Package org.joml

Class Matrix4f

java.lang.Object
org.joml.Matrix4f
All Implemented Interfaces:
java.io.Externalizable, java.io.Serializable, Matrix4fc
Direct Known Subclasses:
Matrix4fStack

public class Matrix4f
extends java.lang.Object
implements java.io.Externalizable, Matrix4fc
Contains the definition of a 4x4 matrix of floats, and associated functions to transform it. The matrix is column-major to match OpenGL's interpretation, and it looks like this:

m00 m10 m20 m30
m01 m11 m21 m31
m02 m12 m22 m32
m03 m13 m23 m33

Author:
Richard Greenlees, Kai Burjack
See Also:
Serialized Form
  • Field Summary

  • Constructor Summary

    Constructors 
    Constructor Description
    Matrix4f()
    Create a new Matrix4f and set it to identity.
    Matrix4f​(float m00, float m01, float m02, float m03, float m10, float m11, float m12, float m13, float m20, float m21, float m22, float m23, float m30, float m31, float m32, float m33)
    Create a new 4x4 matrix using the supplied float values.
    Matrix4f​(java.nio.FloatBuffer buffer)
    Create a new Matrix4f by reading its 16 float components from the given FloatBuffer at the buffer's current position.
    Matrix4f​(Matrix3fc mat)
    Create a new Matrix4f by setting its uppper left 3x3 submatrix to the values of the given Matrix3fc and the rest to identity.
    Matrix4f​(Matrix4dc mat)
    Create a new Matrix4f and make it a copy of the given matrix.
    Matrix4f​(Matrix4fc mat)
    Create a new Matrix4f and make it a copy of the given matrix.
    Matrix4f​(Matrix4x3fc mat)
    Create a new Matrix4f and set its upper 4x3 submatrix to the given matrix mat and all other elements to identity.
    Matrix4f​(Vector4fc col0, Vector4fc col1, Vector4fc col2, Vector4fc col3)
    Create a new Matrix4f and initialize its four columns using the supplied vectors.
  • Method Summary

    Modifier and Type Method Description
    Matrix4f _m00​(float m00)
    Set the value of the matrix element at column 0 and row 0 without updating the properties of the matrix.
    Matrix4f _m01​(float m01)
    Set the value of the matrix element at column 0 and row 1 without updating the properties of the matrix.
    Matrix4f _m02​(float m02)
    Set the value of the matrix element at column 0 and row 2 without updating the properties of the matrix.
    Matrix4f _m03​(float m03)
    Set the value of the matrix element at column 0 and row 3 without updating the properties of the matrix.
    Matrix4f _m10​(float m10)
    Set the value of the matrix element at column 1 and row 0 without updating the properties of the matrix.
    Matrix4f _m11​(float m11)
    Set the value of the matrix element at column 1 and row 1 without updating the properties of the matrix.
    Matrix4f _m12​(float m12)
    Set the value of the matrix element at column 1 and row 2 without updating the properties of the matrix.
    Matrix4f _m13​(float m13)
    Set the value of the matrix element at column 1 and row 3 without updating the properties of the matrix.
    Matrix4f _m20​(float m20)
    Set the value of the matrix element at column 2 and row 0 without updating the properties of the matrix.
    Matrix4f _m21​(float m21)
    Set the value of the matrix element at column 2 and row 1 without updating the properties of the matrix.
    Matrix4f _m22​(float m22)
    Set the value of the matrix element at column 2 and row 2 without updating the properties of the matrix.
    Matrix4f _m23​(float m23)
    Set the value of the matrix element at column 2 and row 3 without updating the properties of the matrix.
    Matrix4f _m30​(float m30)
    Set the value of the matrix element at column 3 and row 0 without updating the properties of the matrix.
    Matrix4f _m31​(float m31)
    Set the value of the matrix element at column 3 and row 1 without updating the properties of the matrix.
    Matrix4f _m32​(float m32)
    Set the value of the matrix element at column 3 and row 2 without updating the properties of the matrix.
    Matrix4f _m33​(float m33)
    Set the value of the matrix element at column 3 and row 3 without updating the properties of the matrix.
