the result in dest.
      Specified by:
      transformTranspose in interface Matrix4fc
      Parameters:
      x - the x coordinate of the vector to transform
      y - the y coordinate of the vector to transform
      z - the z coordinate of the vector to transform
      w - the w coordinate of the vector to transform
      dest - will contain the result
      Returns:
      dest
    • transformProject

      public Vector4f transformProject(Vector4f v)
      Description copied from interface: Matrix4fc
      Transform/multiply the given vector by this matrix, perform perspective divide and store the result in that vector.
      Specified by:
      transformProject in interface Matrix4fc
      Parameters:
      v - the vector to transform and to hold the final result
      Returns:
      v
      See Also:
    • transformProject

      public Vector4f transformProject(Vector4fc v, Vector4f dest)
      Description copied from interface: Matrix4fc
      Transform/multiply the given vector by this matrix, perform perspective divide and store the result in dest.
      Specified by:
      transformProject in interface Matrix4fc
      Parameters:
      v - the vector to transform
      dest - will contain the result
      Returns:
      dest
      See Also:
    • transformProject

      public Vector4f transformProject(float x, float y, float z, float w, Vector4f dest)
      Description copied from interface: Matrix4fc
      Transform/multiply the vector (x, y, z, w) by this matrix, perform perspective divide and store the result in dest.
      Specified by:
      transformProject in interface Matrix4fc
      Parameters:
      x - the x coordinate of the vector to transform
      y - the y coordinate of the vector to transform
      z - the z coordinate of the vector to transform
      w - the w coordinate of the vector to transform
      dest - will contain the result
      Returns:
      dest
    • transformProject

      public Vector3f transformProject(Vector4fc v, Vector3f dest)
      Description copied from interface: Matrix4fc
      Transform/multiply the given vector by this matrix, perform perspective divide and store the result in dest.
      Specified by:
      transformProject in interface Matrix4fc
      Parameters:
      v - the vector to transform
      dest - will contain the (x, y, z) components of the result
      Returns:
      dest
      See Also:
    • transformProject

      public Vector3f transformProject(float x, float y, float z, float w, Vector3f dest)
      Description copied from interface: Matrix4fc
      Transform/multiply the vector (x, y, z, w) by this matrix, perform perspective divide and store (x, y, z) of the result in dest.
      Specified by:
      transformProject in interface Matrix4fc
      Parameters:
      x - the x coordinate of the vector to transform
      y - the y coordinate of the vector to transform
      z - the z coordinate of the vector to transform
      w - the w coordinate of the vector to transform
      dest - will contain the (x, y, z) components of the result
      Returns:
      dest
    • transformProject

      public Vector3f transformProject(Vector3f v)
      Description copied from interface: Matrix4fc
      Transform/multiply the given vector by this matrix, perform perspective divide and store the result in that vector.

      This method uses w=1.0 as the fourth vector component.

      Specified by:
      transformProject in interface Matrix4fc
      Parameters:
      v - the vector to transform and to hold the final result
      Returns:
      v
      See Also:
    • transformProject

      public Vector3f transformProject(Vector3fc v, Vector3f dest)
      Description copied from interface: Matrix4fc
      Transform/multiply the given vector by this matrix, perform perspective divide and store the result in dest.

      This method uses w=1.0 as the fourth vector component.

      Specified by:
      transformProject in interface Matrix4fc
      Parameters:
      v - the vector to transform
      dest - will contain the result
      Returns:
      dest
      See Also:
    • transformProject

      public Vector3f transformProject(float x, float y, float z, Vector3f dest)
      Description copied from interface: Matrix4fc
      Transform/multiply the vector (x, y, z) by this matrix, perform perspective divide and store the result in dest.

      This method uses w=1.0 as the fourth vector component.

      Specified by:
      transformProject in interface Matrix4fc
      Parameters:
      x - the x coordinate of the vector to transform
      y - the y coordinate of the vector to transform
      z - the z coordinate of the vector to transform
      dest - will contain the result
      Returns:
      dest
    • transformPosition

      public Vector3f transformPosition(Vector3f v)
      Description copied from interface: Matrix4fc
      Transform/multiply the given 3D-vector, as if it was a 4D-vector with w=1, by this matrix and store the result in that vector.

      The given 3D-vector is treated as a 4D-vector with its w-component being 1.0, so it will represent a position/location in 3D-space rather than a direction. This method is therefore not suited for perspective projection transformations as it will not save the w component of the transformed vector. For perspective projection use Matrix4fc.transform(Vector4f) or Matrix4fc.transformProject(Vector3f) when perspective divide should be applied, too.

      In order to store the result in another vector, use Matrix4fc.transformPosition(Vector3fc, Vector3f).

      Specified by:
      transformPosition in interface Matrix4fc
      Parameters:
      v - the vector to transform and to hold the final result
      Returns:
      v
      See Also:
    • transformPosition

      public Vector3f transformPosition(Vector3fc v, Vector3f dest)
      Description copied from interface: Matrix4fc
      Transform/multiply the given 3D-vector, as if it was a 4D-vector with w=1, by this matrix and store the result in dest.

      The given 3D-vector is treated as a 4D-vector with its w-component being 1.0, so it will represent a position/location in 3D-space rather than a direction. This method is therefore not suited for perspective projection transformations as it will not save the w component of the transformed vector. For perspective projection use Matrix4fc.transform(Vector4fc, Vector4f) or Matrix4fc.transformProject(Vector3fc, Vector3f) when perspective divide should be applied, too.

      In order to store the result in the same vector, use Matrix4fc.transformPosition(Vector3f).

      Specified by:
      transformPosition in interface Matrix4fc
      Parameters:
      v - the vector to transform
      dest - will hold the result
      Returns:
      dest
      See Also:
    • transformPosition

      public Vector3f transformPosition(float x, float y, float z, Vector3f dest)
      Description copied from interface: Matrix4fc
      Transform/multiply the 3D-vector (x, y, z), as if it was a 4D-vector with w=1, by this matrix and store the result in dest.

      The given 3D-vector is treated as a 4D-vector with its w-component being 1.0, so it will represent a position/location in 3D-space rather than a direction. This method is therefore not suited for perspective projection transformations as it will not save the w component of the transformed vector. For perspective projection use Matrix4fc.transform(float, float, float, float, Vector4f) or Matrix4fc.transformProject(float, float, float, Vector3f) when perspective divide should be applied, too.

      Specified by:
      transformPosition in interface Matrix4fc
      Parameters:
      x - the x coordinate of the position
      y - the y coordinate of the position
      z - the z coordinate of the position
      dest - will hold the result
      Returns:
      dest
      See Also:
    • transformDirection

      public Vector3f transformDirection(Vector3f v)
      Description copied from interface: Matrix4fc
      Transform/multiply the given 3D-vector, as if it was a 4D-vector with w=0, by this matrix and store the result in that vector.

      The given 3D-vector is treated as a 4D-vector with its w-component being 0.0, so it will represent a direction in 3D-space rather than a position. This method will therefore not take the translation part of the matrix into account.

      In order to store the result in another vector, use Matrix4fc.transformDirection(Vector3fc, Vector3f).

      Specified by:
      transformDirection in interface Matrix4fc
      Parameters:
      v - the vector to transform and to hold the final result
      Returns:
      v
      See Also:
    • transformDirection

      public Vector3f transformDirection(Vector3fc v, Vector3f dest)
      Description copied from interface: Matrix4fc
      Transform/multiply the given 3D-vector, as if it was a 4D-vector with w=0, by this matrix and store the result in dest.

      The given 3D-vector is treated as a 4D-vector with its w-component being 0.0, so it will represent a direction in 3D-space rather than a position. This method will therefore not take the translation part of the matrix into account.

      In order to store the result in the same vector, use Matrix4fc.transformDirection(Vector3f).

      Specified by:
      transformDirection in interface Matrix4fc
      Parameters:
      v - the vector to transform and to hold the final result
      dest - will hold the result
      Returns:
      dest
      See Also:
    • transformDirection

      public Vector3f transformDirection(float x, float y, float z, Vector3f dest)
      Description copied from interface: Matrix4fc
      Transform/multiply the given 3D-vector (x, y, z), as if it was a 4D-vector with w=0, by this matrix and store the result in dest.

      The given 3D-vector is treated as a 4D-vector with its w-component being 0.0, so it will represent a direction in 3D-space rather than a position. This method will therefore not take the translation part of the matrix into account.

      Specified by:
      transformDirection in interface Matrix4fc
      Parameters:
      x - the x coordinate of the direction to transform
      y - the y coordinate of the direction to transform
      z - the z coordinate of the direction to transform
      dest - will hold the result
      Returns:
      dest
    • transformAffine

      public Vector4f transformAffine(Vector4f v)
      Description copied from interface: Matrix4fc
      Transform/multiply the given 4D-vector by assuming that this matrix represents an affine transformation (i.e. its last row is equal to (0, 0, 0, 1)).

      In order to store the result in another vector, use Matrix4fc.transformAffine(Vector4fc, Vector4f).

      Specified by:
      transformAffine in interface Matrix4fc
      Parameters:
      v - the vector to transform and to hold the final result
      Returns:
      v
      See Also:
    • transformAffine

      public Vector4f transformAffine(Vector4fc v, Vector4f dest)
      Description copied from interface: Matrix4fc
      Transform/multiply the given 4D-vector by assuming that this matrix represents an affine transformation (i.e. its last row is equal to (0, 0, 0, 1)) and store the result in dest.

      In order to store the result in the same vector, use Matrix4fc.transformAffine(Vector4f).

      Specified by:
      transformAffine in interface Matrix4fc
      Parameters:
      v - the vector to transform and to hold the final result
      dest - will hold the result
      Returns:
      dest
      See Also:
    • transformAffine

      public Vector4f transformAffine(float x, float y, float z, float w, Vector4f dest)
      Description copied from interface: Matrix4fc
      Transform/multiply the 4D-vector (x, y, z, w) by assuming that this matrix represents an affine transformation (i.e. its last row is equal to (0, 0, 0, 1)) and store the result in dest.
      Specified by:
      transformAffine in interface Matrix4fc
      Parameters:
      x - the x coordinate of the direction to transform
      y - the y coordinate of the direction to transform
      z - the z coordinate of the direction to transform
      w - the w coordinate of the direction to transform
      dest - will hold the result
      Returns:
      dest
    • scale

      public Matrix4f scale(Vector3fc xyz, Matrix4f dest)
      Description copied from interface: Matrix4fc
      Apply scaling to this matrix by scaling the base axes by the given xyz.x, xyz.y and xyz.z factors, respectively and store the result in dest.

      If M is this matrix and S the scaling matrix, then the new matrix will be M * S. So when transforming a vector v with the new matrix by using M * S * v , the scaling will be applied first!

      Specified by:
      scale in interface Matrix4fc
      Parameters:
      xyz - the factors of the x, y and z component, respectively
      dest - will hold the result
      Returns:
      dest
    • scale

      public Matrix4f scale(Vector3fc xyz)
      Apply scaling to this matrix by scaling the base axes by the given xyz.x, xyz.y and xyz.z factors, respectively.

      If M is this matrix and S the scaling matrix, then the new matrix will be M * S. So when transforming a vector v with the new matrix by using M * S * v, the scaling will be applied first!

      Parameters:
      xyz - the factors of the x, y and z component, respectively
      Returns:
      this
    • scale

      public Matrix4f scale(float xyz, Matrix4f dest)
      Description copied from interface: Matrix4fc
      Apply scaling to this matrix by uniformly scaling all base axes by the given xyz factor and store the result in dest.

      If M is this matrix and S the scaling matrix, then the new matrix will be M * S. So when transforming a vector v with the new matrix by using M * S * v, the scaling will be applied first!

      Individual scaling of all three axes can be applied using Matrix4fc.scale(float, float, float, Matrix4f).