    Matrix4f add​(Matrix4fc other)
    Component-wise add this and other.
    Matrix4f add​(Matrix4fc other, Matrix4f dest)
    Component-wise add this and other and store the result in dest.
    Matrix4f add4x3​(Matrix4fc other)
    Component-wise add the upper 4x3 submatrices of this and other.
    Matrix4f add4x3​(Matrix4fc other, Matrix4f dest)
    Component-wise add the upper 4x3 submatrices of this and other and store the result in dest.
    Matrix4f affineSpan​(Vector3f corner, Vector3f xDir, Vector3f yDir, Vector3f zDir)
    Compute the extents of the coordinate system before this affine transformation was applied and store the resulting corner coordinates in corner and the span vectors in xDir, yDir and zDir.
    Matrix4f arcball​(float radius, float centerX, float centerY, float centerZ, float angleX, float angleY)
    Apply an arcball view transformation to this matrix with the given radius and center (centerX, centerY, centerZ) position of the arcball and the specified X and Y rotation angles.
    Matrix4f arcball​(float radius, float centerX, float centerY, float centerZ, float angleX, float angleY, Matrix4f dest)
    Apply an arcball view transformation to this matrix with the given radius and center (centerX, centerY, centerZ) position of the arcball and the specified X and Y rotation angles, and store the result in dest.
    Matrix4f arcball​(float radius, Vector3fc center, float angleX, float angleY)
    Apply an arcball view transformation to this matrix with the given radius and center position of the arcball and the specified X and Y rotation angles.
    Matrix4f arcball​(float radius, Vector3fc center, float angleX, float angleY, Matrix4f dest)
    Apply an arcball view transformation to this matrix with the given radius and center position of the arcball and the specified X and Y rotation angles, and store the result in dest.
    Matrix4f assume​(int properties)
    Assume the given properties about this matrix.
    Matrix4f billboardCylindrical​(Vector3fc objPos, Vector3fc targetPos, Vector3fc up)
    Set this matrix to a cylindrical billboard transformation that rotates the local +Z axis of a given object with position objPos towards a target position at targetPos while constraining a cylindrical rotation around the given up vector.
    Matrix4f billboardSpherical​(Vector3fc objPos, Vector3fc targetPos)
    Set this matrix to a spherical billboard transformation that rotates the local +Z axis of a given object with position objPos towards a target position at targetPos using a shortest arc rotation by not preserving any up vector of the object.
    Matrix4f billboardSpherical​(Vector3fc objPos, Vector3fc targetPos, Vector3fc up)
    Set this matrix to a spherical billboard transformation that rotates the local +Z axis of a given object with position objPos towards a target position at targetPos.
    Matrix4f cofactor3x3()
    Compute the cofactor matrix of the upper left 3x3 submatrix of this.
    Matrix3f cofactor3x3​(Matrix3f dest)
    Compute the cofactor matrix of the upper left 3x3 submatrix of this and store it into dest.
    Matrix4f cofactor3x3​(Matrix4f dest)
    Compute the cofactor matrix of the upper left 3x3 submatrix of this and store it into dest.
    float determinant()
    Return the determinant of this matrix.
    float determinant3x3()
    Return the determinant of the upper left 3x3 submatrix of this matrix.
    float determinantAffine()
    Return the determinant of this matrix by assuming that it represents an affine transformation and thus its last row is equal to (0, 0, 0, 1).
    Matrix4f determineProperties()
    Compute and set the matrix properties returned by properties() based on the current matrix element values.
    boolean equals​(java.lang.Object obj)  
    boolean equals​(Matrix4fc m, float delta)
    Compare the matrix elements of this matrix with the given matrix using the given delta and return whether all of them are equal within a maximum difference of delta.
    Matrix4f fma4x3​(Matrix4fc other, float otherFactor)
    Component-wise add the upper 4x3 submatrices of this and other by first multiplying each component of other's 4x3 submatrix by otherFactor and adding that result to this.
    Matrix4f fma4x3​(Matrix4fc other, float otherFactor, Matrix4f dest)
    Component-wise add the upper 4x3 submatrices of this and other by first multiplying each component of other's 4x3 submatrix by otherFactor, adding that to this and storing the final result in dest.
    Matrix4f frustum​(float left, float right, float bottom, float top, float zNear, float zFar)
    Apply an arbitrary perspective projection frustum transformation for a right-handed coordinate system using OpenGL's NDC z range of [-1..+1] to this matrix.
    Matrix4f frustum​(float left, float right, float bottom, float top, float zNear, float zFar, boolean zZeroToOne)
    Apply an arbitrary perspective projection frustum transformation for a right-handed coordinate system using the given NDC z range to this matrix.
    Matrix4f frustum​(float left, float right, float bottom, float top, float zNear, float zFar, boolean zZeroToOne, Matrix4f dest)
    Apply an arbitrary perspective projection frustum transformation for a right-handed coordinate system using the given NDC z range to this matrix and store the result in dest.
    Matrix4f frustum​(float left, float right, float bottom, float top, float zNear, float zFar, Matrix4f dest)
    Apply an arbitrary perspective projection frustum transformation for a right-handed coordinate system using OpenGL's NDC z range of [-1..+1] to this matrix and store the result in dest.
    Matrix4f frustumAabb​(Vector3f min, Vector3f max)
    Compute the axis-aligned bounding box of the frustum described by this matrix and store the minimum corner coordinates in the given min and the maximum corner coordinates in the given max vector.
    Vector3f frustumCorner​(int corner, Vector3f point)
    Compute the corner coordinates of the frustum defined by this matrix, which can be a projection matrix or a combined modelview-projection matrix, and store the result in the given point.
    Matrix4f frustumLH​(float left, float right, float bottom, float top, float zNear, float zFar)
    Apply an arbitrary perspective projection frustum transformation for a left-handed coordinate system using the given NDC z range to this matrix.
    Matrix4f frustumLH​(float left, float right, float bottom, float top, float zNear, float zFar, boolean zZeroToOne)
    Apply an arbitrary perspective projection frustum transformation for a left-handed coordinate system using the given NDC z range to this matrix.
    Matrix4f frustumLH​(float left, float right, float bottom, float top, float zNear, float zFar, boolean zZeroToOne, Matrix4f dest)
    Apply an arbitrary perspective projection frustum transformation for a left-handed coordinate system using the given NDC z range to this matrix and store the result in dest.
    Matrix4f frustumLH​(float left, float right, float bottom, float top, float zNear, float zFar, Matrix4f dest)
    Apply an arbitrary perspective projection frustum transformation for a left-handed coordinate system using OpenGL's NDC z range of [-1..+1] to this matrix and store the result in dest.
    Planef frustumPlane​(int which, Planef plane)
    Calculate a frustum plane of this matrix, which can be a projection matrix or a combined modelview-projection matrix, and store the result in the given plane.
    Vector4f frustumPlane​(int plane, Vector4f planeEquation)
    Calculate a frustum plane of this matrix, which can be a projection matrix or a combined modelview-projection matrix, and store the result in the given planeEquation.
    Vector3f frustumRayDir​(float x, float y, Vector3f dir)
    Obtain the direction of a ray starting at the center of the coordinate system and going through the near frustum plane.
    float[] get​(float[] arr)
    Store this matrix into the supplied float array in column-major order.
    float[] get​(float[] arr, int offset)
    Store this matrix into the supplied float array in column-major order at the given offset.
    java.nio.ByteBuffer get​(int index, java.nio.ByteBuffer buffer)
    Store this matrix in column-major order into the supplied ByteBuffer starting at the specified absolute buffer position/index.
    java.nio.FloatBuffer get​(int index, java.nio.FloatBuffer buffer)
    Store this matrix in column-major order into the supplied FloatBuffer starting at the specified absolute buffer position/index.
    java.nio.ByteBuffer get​(java.nio.ByteBuffer buffer)
    Store this matrix in column-major order into the supplied ByteBuffer at the current buffer position.
    java.nio.FloatBuffer get​(java.nio.FloatBuffer buffer)
    Store this matrix in column-major order into the supplied FloatBuffer at the current buffer position.
    Matrix4d get​(Matrix4d dest)
    Get the current values of this matrix and store them into dest.