      Specified by:
      scale in interface Matrix4fc
      Parameters:
      xyz - the factor for all components
      dest - will hold the result
      Returns:
      dest
      See Also:
    • scale

      public Matrix4f scale(float xyz)
      Apply scaling to this matrix by uniformly scaling all base axes by the given xyz factor.

      If M is this matrix and S the scaling matrix, then the new matrix will be M * S. So when transforming a vector v with the new matrix by using M * S * v, the scaling will be applied first!

      Individual scaling of all three axes can be applied using scale(float, float, float).

      Parameters:
      xyz - the factor for all components
      Returns:
      this
      See Also:
    • scaleXY

      public Matrix4f scaleXY(float x, float y, Matrix4f dest)
      Description copied from interface: Matrix4fc
      Apply scaling to this matrix by by scaling the X axis by x and the Y axis by y and store the result in dest.

      If M is this matrix and S the scaling matrix, then the new matrix will be M * S. So when transforming a vector v with the new matrix by using M * S * v, the scaling will be applied first!

      Specified by:
      scaleXY in interface Matrix4fc
      Parameters:
      x - the factor of the x component
      y - the factor of the y component
      dest - will hold the result
      Returns:
      dest
    • scaleXY

      public Matrix4f scaleXY(float x, float y)
      Apply scaling to this matrix by scaling the X axis by x and the Y axis by y.

      If M is this matrix and S the scaling matrix, then the new matrix will be M * S. So when transforming a vector v with the new matrix by using M * S * v, the scaling will be applied first!

      Parameters:
      x - the factor of the x component
      y - the factor of the y component
      Returns:
      this
    • scale

      public Matrix4f scale(float x, float y, float z, Matrix4f dest)
      Description copied from interface: Matrix4fc
      Apply scaling to this matrix by scaling the base axes by the given x, y and z factors and store the result in dest.

      If M is this matrix and S the scaling matrix, then the new matrix will be M * S. So when transforming a vector v with the new matrix by using M * S * v , the scaling will be applied first!

      Specified by:
      scale in interface Matrix4fc
      Parameters:
      x - the factor of the x component
      y - the factor of the y component
      z - the factor of the z component
      dest - will hold the result
      Returns:
      dest
    • scale

      public Matrix4f scale(float x, float y, float z)
      Apply scaling to this matrix by scaling the base axes by the given sx, sy and sz factors.

      If M is this matrix and S the scaling matrix, then the new matrix will be M * S. So when transforming a vector v with the new matrix by using M * S * v, the scaling will be applied first!

      Parameters:
      x - the factor of the x component
      y - the factor of the y component
      z - the factor of the z component
      Returns:
      this
    • scaleAround

      public Matrix4f scaleAround(float sx, float sy, float sz, float ox, float oy, float oz, Matrix4f dest)
      Description copied from interface: Matrix4fc
      Apply scaling to this matrix by scaling the base axes by the given sx, sy and sz factors while using (ox, oy, oz) as the scaling origin, and store the result in dest.

      If M is this matrix and S the scaling matrix, then the new matrix will be M * S. So when transforming a vector v with the new matrix by using M * S * v , the scaling will be applied first!

      This method is equivalent to calling: translate(ox, oy, oz, dest).scale(sx, sy, sz).translate(-ox, -oy, -oz)

      Specified by:
      scaleAround in interface Matrix4fc
      Parameters:
      sx - the scaling factor of the x component
      sy - the scaling factor of the y component
      sz - the scaling factor of the z component
      ox - the x coordinate of the scaling origin
      oy - the y coordinate of the scaling origin
      oz - the z coordinate of the scaling origin
      dest - will hold the result
      Returns:
      dest
    • scaleAround

      public Matrix4f scaleAround(float sx, float sy, float sz, float ox, float oy, float oz)
      Apply scaling to this matrix by scaling the base axes by the given sx, sy and sz factors while using (ox, oy, oz) as the scaling origin.

      If M is this matrix and S the scaling matrix, then the new matrix will be M * S. So when transforming a vector v with the new matrix by using M * S * v, the scaling will be applied first!

      This method is equivalent to calling: translate(ox, oy, oz).scale(sx, sy, sz).translate(-ox, -oy, -oz)

      Parameters:
      sx - the scaling factor of the x component
      sy - the scaling factor of the y component
      sz - the scaling factor of the z component
      ox - the x coordinate of the scaling origin
      oy - the y coordinate of the scaling origin
      oz - the z coordinate of the scaling origin
      Returns:
      this
    • scaleAround

      public Matrix4f scaleAround(float factor, float ox, float oy, float oz)
      Apply scaling to this matrix by scaling all three base axes by the given factor while using (ox, oy, oz) as the scaling origin.

      If M is this matrix and S the scaling matrix, then the new matrix will be M * S. So when transforming a vector v with the new matrix by using M * S * v, the scaling will be applied first!

      This method is equivalent to calling: translate(ox, oy, oz).scale(factor).translate(-ox, -oy, -oz)

      Parameters:
      factor - the scaling factor for all three axes
      ox - the x coordinate of the scaling origin
      oy - the y coordinate of the scaling origin
      oz - the z coordinate of the scaling origin
      Returns:
      this
    • scaleAround

      public Matrix4f scaleAround(float factor, float ox, float oy, float oz, Matrix4f dest)
      Description copied from interface: Matrix4fc
      Apply scaling to this matrix by scaling all three base axes by the given factor while using (ox, oy, oz) as the scaling origin, and store the result in dest.

      If M is this matrix and S the scaling matrix, then the new matrix will be M * S. So when transforming a vector v with the new matrix by using M * S * v, the scaling will be applied first!

      This method is equivalent to calling: translate(ox, oy, oz, dest).scale(factor).translate(-ox, -oy, -oz)

      Specified by:
      scaleAround in interface Matrix4fc
      Parameters:
      factor - the scaling factor for all three axes
      ox - the x coordinate of the scaling origin
      oy - the y coordinate of the scaling origin
      oz - the z coordinate of the scaling origin
      dest - will hold the result
      Returns:
      this
    • scaleLocal

      public Matrix4f scaleLocal(float x, float y, float z, Matrix4f dest)
      Description copied from interface: Matrix4fc
      Pre-multiply scaling to this matrix by scaling the base axes by the given x, y and z factors and store the result in dest.

      If M is this matrix and S the scaling matrix, then the new matrix will be S * M. So when transforming a vector v with the new matrix by using S * M * v , the scaling will be applied last!

      Specified by:
      scaleLocal in interface Matrix4fc
      Parameters:
      x - the factor of the x component
      y - the factor of the y component
      z - the factor of the z component
      dest - will hold the result
      Returns:
      dest
    • scaleLocal

      public Matrix4f scaleLocal(float xyz, Matrix4f dest)
      Description copied from interface: Matrix4fc
      Pre-multiply scaling to this matrix by scaling all base axes by the given xyz factor, and store the result in dest.

      If M is this matrix and S the scaling matrix, then the new matrix will be S * M. So when transforming a vector v with the new matrix by using S * M * v , the scaling will be applied last!

      Specified by:
      scaleLocal in interface Matrix4fc
      Parameters:
      xyz - the factor to scale all three base axes by
      dest - will hold the result
      Returns:
      dest
    • scaleLocal

      public Matrix4f scaleLocal(float xyz)
      Pre-multiply scaling to this matrix by scaling the base axes by the given xyz factor.

      If M is this matrix and S the scaling matrix, then the new matrix will be S * M. So when transforming a vector v with the new matrix by using S * M * v, the scaling will be applied last!

      Parameters:
      xyz - the factor of the x, y and z component
      Returns:
      this
    • scaleLocal

      public Matrix4f scaleLocal(float x, float y, float z)
      Pre-multiply scaling to this matrix by scaling the base axes by the given x, y and z factors.

      If M is this matrix and S the scaling matrix, then the new matrix will be S * M. So when transforming a vector v with the new matrix by using S * M * v, the scaling will be applied last!

      Parameters:
      x - the factor of the x component
      y - the factor of the y component
      z - the factor of the z component
      Returns:
      this
    • scaleAroundLocal

      public Matrix4f scaleAroundLocal(float sx, float sy, float sz, float ox, float oy, float oz, Matrix4f dest)
      Description copied from interface: Matrix4fc
      Pre-multiply scaling to this matrix by scaling the base axes by the given sx, sy and sz factors while using the given (ox, oy, oz) as the scaling origin, and store the result in dest.

      If M is this matrix and S the scaling matrix, then the new matrix will be S * M. So when transforming a vector v with the new matrix by using S * M * v , the scaling will be applied last!

      This method is equivalent to calling: new Matrix4f().translate(ox, oy, oz).scale(sx, sy, sz).translate(-ox, -oy, -oz).mul(this, dest)

      Specified by:
      scaleAroundLocal in interface Matrix4fc
      Parameters:
      sx - the scaling factor of the x component
      sy - the scaling factor of the y component
      sz - the scaling factor of the z component
      ox - the x coordinate of the scaling origin
      oy - the y coordinate of the scaling origin
      oz - the z coordinate of the scaling origin
      dest - will hold the result
      Returns:
      dest
    • scaleAroundLocal

      public Matrix4f scaleAroundLocal(float sx, float sy, float sz, float ox, float oy, float oz)
      Pre-multiply scaling to this matrix by scaling the base axes by the given sx, sy and sz factors while using (ox, oy, oz) as the scaling origin.

      If M is this matrix and S the scaling matrix, then the new matrix will be S * M. So when transforming a vector v with the new matrix by using S * M * v, the scaling will be applied last!

      This method is equivalent to calling: new Matrix4f().translate(ox, oy, oz).scale(sx, sy, sz).translate(-ox, -oy, -oz).mul(this, this)

      Parameters:
      sx - the scaling factor of the x component
      sy - the scaling factor of the y component
      sz - the scaling factor of the z component
      ox - the x coordinate of the scaling origin
      oy - the y coordinate of the scaling origin
      oz - the z coordinate of the scaling origin
      Returns:
      this
    • scaleAroundLocal

      public Matrix4f scaleAroundLocal(float factor, float ox, float oy, float oz)
      Pre-multiply scaling to this matrix by scaling all three base axes by the given factor while using (ox, oy, oz) as the scaling origin.

      If M is this matrix and S the scaling matrix, then the new matrix will be S * M. So when transforming a vector v with the new matrix by using S * M * v, the scaling will be applied last!

      This method is equivalent to calling: new Matrix4f().translate(ox, oy, oz).scale(factor).translate(-ox, -oy, -oz).mul(this, this)

      Parameters:
      factor - the scaling factor for all three axes
      ox - the x coordinate of the scaling origin
      oy - the y coordinate of the scaling origin
      oz - the z coordinate of the scaling origin
      Returns:
      this
    • scaleAroundLocal

      public Matrix4f scaleAroundLocal(float factor, float ox, float oy, float oz, Matrix4f dest)
      Description copied from interface: Matrix4fc
      Pre-multiply scaling to this matrix by scaling all three base axes by the given factor while using (ox, oy, oz) as the scaling origin, and store the result in dest.

      If M is this matrix and S the scaling matrix, then the new matrix will be S * M. So when transforming a vector v with the new matrix by using S * M * v, the scaling will be applied last!

      This method is equivalent to calling: new Matrix4f().translate(ox, oy, oz).scale(factor).translate(-ox, -oy, -oz).mul(this, dest)

      Specified by:
      scaleAroundLocal in interface Matrix4fc
      Parameters:
      factor - the scaling factor for all three axes
      ox - the x coordinate of the scaling origin
      oy - the y coordinate of the scaling origin
      oz - the z coordinate of the scaling origin
      dest - will hold the result
      Returns:
      this
    • rotateX

      public Matrix4f rotateX(float ang, Matrix4f dest)
      Description copied from interface: Matrix4fc
      Apply rotation about the X axis to this matrix by rotating the given amount of radians and store the result in dest.

      When used with a right-handed coordinate system, the produced rotation will rotate a vector counter-clockwise around the rotation axis, when viewing along the negative axis direction towards the origin. When used with a left-handed coordinate system, the rotation is clockwise.