    Matrix4f get​(Matrix4f dest)
    Get the current values of this matrix and store them into dest.
    Matrix3d get3x3​(Matrix3d dest)
    Get the current values of the upper left 3x3 submatrix of this matrix and store them into dest.
    Matrix3f get3x3​(Matrix3f dest)
    Get the current values of the upper left 3x3 submatrix of this matrix and store them into dest.
    java.nio.ByteBuffer get3x4​(int index, java.nio.ByteBuffer buffer)
    Store the left 3x4 submatrix in column-major order into the supplied ByteBuffer starting at the specified absolute buffer position/index.
    java.nio.FloatBuffer get3x4​(int index, java.nio.FloatBuffer buffer)
    Store the left 3x4 submatrix in column-major order into the supplied FloatBuffer starting at the specified absolute buffer position/index.
    java.nio.ByteBuffer get3x4​(java.nio.ByteBuffer buffer)
    Store the left 3x4 submatrix in column-major order into the supplied ByteBuffer at the current buffer position.
    java.nio.FloatBuffer get3x4​(java.nio.FloatBuffer buffer)
    Store the left 3x4 submatrix in column-major order into the supplied FloatBuffer at the current buffer position.
    java.nio.ByteBuffer get4x3​(int index, java.nio.ByteBuffer buffer)
    Store the upper 4x3 submatrix in column-major order into the supplied ByteBuffer starting at the specified absolute buffer position/index.
    java.nio.FloatBuffer get4x3​(int index, java.nio.FloatBuffer buffer)
    Store the upper 4x3 submatrix in column-major order into the supplied FloatBuffer starting at the specified absolute buffer position/index.
    java.nio.ByteBuffer get4x3​(java.nio.ByteBuffer buffer)
    Store the upper 4x3 submatrix in column-major order into the supplied ByteBuffer at the current buffer position.
    java.nio.FloatBuffer get4x3​(java.nio.FloatBuffer buffer)
    Store the upper 4x3 submatrix in column-major order into the supplied FloatBuffer at the current buffer position.
    Matrix4x3f get4x3​(Matrix4x3f dest)
    Get the current values of the upper 4x3 submatrix of this matrix and store them into dest.
    java.nio.ByteBuffer get4x3Transposed​(int index, java.nio.ByteBuffer buffer)
    Store the upper 4x3 submatrix of this matrix in row-major order into the supplied ByteBuffer starting at the specified absolute buffer position/index.
    java.nio.FloatBuffer get4x3Transposed​(int index, java.nio.FloatBuffer buffer)
    Store the upper 4x3 submatrix of this matrix in row-major order into the supplied FloatBuffer starting at the specified absolute buffer position/index.
    java.nio.ByteBuffer get4x3Transposed​(java.nio.ByteBuffer buffer)
    Store the upper 4x3 submatrix of this matrix in row-major order into the supplied ByteBuffer at the current buffer position.
    java.nio.FloatBuffer get4x3Transposed​(java.nio.FloatBuffer buffer)
    Store the upper 4x3 submatrix of this matrix in row-major order into the supplied FloatBuffer at the current buffer position.
    Vector3f getColumn​(int column, Vector3f dest)
    Get the first three components of the column at the given column index, starting with 0.
    Vector4f getColumn​(int column, Vector4f dest)
    Get the column at the given column index, starting with 0.
    Vector3f getEulerAnglesZYX​(Vector3f dest)
    Extract the Euler angles from the rotation represented by the upper left 3x3 submatrix of this and store the extracted Euler angles in dest.
    Quaterniond getNormalizedRotation​(Quaterniond dest)
    Get the current values of this matrix and store the represented rotation into the given Quaterniond.
    Quaternionf getNormalizedRotation​(Quaternionf dest)
    Get the current values of this matrix and store the represented rotation into the given Quaternionf.
    AxisAngle4d getRotation​(AxisAngle4d dest)
    Get the rotational component of this matrix and store the represented rotation into the given AxisAngle4d.
    AxisAngle4f getRotation​(AxisAngle4f dest)
    Get the rotational component of this matrix and store the represented rotation into the given AxisAngle4f.
    Vector3f getRow​(int row, Vector3f dest)
    Get the first three components of the row at the given row index, starting with 0.