      If M is this matrix and R the rotation matrix, then the new matrix will be M * R. So when transforming a vector v with the new matrix by using M * R * v, the rotation will be applied first!

      Reference: http://en.wikipedia.org

      Specified by:
      rotateX in interface Matrix4fc
      Parameters:
      ang - the angle in radians
      dest - will hold the result
      Returns:
      dest
    • rotateX

      public Matrix4f rotateX(float ang)
      Apply rotation about the X axis to this matrix by rotating the given amount of radians.

      When used with a right-handed coordinate system, the produced rotation will rotate a vector counter-clockwise around the rotation axis, when viewing along the negative axis direction towards the origin. When used with a left-handed coordinate system, the rotation is clockwise.

      If M is this matrix and R the rotation matrix, then the new matrix will be M * R. So when transforming a vector v with the new matrix by using M * R * v, the rotation will be applied first!

      Reference: http://en.wikipedia.org

      Parameters:
      ang - the angle in radians
      Returns:
      this
    • rotateY

      public Matrix4f rotateY(float ang, Matrix4f dest)
      Description copied from interface: Matrix4fc
      Apply rotation about the Y axis to this matrix by rotating the given amount of radians and store the result in dest.

      When used with a right-handed coordinate system, the produced rotation will rotate a vector counter-clockwise around the rotation axis, when viewing along the negative axis direction towards the origin. When used with a left-handed coordinate system, the rotation is clockwise.

      If M is this matrix and R the rotation matrix, then the new matrix will be M * R. So when transforming a vector v with the new matrix by using M * R * v, the rotation will be applied first!

      Reference: http://en.wikipedia.org

      Specified by:
      rotateY in interface Matrix4fc
      Parameters:
      ang - the angle in radians
      dest - will hold the result
      Returns:
      dest
    • rotateY

      public Matrix4f rotateY(float ang)
      Apply rotation about the Y axis to this matrix by rotating the given amount of radians.

      When used with a right-handed coordinate system, the produced rotation will rotate a vector counter-clockwise around the rotation axis, when viewing along the negative axis direction towards the origin. When used with a left-handed coordinate system, the rotation is clockwise.

      If M is this matrix and R the rotation matrix, then the new matrix will be M * R. So when transforming a vector v with the new matrix by using M * R * v, the rotation will be applied first!

      Reference: http://en.wikipedia.org

      Parameters:
      ang - the angle in radians
      Returns:
      this
    • rotateZ

      public Matrix4f rotateZ(float ang, Matrix4f dest)
      Description copied from interface: Matrix4fc
      Apply rotation about the Z axis to this matrix by rotating the given amount of radians and store the result in dest.

      When used with a right-handed coordinate system, the produced rotation will rotate a vector counter-clockwise around the rotation axis, when viewing along the negative axis direction towards the origin. When used with a left-handed coordinate system, the rotation is clockwise.

      If M is this matrix and R the rotation matrix, then the new matrix will be M * R. So when transforming a vector v with the new matrix by using M * R * v, the rotation will be applied first!

      Reference: http://en.wikipedia.org

      Specified by:
      rotateZ in interface Matrix4fc
      Parameters:
      ang - the angle in radians
      dest - will hold the result
      Returns:
      dest
    • rotateZ

      public Matrix4f rotateZ(float ang)
      Apply rotation about the Z axis to this matrix by rotating the given amount of radians.

      When used with a right-handed coordinate system, the produced rotation will rotate a vector counter-clockwise around the rotation axis, when viewing along the negative axis direction towards the origin. When used with a left-handed coordinate system, the rotation is clockwise.

      If M is this matrix and R the rotation matrix, then the new matrix will be M * R. So when transforming a vector v with the new matrix by using M * R * v, the rotation will be applied first!

      Reference: http://en.wikipedia.org

      Parameters:
      ang - the angle in radians
      Returns:
      this
    • rotateTowardsXY

      public Matrix4f rotateTowardsXY(float dirX, float dirY)
      Apply rotation about the Z axis to align the local +X towards (dirX, dirY).

      If M is this matrix and R the rotation matrix, then the new matrix will be M * R. So when transforming a vector v with the new matrix by using M * R * v, the rotation will be applied first!

      The vector (dirX, dirY) must be a unit vector.

      Parameters:
      dirX - the x component of the normalized direction
      dirY - the y component of the normalized direction
      Returns:
      this
    • rotateTowardsXY

      public Matrix4f rotateTowardsXY(float dirX, float dirY, Matrix4f dest)
      Description copied from interface: Matrix4fc
      Apply rotation about the Z axis to align the local +X towards (dirX, dirY) and store the result in dest.

      If M is this matrix and R the rotation matrix, then the new matrix will be M * R. So when transforming a vector v with the new matrix by using M * R * v, the rotation will be applied first!

      The vector (dirX, dirY) must be a unit vector.

      Specified by:
      rotateTowardsXY in interface Matrix4fc
      Parameters:
      dirX - the x component of the normalized direction
      dirY - the y component of the normalized direction
      dest - will hold the result
      Returns:
      this
    • rotateXYZ

      public Matrix4f rotateXYZ(Vector3fc angles)
      Apply rotation of angles.x radians about the X axis, followed by a rotation of angles.y radians about the Y axis and followed by a rotation of angles.z radians about the Z axis.

      When used with a right-handed coordinate system, the produced rotation will rotate a vector counter-clockwise around the rotation axis, when viewing along the negative axis direction towards the origin. When used with a left-handed coordinate system, the rotation is clockwise.

      If M is this matrix and R the rotation matrix, then the new matrix will be M * R. So when transforming a vector v with the new matrix by using M * R * v, the rotation will be applied first!

      This method is equivalent to calling: rotateX(angles.x()).rotateY(angles.y()).rotateZ(angles.z())

      Parameters:
      angles - the Euler angles
      Returns:
      this
    • rotateXYZ

      public Matrix4f rotateXYZ(float angleX, float angleY, float angleZ)
      Apply rotation of angleX radians about the X axis, followed by a rotation of angleY radians about the Y axis and followed by a rotation of angleZ radians about the Z axis.

      When used with a right-handed coordinate system, the produced rotation will rotate a vector counter-clockwise around the rotation axis, when viewing along the negative axis direction towards the origin. When used with a left-handed coordinate system, the rotation is clockwise.

      If M is this matrix and R the rotation matrix, then the new matrix will be M * R. So when transforming a vector v with the new matrix by using M * R * v, the rotation will be applied first!

      This method is equivalent to calling: rotateX(angleX).rotateY(angleY).rotateZ(angleZ)

      Parameters:
      angleX - the angle to rotate about X
      angleY - the angle to rotate about Y
      angleZ - the angle to rotate about Z
      Returns:
      this
    • rotateXYZ

      public Matrix4f rotateXYZ(float angleX, float angleY, float angleZ, Matrix4f dest)
      Description copied from interface: Matrix4fc
      Apply rotation of angleX radians about the X axis, followed by a rotation of angleY radians about the Y axis and followed by a rotation of angleZ radians about the Z axis and store the result in dest.

      When used with a right-handed coordinate system, the produced rotation will rotate a vector counter-clockwise around the rotation axis, when viewing along the negative axis direction towards the origin. When used with a left-handed coordinate system, the rotation is clockwise.

      If M is this matrix and R the rotation matrix, then the new matrix will be M * R. So when transforming a vector v with the new matrix by using M * R * v, the rotation will be applied first!

      This method is equivalent to calling: rotateX(angleX, dest).rotateY(angleY).rotateZ(angleZ)

      Specified by:
      rotateXYZ in interface Matrix4fc
      Parameters:
      angleX - the angle to rotate about X
      angleY - the angle to rotate about Y
      angleZ - the angle to rotate about Z
      dest - will hold the result
      Returns:
      dest
    • rotateAffineXYZ

      public Matrix4f rotateAffineXYZ(float angleX, float angleY, float angleZ)
      Apply rotation of angleX radians about the X axis, followed by a rotation of angleY radians about the Y axis and followed by a rotation of angleZ radians about the Z axis.

      When used with a right-handed coordinate system, the produced rotation will rotate a vector counter-clockwise around the rotation axis, when viewing along the negative axis direction towards the origin. When used with a left-handed coordinate system, the rotation is clockwise.

      This method assumes that this matrix represents an affine transformation (i.e. its last row is equal to (0, 0, 0, 1)) and can be used to speed up matrix multiplication if the matrix only represents affine transformations, such as translation, rotation, scaling and shearing (in any combination).

      If M is this matrix and R the rotation matrix, then the new matrix will be M * R. So when transforming a vector v with the new matrix by using M * R * v, the rotation will be applied first!

      This method is equivalent to calling: rotateX(angleX).rotateY(angleY).rotateZ(angleZ)

      Parameters:
      angleX - the angle to rotate about X
      angleY - the angle to rotate about Y
      angleZ - the angle to rotate about Z
      Returns:
      this
    • rotateAffineXYZ

      public Matrix4f rotateAffineXYZ(float angleX, float angleY, float angleZ, Matrix4f dest)
      Description copied from interface: Matrix4fc
      Apply rotation of angleX radians about the X axis, followed by a rotation of angleY radians about the Y axis and followed by a rotation of angleZ radians about the Z axis and store the result in dest.

      When used with a right-handed coordinate system, the produced rotation will rotate a vector counter-clockwise around the rotation axis, when viewing along the negative axis direction towards the origin. When used with a left-handed coordinate system, the rotation is clockwise.

      This method assumes that this matrix represents an affine transformation (i.e. its last row is equal to (0, 0, 0, 1)) and can be used to speed up matrix multiplication if the matrix only represents affine transformations, such as translation, rotation, scaling and shearing (in any combination).

      If M is this matrix and R the rotation matrix, then the new matrix will be M * R. So when transforming a vector v with the new matrix by using M * R * v, the rotation will be applied first!

      Specified by:
      rotateAffineXYZ in interface Matrix4fc
      Parameters:
      angleX - the angle to rotate about X
      angleY - the angle to rotate about Y
      angleZ - the angle to rotate about Z
      dest - will hold the result
      Returns:
      dest
    • rotateZYX

      public Matrix4f rotateZYX(Vector3f angles)
      Apply rotation of angles.z radians about the Z axis, followed by a rotation of angles.y radians about the Y axis and followed by a rotation of angles.x radians about the X axis.

      When used with a right-handed coordinate system, the produced rotation will rotate a vector counter-clockwise around the rotation axis, when viewing along the negative axis direction towards the origin. When used with a left-handed coordinate system, the rotation is clockwise.

      If M is this matrix and R the rotation matrix, then the new matrix will be M * R. So when transforming a vector v with the new matrix by using M * R * v, the rotation will be applied first!

      This method is equivalent to calling: rotateZ(angles.z).rotateY(angles.y).rotateX(angles.x)

      Parameters:
      angles - the Euler angles
      Returns:
      this
    • rotateZYX

      public Matrix4f rotateZYX(float angleZ, float angleY, float angleX)
      Apply rotation of angleZ radians about the Z axis, followed by a rotation of angleY radians about the Y axis and followed by a rotation of angleX radians about the X axis.

      When used with a right-handed coordinate system, the produced rotation will rotate a vector counter-clockwise around the rotation axis, when viewing along the negative axis direction towards the origin. When used with a left-handed coordinate system, the rotation is clockwise.

      If M is this matrix and R the rotation matrix, then the new matrix will be M * R. So when transforming a vector v with the new matrix by using M * R * v, the rotation will be applied first!

      This method is equivalent to calling: rotateZ(angleZ).rotateY(angleY).rotateX(angleX)

      Parameters:
      angleZ - the angle to rotate about Z
      angleY - the angle to rotate about Y
      angleX - the angle to rotate about X
      Returns:
      this
    • rotateZYX

      public Matrix4f rotateZYX(float angleZ, float angleY, float angleX, Matrix4f dest)
      Description copied from interface: Matrix4fc
      Apply rotation of angleZ radians about the Z axis, followed by a rotation of angleY radians about the Y axis and followed by a rotation of angleX radians about the X axis and store the result in dest.