    Vector4f getRow​(int row, Vector4f dest)
    Get the row at the given row index, starting with 0.
    Vector3f getScale​(Vector3f dest)
    Get the scaling factors of this matrix for the three base axes.
    Matrix4fc getToAddress​(long address)
    Store this matrix in column-major order at the given off-heap address.
    Vector3f getTranslation​(Vector3f dest)
    Get only the translation components (m30, m31, m32) of this matrix and store them in the given vector xyz.
    java.nio.ByteBuffer getTransposed​(int index, java.nio.ByteBuffer buffer)
    Store the transpose of this matrix in column-major order into the supplied ByteBuffer starting at the specified absolute buffer position/index.
    java.nio.FloatBuffer getTransposed​(int index, java.nio.FloatBuffer buffer)
    Store the transpose of this matrix in column-major order into the supplied FloatBuffer starting at the specified absolute buffer position/index.
    java.nio.ByteBuffer getTransposed​(java.nio.ByteBuffer buffer)
    Store the transpose of this matrix in column-major order into the supplied ByteBuffer at the current buffer position.
    java.nio.FloatBuffer getTransposed​(java.nio.FloatBuffer buffer)
    Store the transpose of this matrix in column-major order into the supplied FloatBuffer at the current buffer position.
    Quaterniond getUnnormalizedRotation​(Quaterniond dest)
    Get the current values of this matrix and store the represented rotation into the given Quaterniond.
    Quaternionf getUnnormalizedRotation​(Quaternionf dest)
    Get the current values of this matrix and store the represented rotation into the given Quaternionf.
    int hashCode()  
    Matrix4f identity()
    Reset this matrix to the identity.
    Matrix4f invert()
    Invert this matrix.
    Matrix4f invert​(Matrix4f dest)
    Invert this matrix and write the result into dest.
    Matrix4f invertAffine()
    Invert this matrix by assuming that it is an affine transformation (i.e. its last row is equal to (0, 0, 0, 1)).
    Matrix4f invertAffine​(Matrix4f dest)
    Invert this matrix by assuming that it is an affine transformation (i.e. its last row is equal to (0, 0, 0, 1)) and write the result into dest.
    Matrix4f invertFrustum()
    If this is an arbitrary perspective projection matrix obtained via one of the frustum() methods or via setFrustum(), then this method builds the inverse of this.
    Matrix4f invertFrustum​(Matrix4f dest)
    If this is an arbitrary perspective projection matrix obtained via one of the frustum() methods or via setFrustum(), then this method builds the inverse of this and stores it into the given dest.
    Matrix4f invertOrtho()
    Invert this orthographic projection matrix.
    Matrix4f invertOrtho​(Matrix4f dest)
    Invert this orthographic projection matrix and store the result into the given dest.
    Matrix4f invertPerspective()
    If this is a perspective projection matrix obtained via one of the perspective() methods or via setPerspective(), that is, if this is a symmetrical perspective frustum transformation, then this method builds the inverse of this.
    Matrix4f invertPerspective​(Matrix4f dest)
    If this is a perspective projection matrix obtained via one of the perspective() methods or via setPerspective(), that is, if this is a symmetrical perspective frustum transformation, then this method builds the inverse of this and stores it into the given dest.
    Matrix4f invertPerspectiveView​(Matrix4fc view, Matrix4f dest)
    If this is a perspective projection matrix obtained via one of the perspective() methods or via setPerspective(), that is, if this is a symmetrical perspective frustum transformation and the given view matrix is affine and has unit scaling (for example by being obtained via lookAt()), then this method builds the inverse of this * view and stores it into the given dest.
    Matrix4f invertPerspectiveView​(Matrix4x3fc view, Matrix4f dest)
    If this is a perspective projection matrix obtained via one of the perspective() methods or via setPerspective(), that is, if this is a symmetrical perspective frustum transformation and the given view matrix has unit scaling, then this method builds the inverse of this * view and stores it into the given dest.
    boolean isAffine()
    Determine whether this matrix describes an affine transformation.
    Matrix4f lerp​(Matrix4fc other, float t)
    Linearly interpolate this and other using the given interpolation factor t and store the result in this.