      When used with a right-handed coordinate system, the produced rotation will rotate a vector counter-clockwise around the rotation axis, when viewing along the negative axis direction towards the origin. When used with a left-handed coordinate system, the rotation is clockwise.

      If M is this matrix and R the rotation matrix, then the new matrix will be M * R. So when transforming a vector v with the new matrix by using M * R * v, the rotation will be applied first!

      This method is equivalent to calling: rotateZ(angleZ, dest).rotateY(angleY).rotateX(angleX)

      Specified by:
      rotateZYX in interface Matrix4fc
      Parameters:
      angleZ - the angle to rotate about Z
      angleY - the angle to rotate about Y
      angleX - the angle to rotate about X
      dest - will hold the result
      Returns:
      dest
    • rotateAffineZYX

      public Matrix4f rotateAffineZYX(float angleZ, float angleY, float angleX)
      Apply rotation of angleZ radians about the Z axis, followed by a rotation of angleY radians about the Y axis and followed by a rotation of angleX radians about the X axis.

      When used with a right-handed coordinate system, the produced rotation will rotate a vector counter-clockwise around the rotation axis, when viewing along the negative axis direction towards the origin. When used with a left-handed coordinate system, the rotation is clockwise.

      This method assumes that this matrix represents an affine transformation (i.e. its last row is equal to (0, 0, 0, 1)) and can be used to speed up matrix multiplication if the matrix only represents affine transformations, such as translation, rotation, scaling and shearing (in any combination).

      If M is this matrix and R the rotation matrix, then the new matrix will be M * R. So when transforming a vector v with the new matrix by using M * R * v, the rotation will be applied first!

      Parameters:
      angleZ - the angle to rotate about Z
      angleY - the angle to rotate about Y
      angleX - the angle to rotate about X
      Returns:
      this
    • rotateAffineZYX

      public Matrix4f rotateAffineZYX(float angleZ, float angleY, float angleX, Matrix4f dest)
      Description copied from interface: Matrix4fc
      Apply rotation of angleZ radians about the Z axis, followed by a rotation of angleY radians about the Y axis and followed by a rotation of angleX radians about the X axis and store the result in dest.

      When used with a right-handed coordinate system, the produced rotation will rotate a vector counter-clockwise around the rotation axis, when viewing along the negative axis direction towards the origin. When used with a left-handed coordinate system, the rotation is clockwise.

      This method assumes that this matrix represents an affine transformation (i.e. its last row is equal to (0, 0, 0, 1)) and can be used to speed up matrix multiplication if the matrix only represents affine transformations, such as translation, rotation, scaling and shearing (in any combination).

      If M is this matrix and R the rotation matrix, then the new matrix will be M * R. So when transforming a vector v with the new matrix by using M * R * v, the rotation will be applied first!

      Specified by:
      rotateAffineZYX in interface Matrix4fc
      Parameters:
      angleZ - the angle to rotate about Z
      angleY - the angle to rotate about Y
      angleX - the angle to rotate about X
      dest - will hold the result
      Returns:
      dest
    • rotateYXZ

      public Matrix4f rotateYXZ(Vector3f angles)
      Apply rotation of angles.y radians about the Y axis, followed by a rotation of angles.x radians about the X axis and followed by a rotation of angles.z radians about the Z axis.

      When used with a right-handed coordinate system, the produced rotation will rotate a vector counter-clockwise around the rotation axis, when viewing along the negative axis direction towards the origin. When used with a left-handed coordinate system, the rotation is clockwise.

      If M is this matrix and R the rotation matrix, then the new matrix will be M * R. So when transforming a vector v with the new matrix by using M * R * v, the rotation will be applied first!

      This method is equivalent to calling: rotateY(angles.y).rotateX(angles.x).rotateZ(angles.z)

      Parameters:
      angles - the Euler angles
      Returns:
      this
    • rotateYXZ

      public Matrix4f rotateYXZ(float angleY, float angleX, float angleZ)
      Apply rotation of angleY radians about the Y axis, followed by a rotation of angleX radians about the X axis and followed by a rotation of angleZ radians about the Z axis.

      When used with a right-handed coordinate system, the produced rotation will rotate a vector counter-clockwise around the rotation axis, when viewing along the negative axis direction towards the origin. When used with a left-handed coordinate system, the rotation is clockwise.

      If M is this matrix and R the rotation matrix, then the new matrix will be M * R. So when transforming a vector v with the new matrix by using M * R * v, the rotation will be applied first!

      This method is equivalent to calling: rotateY(angleY).rotateX(angleX).rotateZ(angleZ)

      Parameters:
      angleY - the angle to rotate about Y
      angleX - the angle to rotate about X
      angleZ - the angle to rotate about Z
      Returns:
      this
    • rotateYXZ

      public Matrix4f rotateYXZ(float angleY, float angleX, float angleZ, Matrix4f dest)
      Description copied from interface: Matrix4fc
      Apply rotation of angleY radians about the Y axis, followed by a rotation of angleX radians about the X axis and followed by a rotation of angleZ radians about the Z axis and store the result in dest.

      When used with a right-handed coordinate system, the produced rotation will rotate a vector counter-clockwise around the rotation axis, when viewing along the negative axis direction towards the origin. When used with a left-handed coordinate system, the rotation is clockwise.

      If M is this matrix and R the rotation matrix, then the new matrix will be M * R. So when transforming a vector v with the new matrix by using M * R * v, the rotation will be applied first!

      This method is equivalent to calling: rotateY(angleY, dest).rotateX(angleX).rotateZ(angleZ)

      Specified by:
      rotateYXZ in interface Matrix4fc
      Parameters:
      angleY - the angle to rotate about Y
      angleX - the angle to rotate about X
      angleZ - the angle to rotate about Z
      dest - will hold the result
      Returns:
      dest
    • rotateAffineYXZ

      public Matrix4f rotateAffineYXZ(float angleY, float angleX, float angleZ)
      Apply rotation of angleY radians about the Y axis, followed by a rotation of angleX radians about the X axis and followed by a rotation of angleZ radians about the Z axis.

      When used with a right-handed coordinate system, the produced rotation will rotate a vector counter-clockwise around the rotation axis, when viewing along the negative axis direction towards the origin. When used with a left-handed coordinate system, the rotation is clockwise.

      This method assumes that this matrix represents an affine transformation (i.e. its last row is equal to (0, 0, 0, 1)) and can be used to speed up matrix multiplication if the matrix only represents affine transformations, such as translation, rotation, scaling and shearing (in any combination).

      If M is this matrix and R the rotation matrix, then the new matrix will be M * R. So when transforming a vector v with the new matrix by using M * R * v, the rotation will be applied first!

      Parameters:
      angleY - the angle to rotate about Y
      angleX - the angle to rotate about X
      angleZ - the angle to rotate about Z
      Returns:
      this
    • rotateAffineYXZ

      public Matrix4f rotateAffineYXZ(float angleY, float angleX, float angleZ, Matrix4f dest)
      Description copied from interface: Matrix4fc
      Apply rotation of angleY radians about the Y axis, followed by a rotation of angleX radians about the X axis and followed by a rotation of angleZ radians about the Z axis and store the result in dest.

      When used with a right-handed coordinate system, the produced rotation will rotate a vector counter-clockwise around the rotation axis, when viewing along the negative axis direction towards the origin. When used with a left-handed coordinate system, the rotation is clockwise.

      This method assumes that this matrix represents an affine transformation (i.e. its last row is equal to (0, 0, 0, 1)) and can be used to speed up matrix multiplication if the matrix only represents affine transformations, such as translation, rotation, scaling and shearing (in any combination).

      If M is this matrix and R the rotation matrix, then the new matrix will be M * R. So when transforming a vector v with the new matrix by using M * R * v, the rotation will be applied first!

      Specified by:
      rotateAffineYXZ in interface Matrix4fc
      Parameters:
      angleY - the angle to rotate about Y
      angleX - the angle to rotate about X
      angleZ - the angle to rotate about Z
      dest - will hold the result
      Returns:
      dest
    • rotate

      public Matrix4f rotate(float ang, float x, float y, float z, Matrix4f dest)
      Apply rotation to this matrix by rotating the given amount of radians about the specified (x, y, z) axis and store the result in dest.

      The axis described by the three components needs to be a unit vector.

      When used with a right-handed coordinate system, the produced rotation will rotate a vector counter-clockwise around the rotation axis, when viewing along the negative axis direction towards the origin. When used with a left-handed coordinate system, the rotation is clockwise.

      If M is this matrix and R the rotation matrix, then the new matrix will be M * R. So when transforming a vector v with the new matrix by using M * R * v, the rotation will be applied first!

      In order to set the matrix to a rotation matrix without post-multiplying the rotation transformation, use rotation().

      Reference: http://en.wikipedia.org

      Specified by:
      rotate in interface Matrix4fc
      Parameters:
      ang - the angle in radians
      x - the x component of the axis
      y - the y component of the axis
      z - the z component of the axis
      dest - will hold the result
      Returns:
      dest
      See Also:
    • rotate

      public Matrix4f rotate(float ang, float x, float y, float z)
      Apply rotation to this matrix by rotating the given amount of radians about the specified (x, y, z) axis.

      The axis described by the three components needs to be a unit vector.

      When used with a right-handed coordinate system, the produced rotation will rotate a vector counter-clockwise around the rotation axis, when viewing along the negative axis direction towards the origin. When used with a left-handed coordinate system, the rotation is clockwise.

      If M is this matrix and R the rotation matrix, then the new matrix will be M * R. So when transforming a vector v with the new matrix by using M * R * v, the rotation will be applied first!

      In order to set the matrix to a rotation matrix without post-multiplying the rotation transformation, use rotation().

      Reference: http://en.wikipedia.org

      Parameters:
      ang - the angle in radians
      x - the x component of the axis
      y - the y component of the axis
      z - the z component of the axis
      Returns:
      this
      See Also:
    • rotateTranslation

      public Matrix4f rotateTranslation(float ang, float x, float y, float z, Matrix4f dest)
      Apply rotation to this matrix, which is assumed to only contain a translation, by rotating the given amount of radians about the specified (x, y, z) axis and store the result in dest.

      This method assumes this to only contain a translation.

      The axis described by the three components needs to be a unit vector.

      When used with a right-handed coordinate system, the produced rotation will rotate a vector counter-clockwise around the rotation axis, when viewing along the negative axis direction towards the origin. When used with a left-handed coordinate system, the rotation is clockwise.

      If M is this matrix and R the rotation matrix, then the new matrix will be M * R. So when transforming a vector v with the new matrix by using M * R * v, the rotation will be applied first!

      In order to set the matrix to a rotation matrix without post-multiplying the rotation transformation, use rotation().

      Reference: http://en.wikipedia.org

      Specified by:
      rotateTranslation in interface Matrix4fc
      Parameters:
      ang - the angle in radians
      x - the x component of the axis
      y - the y component of the axis
      z - the z component of the axis
      dest - will hold the result
      Returns:
      dest
      See Also:
    • rotateAffine

      public Matrix4f rotateAffine(float ang, float x, float y, float z, Matrix4f dest)
      Apply rotation to this affine matrix by rotating the given amount of radians about the specified (x, y, z) axis and store the result in dest.

      This method assumes this to be affine.

      The axis described by the three components needs to be a unit vector.

      When used with a right-handed coordinate system, the produced rotation will rotate a vector counter-clockwise around the rotation axis, when viewing along the negative axis direction towards the origin. When used with a left-handed coordinate system, the rotation is clockwise.

      If M is this matrix and R the rotation matrix, then the new matrix will be M * R. So when transforming a vector v with the new matrix by using M * R * v, the rotation will be applied first!

      In order to set the matrix to a rotation matrix without post-multiplying the rotation transformation, use rotation().

      Reference: http://en.wikipedia.org

      Specified by:
      rotateAffine in interface Matrix4fc
      Parameters:
      ang - the angle in radians
      x - the x component of the axis
      y - the y component of the axis
      z - the z component of the axis
      dest - will hold the result
      Returns:
      dest
      See Also:
    • rotateAffine

      public Matrix4f rotateAffine(float ang, float x, float y, float z)
      Apply rotation to this affine matrix by rotating the given amount of radians about the specified (x, y, z) axis.

      This method assumes this to be affine.

      The axis described by the three components needs to be a unit vector.

      When used with a right-handed coordinate system, the produced rotation will rotate a vector counter-clockwise around the rotation axis, when viewing along the negative axis direction towards the origin. When used with a left-handed coordinate system, the rotation is clockwise.

      If M is this matrix and R the rotation matrix, then the new matrix will be M * R. So when transforming a vector v with the new matrix by using M * R * v, the rotation will be applied first!

      In order to set the matrix to a rotation matrix without post-multiplying the rotation transformation, use rotation().

      Reference: http://en.wikipedia.org

      Parameters:
      ang - the angle in radians
      x - the x component of the axis
      y - the y component of the axis
      z - the z component of the axis
      Returns:
      this
      See Also:
    • rotateLocal

      public Matrix4f rotateLocal(float ang, float x, float y, float z, Matrix4f dest)
      Pre-multiply a rotation to this matrix by rotating the given amount of radians about the specified (x, y, z) axis and store the result in dest.

      The axis described by the three components needs to be a unit vector.

      When used with a right-handed coordinate system, the produced rotation will rotate a vector counter-clockwise around the rotation axis, when viewing along the negative axis direction towards the origin. When used with a left-handed coordinate system, the rotation is clockwise.

      If M is this matrix and R the rotation matrix, then the new matrix will be R * M. So when transforming a vector v with the new matrix by using R * M * v, the rotation will be applied last!

      In order to set the matrix to a rotation matrix without pre-multiplying the rotation transformation, use rotation().

      Reference: http://en.wikipedia.org

      Specified by:
      rotateLocal in interface Matrix4fc
      Parameters:
      ang - the angle in radians
      x - the x component of the axis
      y - the y component of the axis
      z - the z component of the axis
      dest - will hold the result
      Returns:
      dest
      See Also:
    • rotateLocal

      public Matrix4f rotateLocal(float ang, float x, float y, float z)
      Pre-multiply a rotation to this matrix by rotating the given amount of radians about the specified (x, y, z) axis.

      The axis described by the three components needs to be a unit vector.

      When used with a right-handed coordinate system, the produced rotation will rotate a vector counter-clockwise around the rotation axis, when viewing along the negative axis direction towards the origin. When used with a left-handed coordinate system, the rotation is clockwise.

      If M is this matrix and R the rotation matrix, then the new matrix will be R * M. So when transforming a vector v with the new matrix by using R * M * v, the rotation will be applied last!

      In order to set the matrix to a rotation matrix without pre-multiplying the rotation transformation, use rotation().

      Reference: http://en.wikipedia.org

      Parameters:
      ang - the angle in radians
      x - the x component of the axis
      y - the y component of the axis
      z - the z component of the axis
      Returns:
      this
      See Also:
    • rotateLocalX

      public Matrix4f rotateLocalX(float ang, Matrix4f dest)
      Pre-multiply a rotation around the X axis to this matrix by rotating the given amount of radians about the X axis and store the result in dest.

      When used with a right-handed coordinate system, the produced rotation will rotate a vector counter-clockwise around the rotation axis, when viewing along the negative axis direction towards the origin. When used with a left-handed coordinate system, the rotation is clockwise.

      If M is this matrix and R the rotation matrix, then the new matrix will be R * M. So when transforming a vector v with the new matrix by using R * M * v, the rotation will be applied last!

      In order to set the matrix to a rotation matrix without pre-multiplying the rotation transformation, use rotationX().

      Reference: http://en.wikipedia.org

      Specified by:
      rotateLocalX in interface Matrix4fc
      Parameters:
      ang - the angle in radians to rotate about the X axis
      dest - will hold the result
      Returns:
      dest
      See Also:
    • rotateLocalX

      public Matrix4f rotateLocalX(float ang)
      Pre-multiply a rotation to this matrix by rotating the given amount of radians about the X axis.

      When used with a right-handed coordinate system, the produced rotation will rotate a vector counter-clockwise around the rotation axis, when viewing along the negative axis direction towards the origin. When used with a left-handed coordinate system, the rotation is clockwise.

      If M is this matrix and R the rotation matrix, then the new matrix will be R * M. So when transforming a vector v with the new matrix by using R * M * v, the rotation will be applied last!

      In order to set the matrix to a rotation matrix without pre-multiplying the rotation transformation, use rotationX().

      Reference: http://en.wikipedia.org

      Parameters:
      ang - the angle in radians to rotate about the X axis
      Returns:
      this
      See Also:
    • rotateLocalY

      public Matrix4f rotateLocalY(float ang, Matrix4f dest)
      Pre-multiply a rotation around the Y axis to this matrix by rotating the given amount of radians about the Y axis and store the result in dest.

      When used with a right-handed coordinate system, the produced rotation will rotate a vector counter-clockwise around the rotation axis, when viewing along the negative axis direction towards the origin. When used with a left-handed coordinate system, the rotation is clockwise.

      If M is this matrix and R the rotation matrix, then the new matrix will be R * M. So when transforming a vector v with the new matrix by using R * M * v, the rotation will be applied last!

      In order to set the matrix to a rotation matrix without pre-multiplying the rotation transformation, use rotationY().

      Reference: http://en.wikipedia.org

      Specified by:
      rotateLocalY in interface Matrix4fc
      Parameters:
      ang - the angle in radians to rotate about the Y axis
      dest - will hold the result
      Returns:
      dest
      See Also:
    • rotateLocalY

      public Matrix4f rotateLocalY(float ang)
      Pre-multiply a rotation to this matrix by rotating the given amount of radians about the Y axis.

      When used with a right-handed coordinate system, the produced rotation will rotate a vector counter-clockwise around the rotation axis, when viewing along the negative axis direction towards the origin. When used with a left-handed coordinate system, the rotation is clockwise.

      If M is this matrix and R the rotation matrix, then the new matrix will be R * M. So when transforming a vector v with the new matrix by using R * M * v, the rotation will be applied last!

      In order to set the matrix to a rotation matrix without pre-multiplying the rotation transformation, use rotationY().

      Reference: http://en.wikipedia.org

      Parameters:
      ang - the angle in radians to rotate about the Y axis
      Returns:
      this
      See Also:
    • rotateLocalZ

      public Matrix4f rotateLocalZ(float ang, Matrix4f dest)
      Pre-multiply a rotation around the Z axis to this matrix by rotating the given amount of radians about the Z axis and store the result in dest.

      When used with a right-handed coordinate system, the produced rotation will rotate a vector counter-clockwise around the rotation axis, when viewing along the negative axis direction towards the origin. When used with a left-handed coordinate system, the rotation is clockwise.

      If M is this matrix and R the rotation matrix, then the new matrix will be R * M. So when transforming a vector v with the new matrix by using R * M * v, the rotation will be applied last!

      In order to set the matrix to a rotation matrix without pre-multiplying the rotation transformation, use rotationZ().

      Reference: http://en.wikipedia.org

      Specified by:
      rotateLocalZ in interface Matrix4fc
      Parameters:
      ang - the angle in radians to rotate about the Z axis
      dest - will hold the result
      Returns:
      dest
      See Also:
    • rotateLocalZ

      public Matrix4f rotateLocalZ(float ang)
      Pre-multiply a rotation to this matrix by rotating the given amount of radians about the Z axis.

      When used with a right-handed coordinate system, the produced rotation will rotate a vector counter-clockwise around the rotation axis, when viewing along the negative axis direction towards the origin. When used with a left-handed coordinate system, the rotation is clockwise.

      If M is this matrix and R the rotation matrix, then the new matrix will be R * M. So when transforming a vector v with the new matrix by using R * M * v, the rotation will be applied last!

      In order to set the matrix to a rotation matrix without pre-multiplying the rotation transformation, use rotationY().

      Reference: http://en.wikipedia.org

      Parameters:
      ang - the angle in radians to rotate about the Z axis
      Returns:
      this
      See Also:
    • translate

      public Matrix4f translate(Vector3fc offset)
      Apply a translation to this matrix by translating by the given number of units in x, y and z.

      If M is this matrix and T the translation matrix, then the new matrix will be M * T. So when transforming a vector v with the new matrix by using M * T * v, the translation will be applied first!

      In order to set the matrix to a translation transformation without post-multiplying it, use translation(Vector3fc).

      Parameters:
      offset - the number of units in x, y and z by which to translate
      Returns:
      this
      See Also:
    • translate

      public Matrix4f translate(Vector3fc offset, Matrix4f dest)
      Apply a translation to this matrix by translating by the given number of units in x, y and z and store the result in dest.

      If M is this matrix and T the translation matrix, then the new matrix will be M * T. So when transforming a vector v with the new matrix by using M * T * v, the translation will be applied first!

      In order to set the matrix to a translation transformation without post-multiplying it, use translation(Vector3fc).

      Specified by:
      translate in interface Matrix4fc
      Parameters:
      offset - the number of units in x, y and z by which to translate
      dest - will hold the result
      Returns:
      dest
      See Also:
    • translate

      public Matrix4f translate(float x, float y, float z, Matrix4f dest)
      Apply a translation to this matrix by translating by the given number of units in x, y and z and store the result in dest.

      If M is this matrix and T the translation matrix, then the new matrix will be M * T. So when transforming a vector v with the new matrix by using M * T * v, the translation will be applied first!

      In order to set the matrix to a translation transformation without post-multiplying it, use translation(float, float, float).

      Specified by:
      translate in interface Matrix4fc
      Parameters:
      x - the offset to translate in x
      y - the offset to translate in y
      z - the offset to translate in z
      dest - will hold the result
      Returns:
      dest
      See Also:
    • translate

      public Matrix4f translate(float x, float y, float z)
      Apply a translation to this matrix by translating by the given number of units in x, y and z.

      If M is this matrix and T the translation matrix, then the new matrix will be M * T. So when transforming a vector v with the new matrix by using M * T * v, the translation will be applied first!

      In order to set the matrix to a translation transformation without post-multiplying it, use translation(float, float, float).

      Parameters:
      x - the offset to translate in x
      y - the offset to translate in y
      z - the offset to translate in z
      Returns:
      this
      See Also:
    • translateLocal

      public Matrix4f translateLocal(Vector3fc offset)
      Pre-multiply a translation to this matrix by translating by the given number of units in x, y and z.

      If M is this matrix and T the translation matrix, then the new matrix will be T * M. So when transforming a vector v with the new matrix by using T * M * v, the translation will be applied last!

      In order to set the matrix to a translation transformation without pre-multiplying it, use translation(Vector3fc).

      Parameters:
      offset - the number of units in x, y and z by which to translate
      Returns:
      this
      See Also:
    • translateLocal

      public Matrix4f translateLocal(Vector3fc offset, Matrix4f dest)
      Pre-multiply a translation to this matrix by translating by the given number of units in x, y and z and store the result in dest.

      If M is this matrix and T the translation matrix, then the new matrix will be T * M. So when transforming a vector v with the new matrix by using T * M * v, the translation will be applied last!

      In order to set the matrix to a translation transformation without pre-multiplying it, use translation(Vector3fc).

      Specified by:
      translateLocal in interface Matrix4fc
      Parameters:
      offset - the number of units in x, y and z by which to translate
      dest - will hold the result
      Returns:
      dest
      See Also:
    • translateLocal

      public Matrix4f translateLocal(float x, float y, float z, Matrix4f dest)
      Pre-multiply a translation to this matrix by translating by the given number of units in x, y and z and store the result in dest.

      If M is this matrix and T the translation matrix, then the new matrix will be T * M. So when transforming a vector v with the new matrix by using T * M * v, the translation will be applied last!

      In order to set the matrix to a translation transformation without pre-multiplying it, use translation(float, float, float).

      Specified by:
      translateLocal in interface Matrix4fc
      Parameters:
      x - the offset to translate in x
      y - the offset to translate in y
      z - the offset to translate in z
      dest - will hold the result
      Returns:
      dest
      See Also:
    • translateLocal

      public Matrix4f translateLocal(float x, float y, float z)
      Pre-multiply a translation to this matrix by translating by the given number of units in x, y and z.

      If M is this matrix and T the translation matrix, then the new matrix will be T * M. So when transforming a vector v with the new matrix by using T * M * v, the translation will be applied last!

      In order to set the matrix to a translation transformation without pre-multiplying it, use translation(float, float, float).

      Parameters:
      x - the offset to translate in x
      y - the offset to translate in y
      z - the offset to translate in z
      Returns:
      this
      See Also:
    • writeExternal

      public void writeExternal(ObjectOutput out) throws IOException
      Specified by:
      writeExternal in interface Externalizable
      Throws:
      IOException
    • readExternal

      public void readExternal(ObjectInput in) throws IOException
      Specified by:
      readExternal in interface Externalizable
      Throws:
      IOException
    • ortho

      public Matrix4f ortho(float left, float right, float bottom, float top, float zNear, float zFar, boolean zZeroToOne, Matrix4f dest)
      Apply an orthographic projection transformation for a right-handed coordinate system using the given NDC z range to this matrix and store the result in dest.

      If M is this matrix and O the orthographic projection matrix, then the new matrix will be M * O. So when transforming a vector v with the new matrix by using M * O * v, the orthographic projection transformation will be applied first!

      In order to set the matrix to an orthographic projection without post-multiplying it, use setOrtho().

      Reference: http://www.songho.ca

      Specified by:
      ortho in interface Matrix4fc
      Parameters:
      left - the distance from the center to the left frustum edge
      right - the distance from the center to the right frustum edge
      bottom - the distance from the center to the bottom frustum edge
      top - the distance from the center to the top frustum edge
      zNear - near clipping plane distance
      zFar - far clipping plane distance
      zZeroToOne - whether to use Vulkan's and Direct3D's NDC z range of [0..+1] when true or whether to use OpenGL's NDC z range of [-1..+1] when false
      dest - will hold the result
      Returns:
      dest
      See Also:
    • ortho

      public Matrix4f ortho(float left, float right, float bottom, float top, float zNear, float zFar, Matrix4f dest)
      Apply an orthographic projection transformation for a right-handed coordinate system using OpenGL's NDC z range of [-1..+1] to this matrix and store the result in dest.

      If M is this matrix and O the orthographic projection matrix, then the new matrix will be M * O. So when transforming a vector v with the new matrix by using M * O * v, the orthographic projection transformation will be applied first!

      In order to set the matrix to an orthographic projection without post-multiplying it, use setOrtho().

      Reference: http://www.songho.ca

      Specified by:
      ortho in interface Matrix4fc
      Parameters:
      left - the distance from the center to the left frustum edge
      right - the distance from the center to the right frustum edge
      bottom - the distance from the center to the bottom frustum edge
      top - the distance from the center to the top frustum edge
      zNear - near clipping plane distance
      zFar - far clipping plane distance
      dest - will hold the result
      Returns:
      dest
      See Also:
    • ortho

      public Matrix4f ortho(float left, float right, float bottom, float top, float zNear, float zFar, boolean zZeroToOne)
      Apply an orthographic projection transformation for a right-handed coordinate system using the given NDC z range to this matrix.

      If M is this matrix and O the orthographic projection matrix, then the new matrix will be M * O. So when transforming a vector v with the new matrix by using M * O * v, the orthographic projection transformation will be applied first!

      In order to set the matrix to an orthographic projection without post-multiplying it, use setOrtho().

      Reference: http://www.songho.ca

      Parameters:
      left - the distance from the center to the left frustum edge
      right - the distance from the center to the right frustum edge
      bottom - the distance from the center to the bottom frustum edge
      top - the distance from the center to the top frustum edge
      zNear - near clipping plane distance
      zFar - far clipping plane distance
      zZeroToOne - whether to use Vulkan's and Direct3D's NDC z range of [0..+1] when true or whether to use OpenGL's NDC z range of [-1..+1] when false
      Returns:
      this
      See Also:
    • ortho

      public Matrix4f ortho(float left, float right, float bottom, float top, float zNear, float zFar)
      Apply an orthographic projection transformation for a right-handed coordinate system using OpenGL's NDC z range of [-1..+1] to this matrix.

      If M is this matrix and O the orthographic projection matrix, then the new matrix will be M * O. So when transforming a vector v with the new matrix by using M * O * v, the orthographic projection transformation will be applied first!

      In order to set the matrix to an orthographic projection without post-multiplying it, use setOrtho().

      Reference: http://www.songho.ca

      Parameters:
      left - the distance from the center to the left frustum edge
      right - the distance from the center to the right frustum edge
      bottom - the distance from the center to the bottom frustum edge
      top - the distance from the center to the top frustum edge
      zNear - near clipping plane distance
      zFar - far clipping plane distance
      Returns:
      this
      See Also:
    • orthoLH

      public Matrix4f orthoLH(float left, float right, float bottom, float top, float zNear, float zFar, boolean zZeroToOne, Matrix4f dest)
      Apply an orthographic projection transformation for a left-handed coordiante system using the given NDC z range to this matrix and store the result in dest.

      If M is this matrix and O the orthographic projection matrix, then the new matrix will be M * O. So when transforming a vector v with the new matrix by using M * O * v, the orthographic projection transformation will be applied first!

      In order to set the matrix to an orthographic projection without post-multiplying it, use setOrthoLH().

      Reference: http://www.songho.ca

      Specified by:
      orthoLH in interface Matrix4fc
      Parameters:
      left - the distance from the center to the left frustum edge
      right - the distance from the center to the right frustum edge
      bottom - the distance from the center to the bottom frustum edge
      top - the distance from the center to the top frustum edge
      zNear - near clipping plane distance
      zFar - far clipping plane distance
      zZeroToOne - whether to use Vulkan's and Direct3D's NDC z range of [0..+1] when true or whether to use OpenGL's NDC z range of [-1..+1] when false
      dest - will hold the result
      Returns:
      dest
      See Also:
    • orthoLH

      public Matrix4f orthoLH(float left, float right, float bottom, float top, float zNear, float zFar, Matrix4f dest)
      Apply an orthographic projection transformation for a left-handed coordiante system using OpenGL's NDC z range of [-1..+1] to this matrix and store the result in dest.

      If M is this matrix and O the orthographic projection matrix, then the new matrix will be M * O. So when transforming a vector v with the new matrix by using M * O * v, the orthographic projection transformation will be applied first!

      In order to set the matrix to an orthographic projection without post-multiplying it, use setOrthoLH().

      Reference: http://www.songho.ca

      Specified by:
      orthoLH in interface Matrix4fc
      Parameters:
      left - the distance from the center to the left frustum edge
      right - the distance from the center to the right frustum edge
      bottom - the distance from the center to the bottom frustum edge
      top - the distance from the center to the top frustum edge
      zNear - near clipping plane distance
      zFar - far clipping plane distance
      dest - will hold the result
      Returns:
      dest
      See Also:
    • orthoLH

      public Matrix4f orthoLH(float left, float right, float bottom, float top, float zNear, float zFar, boolean zZeroToOne)
      Apply an orthographic projection transformation for a left-handed coordiante system using the given NDC z range to this matrix.

      If M is this matrix and O the orthographic projection matrix, then the new matrix will be M * O. So when transforming a vector v with the new matrix by using M * O * v, the orthographic projection transformation will be applied first!

      In order to set the matrix to an orthographic projection without post-multiplying it, use setOrthoLH().

      Reference: http://www.songho.ca

      Parameters:
      left - the distance from the center to the left frustum edge
      right - the distance from the center to the right frustum edge
      bottom - the distance from the center to the bottom frustum edge
      top - the distance from the center to the top frustum edge
      zNear - near clipping plane distance
      zFar - far clipping plane distance
      zZeroToOne - whether to use Vulkan's and Direct3D's NDC z range of [0..+1] when true or whether to use OpenGL's NDC z range of [-1..+1] when false
      Returns:
      this
      See Also:
    • orthoLH

      public Matrix4f orthoLH(float left, float right, float bottom, float top, float zNear, float zFar)
      Apply an orthographic projection transformation for a left-handed coordiante system using OpenGL's NDC z range of [-1..+1] to this matrix.

      If M is this matrix and O the orthographic projection matrix, then the new matrix will be M * O. So when transforming a vector v with the new matrix by using M * O * v, the orthographic projection transformation will be applied first!

      In order to set the matrix to an orthographic projection without post-multiplying it, use setOrthoLH().

      Reference: http://www.songho.ca

      Parameters:
      left - the distance from the center to the left frustum edge
      right - the distance from the center to the right frustum edge
      bottom - the distance from the center to the bottom frustum edge
      top - the distance from the center to the top frustum edge
      zNear - near clipping plane distance
      zFar - far clipping plane distance
      Returns:
      this
      See Also:
    • setOrtho

      public Matrix4f setOrtho(float left, float right, float bottom, float top, float zNear, float zFar, boolean zZeroToOne)
      Set this matrix to be an orthographic projection transformation for a right-handed coordinate system using the given NDC z range.

      In order to apply the orthographic projection to an already existing transformation, use ortho().

      Reference: http://www.songho.ca

      Parameters:
      left - the distance from the center to the left frustum edge
      right - the distance from the center to the right frustum edge
      bottom - the distance from the center to the bottom frustum edge
      top - the distance from the center to the top frustum edge
      zNear - near clipping plane distance
      zFar - far clipping plane distance
      zZeroToOne - whether to use Vulkan's and Direct3D's NDC z range of [0..+1] when true or whether to use OpenGL's NDC z range of [-1..+1] when false
      Returns:
      this
      See Also:
    • setOrtho

      public Matrix4f setOrtho(float left, float right, float bottom, float top, float zNear, float zFar)
      Set this matrix to be an orthographic projection transformation for a right-handed coordinate system using OpenGL's NDC z range of [-1..+1].

      In order to apply the orthographic projection to an already existing transformation, use ortho().

      Reference: http://www.songho.ca

      Parameters:
      left - the distance from the center to the left frustum edge
      right - the distance from the center to the right frustum edge
      bottom - the distance from the center to the bottom frustum edge
      top - the distance from the center to the top frustum edge
      zNear - near clipping plane distance
      zFar - far clipping plane distance
      Returns:
      this
      See Also:
    • setOrthoLH

      public Matrix4f setOrthoLH(float left, float right, float bottom, float top, float zNear, float zFar, boolean zZeroToOne)
      Set this matrix to be an orthographic projection transformation for a left-handed coordinate system using the given NDC z range.

      In order to apply the orthographic projection to an already existing transformation, use orthoLH().

      Reference: http://www.songho.ca

      Parameters:
      left - the distance from the center to the left frustum edge
      right - the distance from the center to the right frustum edge
      bottom - the distance from the center to the bottom frustum edge
      top - the distance from the center to the top frustum edge
      zNear - near clipping plane distance
      zFar - far clipping plane distance
      zZeroToOne - whether to use Vulkan's and Direct3D's NDC z range of [0..+1] when true or whether to use OpenGL's NDC z range of [-1..+1] when false
      Returns:
      this
      See Also:
    • setOrthoLH

      public Matrix4f setOrthoLH(float left, float right, float bottom, float top, float zNear, float zFar)
      Set this matrix to be an orthographic projection transformation for a left-handed coordinate system using OpenGL's NDC z range of [-1..+1].

      In order to apply the orthographic projection to an already existing transformation, use orthoLH().

      Reference: http://www.songho.ca

      Parameters:
      left - the distance from the center to the left frustum edge
      right - the distance from the center to the right frustum edge
      bottom - the distance from the center to the bottom frustum edge
      top - the distance from the center to the top frustum edge
      zNear - near clipping plane distance
      zFar - far clipping plane distance
      Returns:
      this
      See Also:
    • orthoSymmetric

      public Matrix4f orthoSymmetric(float width, float height, float zNear, float zFar, boolean zZeroToOne, Matrix4f dest)
      Apply a symmetric orthographic projection transformation for a right-handed coordinate system using the given NDC z range to this matrix and store the result in dest.

      This method is equivalent to calling ortho() with left=-width/2, right=+width/2, bottom=-height/2 and top=+height/2.

      If M is this matrix and O the orthographic projection matrix, then the new matrix will be M * O. So when transforming a vector v with the new matrix by using M * O * v, the orthographic projection transformation will be applied first!

      In order to set the matrix to a symmetric orthographic projection without post-multiplying it, use setOrthoSymmetric().

      Reference: http://www.songho.ca

      Specified by:
      orthoSymmetric in interface Matrix4fc
      Parameters:
      width - the distance between the right and left frustum edges
      height - the distance between the top and bottom frustum edges
      zNear - near clipping plane distance
      zFar - far clipping plane distance
      dest - will hold the result
      zZeroToOne - whether to use Vulkan's and Direct3D's NDC z range of [0..+1] when true or whether to use OpenGL's NDC z range of [-1..+1] when false
      Returns:
      dest
      See Also:
    • orthoSymmetric

      public Matrix4f orthoSymmetric(float width, float height, float zNear, float zFar, Matrix4f dest)
      Apply a symmetric orthographic projection transformation for a right-handed coordinate system using OpenGL's NDC z range of [-1..+1] to this matrix and store the result in dest.

      This method is equivalent to calling ortho() with left=-width/2, right=+width/2, bottom=-height/2 and top=+height/2.

      If M is this matrix and O the orthographic projection matrix, then the new matrix will be M * O. So when transforming a vector v with the new matrix by using M * O * v, the orthographic projection transformation will be applied first!

      In order to set the matrix to a symmetric orthographic projection without post-multiplying it, use setOrthoSymmetric().

      Reference: http://www.songho.ca

      Specified by:
      orthoSymmetric in interface Matrix4fc
      Parameters:
      width - the distance between the right and left frustum edges
      height - the distance between the top and bottom frustum edges
      zNear - near clipping plane distance
      zFar - far clipping plane distance
      dest - will hold the result
      Returns:
      dest
      See Also:
    • orthoSymmetric

      public Matrix4f orthoSymmetric(float width, float height, float zNear, float zFar, boolean zZeroToOne)
      Apply a symmetric orthographic projection transformation for a right-handed coordinate system using the given NDC z range to this matrix.

      This method is equivalent to calling ortho() with left=-width/2, right=+width/2, bottom=-height/2 and top=+height/2.

      If M is this matrix and O the orthographic projection matrix, then the new matrix will be M * O. So when transforming a vector v with the new matrix by using M * O * v, the orthographic projection transformation will be applied first!

      In order to set the matrix to a symmetric orthographic projection without post-multiplying it, use setOrthoSymmetric().

      Reference: http://www.songho.ca

      Parameters:
      width - the distance between the right and left frustum edges
      height - the distance between the top and bottom frustum edges
      zNear - near clipping plane distance
      zFar - far clipping plane distance
      zZeroToOne - whether to use Vulkan's and Direct3D's NDC z range of [0..+1] when true or whether to use OpenGL's NDC z range of [-1..+1] when false
      Returns:
      this
      See Also:
    • orthoSymmetric

      public Matrix4f orthoSymmetric(float width, float height, float zNear, float zFar)
      Apply a symmetric orthographic projection transformation for a right-handed coordinate system using OpenGL's NDC z range of [-1..+1] to this matrix.

      This method is equivalent to calling ortho() with left=-width/2, right=+width/2, bottom=-height/2 and top=+height/2.

      If M is this matrix and O the orthographic projection matrix, then the new matrix will be M * O. So when transforming a vector v with the new matrix by using M * O * v, the orthographic projection transformation will be applied first!

      In order to set the matrix to a symmetric orthographic projection without post-multiplying it, use setOrthoSymmetric().

      Reference: http://www.songho.ca

      Parameters:
      width - the distance between the right and left frustum edges
      height - the distance between the top and bottom frustum edges
      zNear - near clipping plane distance
      zFar - far clipping plane distance
      Returns:
      this
      See Also:
    • orthoSymmetricLH

      public Matrix4f orthoSymmetricLH(float width, float height, float zNear, float zFar, boolean zZeroToOne, Matrix4f dest)
      Apply a symmetric orthographic projection transformation for a left-handed coordinate system using the given NDC z range to this matrix and store the result in dest.

      This method is equivalent to calling orthoLH() with left=-width/2, right=+width/2, bottom=-height/2 and top=+height/2.

      If M is this matrix and O the orthographic projection matrix, then the new matrix will be M * O. So when transforming a vector v with the new matrix by using M * O * v, the orthographic projection transformation will be applied first!

      In order to set the matrix to a symmetric orthographic projection without post-multiplying it, use setOrthoSymmetricLH().

      Reference: http://www.songho.ca

      Specified by:
      orthoSymmetricLH in interface Matrix4fc
      Parameters:
      width - the distance between the right and left frustum edges
      height - the distance between the top and bottom frustum edges
      zNear - near clipping plane distance
      zFar - far clipping plane distance
      dest - will hold the result
      zZeroToOne - whether to use Vulkan's and Direct3D's NDC z range of [0..+1] when true or whether to use OpenGL's NDC z range of [-1..+1] when false
      Returns:
      dest
      See Also:
    • orthoSymmetricLH

      public Matrix4f orthoSymmetricLH(float width, float height, float zNear, float zFar, Matrix4f dest)
      Apply a symmetric orthographic projection transformation for a left-handed coordinate system using OpenGL's NDC z range of [-1..+1] to this matrix and store the result in dest.

      This method is equivalent to calling orthoLH() with left=-width/2, right=+width/2, bottom=-height/2 and top=+height/2.

      If M is this matrix and O the orthographic projection matrix, then the new matrix will be M * O. So when transforming a vector v with the new matrix by using M * O * v, the orthographic projection transformation will be applied first!

      In order to set the matrix to a symmetric orthographic projection without post-multiplying it, use setOrthoSymmetricLH().

      Reference: http://www.songho.ca

      Specified by:
      orthoSymmetricLH in interface Matrix4fc
      Parameters:
      width - the distance between the right and left frustum edges
      height - the distance between the top and bottom frustum edges
      zNear - near clipping plane distance
      zFar - far clipping plane distance
      dest - will hold the result
      Returns:
      dest
      See Also:
    • orthoSymmetricLH

      public Matrix4f orthoSymmetricLH(float width, float height, float zNear, float zFar, boolean zZeroToOne)
      Apply a symmetric orthographic projection transformation for a left-handed coordinate system using the given NDC z range to this matrix.

      This method is equivalent to calling orthoLH() with left=-width/2, right=+width/2, bottom=-height/2 and top=+height/2.

      If M is this matrix and O the orthographic projection matrix, then the new matrix will be M * O. So when transforming a vector v with the new matrix by using M * O * v, the orthographic projection transformation will be applied first!

      In order to set the matrix to a symmetric orthographic projection without post-multiplying it, use setOrthoSymmetricLH().

      Reference: http://www.songho.ca

      Parameters:
      width - the distance between the right and left frustum edges
      height - the distance between the top and bottom frustum edges
      zNear - near clipping plane distance
      zFar - far clipping plane distance
      zZeroToOne - whether to use Vulkan's and Direct3D's NDC z range of [0..+1] when true or whether to use OpenGL's NDC z range of [-1..+1] when false
      Returns:
      this
      See Also:
    • orthoSymmetricLH

      public Matrix4f orthoSymmetricLH(float width, float height, float zNear, float zFar)
      Apply a symmetric orthographic projection transformation for a left-handed coordinate system using OpenGL's NDC z range of [-1..+1] to this matrix.

      This method is equivalent to calling orthoLH() with left=-width/2, right=+width/2, bottom=-height/2 and top=+height/2.

      If M is this matrix and O the orthographic projection matrix, then the new matrix will be M * O. So when transforming a vector v with the new matrix by using M * O * v, the orthographic projection transformation will be applied first!

      In order to set the matrix to a symmetric orthographic projection without post-multiplying it, use setOrthoSymmetricLH().

      Reference: http://www.songho.ca

      Parameters:
      width - the distance between the right and left frustum edges
      height - the distance between the top and bottom frustum edges
      zNear - near clipping plane distance
      zFar - far clipping plane distance
      Returns:
      this
      See Also:
    • setOrthoSymmetric

      public Matrix4f setOrthoSymmetric(float width, float height, float zNear, float zFar, boolean zZeroToOne)
      Set this matrix to be a symmetric orthographic projection transformation for a right-handed coordinate system using the given NDC z range.

      This method is equivalent to calling setOrtho() with left=-width/2, right=+width/2, bottom=-height/2 and top=+height/2.

      In order to apply the symmetric orthographic projection to an already existing transformation, use orthoSymmetric().

      Reference: http://www.songho.ca

      Parameters:
      width - the distance between the right and left frustum edges
      height - the distance between the top and bottom frustum edges
      zNear - near clipping plane distance
      zFar - far clipping plane distance
      zZeroToOne - whether to use Vulkan's and Direct3D's NDC z range of [0..+1] when true or whether to use OpenGL's NDC z range of [-1..+1] when false
      Returns:
      this
      See Also:
    • setOrthoSymmetric

      public Matrix4f setOrthoSymmetric(float width, float height, float zNear, float zFar)
      Set this matrix to be a symmetric orthographic projection transformation for a right-handed coordinate system using OpenGL's NDC z range of [-1..+1].

      This method is equivalent to calling setOrtho() with left=-width/2, right=+width/2, bottom=-height/2 and top=+height/2.

      In order to apply the symmetric orthographic projection to an already existing transformation, use orthoSymmetric().

      Reference: http://www.songho.ca

      Parameters:
      width - the distance between the right and left frustum edges
      height - the distance between the top and bottom frustum edges
      zNear - near clipping plane distance
      zFar - far clipping plane distance
      Returns:
      this
      See Also:
    • setOrthoSymmetricLH

      public Matrix4f setOrthoSymmetricLH(float width, float height, float zNear, float zFar, boolean zZeroToOne)
      Set this matrix to be a symmetric orthographic projection transformation for a left-handed coordinate system using the given NDC z range.

      This method is equivalent to calling setOrtho() with left=-width/2, right=+width/2, bottom=-height/2 and top=+height/2.

      In order to apply the symmetric orthographic projection to an already existing transformation, use orthoSymmetricLH().

      Reference: http://www.songho.ca

      Parameters:
      width - the distance between the right and left frustum edges
      height - the distance between the top and bottom frustum edges
      zNear - near clipping plane distance
      zFar - far clipping plane distance
      zZeroToOne - whether to use Vulkan's and Direct3D's NDC z range of [0..+1] when true or whether to use OpenGL's NDC z range of [-1..+1] when false
      Returns:
      this
      See Also:
    • setOrthoSymmetricLH

      public Matrix4f setOrthoSymmetricLH(float width, float height, float zNear, float zFar)
      Set this matrix to be a symmetric orthographic projection transformation for a left-handed coordinate system using OpenGL's NDC z range of [-1..+1].

      This method is equivalent to calling setOrthoLH() with left=-width/2, right=+width/2, bottom=-height/2 and top=+height/2.

      In order to apply the symmetric orthographic projection to an already existing transformation, use orthoSymmetricLH().

      Reference: http://www.songho.ca

      Parameters:
      width - the distance between the right and left frustum edges
      height - the distance between the top and bottom frustum edges
      zNear - near clipping plane distance
      zFar - far clipping plane distance
      Returns:
      this
      See Also:
    • ortho2D

      public Matrix4f ortho2D(float left, float right, float bottom, float top, Matrix4f dest)
      Apply an orthographic projection transformation for a right-handed coordinate system to this matrix and store the result in dest.

      This method is equivalent to calling ortho() with zNear=-1 and zFar=+1.

      If M is this matrix and O the orthographic projection matrix, then the new matrix will be M * O. So when transforming a vector v with the new matrix by using M * O * v, the orthographic projection transformation will be applied first!

      In order to set the matrix to an orthographic projection without post-multiplying it, use setOrtho().

      Reference: http://www.songho.ca

      Specified by:
      ortho2D in interface Matrix4fc
      Parameters:
      left - the distance from the center to the left frustum edge
      right - the distance from the center to the right frustum edge
      bottom - the distance from the center to the bottom frustum edge
      top - the distance from the center to the top frustum edge
      dest - will hold the result
      Returns:
      dest
      See Also:
    • ortho2D

      public Matrix4f ortho2D(float left, float right, float bottom, float top)
      Apply an orthographic projection transformation for a right-handed coordinate system to this matrix.

      This method is equivalent to calling ortho() with zNear=-1 and zFar=+1.

      If M is this matrix and O the orthographic projection matrix, then the new matrix will be M * O. So when transforming a vector v with the new matrix by using M * O * v, the orthographic projection transformation will be applied first!

      In order to set the matrix to an orthographic projection without post-multiplying it, use setOrtho2D().

      Reference: http://www.songho.ca

      Parameters:
      left - the distance from the center to the left frustum edge
      right - the distance from the center to the right frustum edge
      bottom - the distance from the center to the bottom frustum edge
      top - the distance from the center to the top frustum edge
      Returns:
      this
      See Also:
    • ortho2DLH

      public Matrix4f ortho2DLH(float left, float right, float bottom, float top, Matrix4f dest)
      Apply an orthographic projection transformation for a left-handed coordinate system to this matrix and store the result in dest.

      This method is equivalent to calling orthoLH() with zNear=-1 and zFar=+1.

      If M is this matrix and O the orthographic projection matrix, then the new matrix will be M * O. So when transforming a vector v with the new matrix by using M * O * v, the orthographic projection transformation will be applied first!

      In order to set the matrix to an orthographic projection without post-multiplying it, use setOrthoLH().

      Reference: http://www.songho.ca

      Specified by:
      ortho2DLH in interface Matrix4fc
      Parameters:
      left - the distance from the center to the left frustum edge
      right - the distance from the center to the right frustum edge
      bottom - the distance from the center to the bottom frustum edge
      top - the distance from the center to the top frustum edge
      dest - will hold the result
      Returns:
      dest
      See Also:
    • ortho2DLH

      public Matrix4f ortho2DLH(float left, float right, float bottom, float top)
      Apply an orthographic projection transformation for a left-handed coordinate system to this matrix.

      This method is equivalent to calling orthoLH() with zNear=-1 and zFar=+1.

      If M is this matrix and O the orthographic projection matrix, then the new matrix will be M * O. So when transforming a vector v with the new matrix by using M * O * v, the orthographic projection transformation will be applied first!

      In order to set the matrix to an orthographic projection without post-multiplying it, use setOrtho2DLH().

      Reference: http://www.songho.ca

      Parameters:
      left - the distance from the center to the left frustum edge
      right - the distance from the center to the right frustum edge
      bottom - the distance from the center to the bottom frustum edge
      top - the distance from the center to the top frustum edge
      Returns:
      this
      See Also:
    • setOrtho2D

      public Matrix4f setOrtho2D(float left, float right, float bottom, float top)
      Set this matrix to be an orthographic projection transformation for a right-handed coordinate system.

      This method is equivalent to calling setOrtho() with zNear=-1 and zFar=+1.

      In order to apply the orthographic projection to an already existing transformation, use ortho2D().

      Reference: http://www.songho.ca

      Parameters:
      left - the distance from the center to the left frustum edge
      right - the distance from the center to the right frustum edge
      bottom - the distance from the center to the bottom frustum edge
      top - the distance from the center to the top frustum edge
      Returns:
      this
      See Also:
    • setOrtho2DLH

      public Matrix4f setOrtho2DLH(float left, float right, float bottom, float top)
      Set this matrix to be an orthographic projection transformation for a left-handed coordinate system.

      This method is equivalent to calling setOrthoLH() with zNear=-1 and zFar=+1.

      In order to apply the orthographic projection to an already existing transformation, use ortho2DLH().

      Reference: http://www.songho.ca

      Parameters:
      left - the distance from the center to the left frustum edge
      right - the distance from the center to the right frustum edge
      bottom - the distance from the center to the bottom frustum edge
      top - the distance from the center to the top frustum edge
      Returns:
      this
      See Also:
    • lookAlong

      public Matrix4f lookAlong(Vector3fc dir, Vector3fc up)
      Apply a rotation transformation to this matrix to make -z point along dir.

      If M is this matrix and L the lookalong rotation matrix, then the new matrix will be M * L. So when transforming a vector v with the new matrix by using M * L * v, the lookalong rotation transformation will be applied first!

      This is equivalent to calling lookAt with eye = (0, 0, 0) and center = dir.

      In order to set the matrix to a lookalong transformation without post-multiplying it, use setLookAlong().

      Parameters:
      dir - the direction in space to look along
      up - the direction of 'up'
      Returns:
      this
      See Also:
    • lookAlong

      public Matrix4f lookAlong(Vector3fc dir, Vector3fc up, Matrix4f dest)
      Apply a rotation transformation to this matrix to make -z point along dir and store the result in dest.

      If M is this matrix and L the lookalong rotation matrix, then the new matrix will be M * L. So when transforming a vector v with the new matrix by using M * L * v, the lookalong rotation transformation will be applied first!

      This is equivalent to calling lookAt with eye = (0, 0, 0) and center = dir.

      In order to set the matrix to a lookalong transformation without post-multiplying it, use setLookAlong().

      Specified by:
      lookAlong in interface Matrix4fc
      Parameters:
      dir - the direction in space to look along
      up - the direction of 'up'
      dest - will hold the result
      Returns:
      dest
      See Also:
    • lookAlong

      public Matrix4f lookAlong(float dirX, float dirY, float dirZ, float upX, float upY, float upZ, Matrix4f dest)
      Apply a rotation transformation to this matrix to make -z point along dir and store the result in dest.

      If M is this matrix and L the lookalong rotation matrix, then the new matrix will be M * L. So when transforming a vector v with the new matrix by using M * L * v, the lookalong rotation transformation will be applied first!

      This is equivalent to calling lookAt() with eye = (0, 0, 0) and center = dir.

      In order to set the matrix to a lookalong transformation without post-multiplying it, use setLookAlong()

      Specified by:
      lookAlong in interface Matrix4fc
      Parameters:
      dirX - the x-coordinate of the direction to look along
      dirY - the y-coordinate of the direction to look along
      dirZ - the z-coordinate of the direction to look along
      upX - the x-coordinate of the up vector
      upY - the y-coordinate of the up vector
      upZ - the z-coordinate of the up vector
      dest - will hold the result
      Returns:
      dest
      See Also:
    • lookAlong

      public Matrix4f lookAlong(float dirX, float dirY, float dirZ, float upX, float upY, float upZ)
      Apply a rotation transformation to this matrix to make -z point along dir.

      If M is this matrix and L the lookalong rotation matrix, then the new matrix will be M * L. So when transforming a vector v with the new matrix by using M * L * v, the lookalong rotation transformation will be applied first!

      This is equivalent to calling lookAt() with eye = (0, 0, 0) and center = dir.

      In order to set the matrix to a lookalong transformation without post-multiplying it, use setLookAlong()

      Parameters:
      dirX - the x-coordinate of the direction to look along
      dirY - the y-coordinate of the direction to look along
      dirZ - the z-coordinate of the direction to look along
      upX - the x-coordinate of the up vector
      upY - the y-coordinate of the up vector
      upZ - the z-coordinate of the up vector
      Returns:
      this
      See Also:
    • setLookAlong

      public Matrix4f setLookAlong(Vector3fc dir, Vector3fc up)
      Set this matrix to a rotation transformation to make -z point along dir.

      This is equivalent to calling setLookAt() with eye = (0, 0, 0) and center = dir.

      In order to apply the lookalong transformation to any previous existing transformation, use lookAlong(Vector3fc, Vector3fc).

      Parameters:
      dir - the direction in space to look along
      up - the direction of 'up'
      Returns:
      this
      See Also:
    • setLookAlong

      public Matrix4f setLookAlong(float dirX, float dirY, float dirZ, float upX, float upY, float upZ)
      Set this matrix to a rotation transformation to make -z point along dir.

      This is equivalent to calling setLookAt() with eye = (0, 0, 0) and center = dir.

      In order to apply the lookalong transformation to any previous existing transformation, use lookAlong()

      Parameters:
      dirX - the x-coordinate of the direction to look along
      dirY - the y-coordinate of the direction to look along
      dirZ - the z-coordinate of the direction to look along
      upX - the x-coordinate of the up vector
      upY - the y-coordinate of the up vector
      upZ - the z-coordinate of the up vector
      Returns:
      this
      See Also:
    • setLookAt

      public Matrix4f setLookAt(Vector3fc eye, Vector3fc center, Vector3fc up)
      Set this matrix to be a "lookat" transformation for a right-handed coordinate system, that aligns -z with center - eye.

      In order to not make use of vectors to specify eye, center and up but use primitives, like in the GLU function, use setLookAt() instead.

      In order to apply the lookat transformation to a previous existing transformation, use lookAt().

      Parameters:
      eye - the position of the camera
      center - the point in space to look at
      up - the direction of 'up'
      Returns:
      this
      See Also:
    • setLookAt

      public Matrix4f setLookAt(float eyeX, float eyeY, float eyeZ, float centerX, float centerY, float centerZ, float upX, float upY, float upZ)
      Set this matrix to be a "lookat" transformation for a right-handed coordinate system, that aligns -z with center - eye.

      In order to apply the lookat transformation to a previous existing transformation, use lookAt.

      Parameters:
      eyeX - the x-coordinate of the eye/camera location
      eyeY - the y-coordinate of the eye/camera location
      eyeZ - the z-coordinate of the eye/camera location
      centerX - the x-coordinate of the point to look at
      centerY - the y-coordinate of the point to look at
      centerZ - the z-coordinate of the point to look at
      upX - the x-coordinate of the up vector
      upY - the y-coordinate of the up vector
      upZ - the z-coordinate of the up vector
      Returns:
      this
      See Also:
    • lookAt

      public Matrix4f lookAt(Vector3fc eye, Vector3fc center, Vector3fc up, Matrix4f dest)
      Apply a "lookat" transformation to this matrix for a right-handed coordinate system, that aligns -z with center - eye and store the result in dest.

      If M is this matrix and L the lookat matrix, then the new matrix will be M * L. So when transforming a vector v with the new matrix by using M * L * v, the lookat transformation will be applied first!

      In order to set the matrix to a lookat transformation without post-multiplying it, use setLookAt(Vector3fc, Vector3fc, Vector3fc).

      Specified by:
      lookAt in interface Matrix4fc
      Parameters:
      eye - the position of the camera
      center - the point in space to look at
      up - the direction of 'up'
      dest - will hold the result
      Returns:
      dest
      See Also:
    • lookAt

      public Matrix4f lookAt(Vector3fc eye, Vector3fc center, Vector3fc up)
      Apply a "lookat" transformation to this matrix for a right-handed coordinate system, that aligns -z with center - eye.

      If M is this matrix and L the lookat matrix, then the new matrix will be M * L. So when transforming a vector v with the new matrix by using M * L * v, the lookat transformation will be applied first!

      In order to set the matrix to a lookat transformation without post-multiplying it, use setLookAt(Vector3fc, Vector3fc, Vector3fc).

      Parameters:
      eye - the position of the camera
      center - the point in space to look at
      up - the direction of 'up'
      Returns:
      this
      S