    Matrix4f lerp​(Matrix4fc other, float t, Matrix4f dest)
    Linearly interpolate this and other using the given interpolation factor t and store the result in dest.
    Matrix4f lookAlong​(float dirX, float dirY, float dirZ, float upX, float upY, float upZ)
    Apply a rotation transformation to this matrix to make -z point along dir.
    Matrix4f lookAlong​(float dirX, float dirY, float dirZ, float upX, float upY, float upZ, Matrix4f dest)
    Apply a rotation transformation to this matrix to make -z point along dir and store the result in dest.
    Matrix4f lookAlong​(Vector3fc dir, Vector3fc up)
    Apply a rotation transformation to this matrix to make -z point along dir.
    Matrix4f lookAlong​(Vector3fc dir, Vector3fc up, Matrix4f dest)
    Apply a rotation transformation to this matrix to make -z point along dir and store the result in dest.
    Matrix4f lookAt​(float eyeX, float eyeY, float eyeZ, float centerX, float centerY, float centerZ, float upX, float upY, float upZ)
    Apply a "lookat" transformation to this matrix for a right-handed coordinate system, that aligns -z with center - eye.
    Matrix4f lookAt​(float eyeX, float eyeY, float eyeZ, float centerX, float centerY, float centerZ, float upX, float upY, float upZ, Matrix4f dest)
    Apply a "lookat" transformation to this matrix for a right-handed coordinate system, that aligns -z with center - eye and store the result in dest.
    Matrix4f lookAt​(Vector3fc eye, Vector3fc center, Vector3fc up)
    Apply a "lookat" transformation to this matrix for a right-handed coordinate system, that aligns -z with center - eye.
    Matrix4f lookAt​(Vector3fc eye, Vector3fc center, Vector3fc up, Matrix4f dest)
    Apply a "lookat" transformation to this matrix for a right-handed coordinate system, that aligns -z with center - eye and store the result in dest.
    Matrix4f lookAtLH​(float eyeX, float eyeY, float eyeZ, float centerX, float centerY, float centerZ, float upX, float upY, float upZ)
    Apply a "lookat" transformation to this matrix for a left-handed coordinate system, that aligns +z with center - eye.
    Matrix4f lookAtLH​(float eyeX, float eyeY, float eyeZ, float centerX, float centerY, float centerZ, float upX, float upY, float upZ, Matrix4f dest)
    Apply a "lookat" transformation to this matrix for a left-handed coordinate system, that aligns +z with center - eye and store the result in dest.
    Matrix4f lookAtLH​(Vector3fc eye, Vector3fc center, Vector3fc up)
    Apply a "lookat" transformation to this matrix for a left-handed coordinate system, that aligns +z with center - eye.
    Matrix4f lookAtLH​(Vector3fc eye, Vector3fc center, Vector3fc up, Matrix4f dest)
    Apply a "lookat" transformation to this matrix for a left-handed coordinate system, that aligns +z with center - eye and store the result in dest.
    Matrix4f lookAtPerspective​(float eyeX, float eyeY, float eyeZ, float centerX, float centerY, float centerZ, float upX, float upY, float upZ, Matrix4f dest)
    Apply a "lookat" transformation to this matrix for a right-handed coordinate system, that aligns -z with center - eye and store the result in dest.
    Matrix4f lookAtPerspectiveLH​(float eyeX, float eyeY, float eyeZ, float centerX, float centerY, float centerZ, float upX, float upY, float upZ, Matrix4f dest)
    Apply a "lookat" transformation to this matrix for a left-handed coordinate system, that aligns +z with center - eye and store the result in dest.
    float m00()
    Return the value of the matrix element at column 0 and row 0.
    Matrix4f m00​(float m00)
    Set the value of the matrix element at column 0 and row 0.
    float m01()
    Return the value of the matrix element at column 0 and row 1.
    Matrix4f m01​(float m01)
    Set the value of the matrix element at column 0 and row 1.
    float m02()
    Return the value of the matrix element at column 0 and row 2.
    Matrix4f m02​(float m02)
    Set the value of the matrix element at column 0 and row 2.
    float m03()
    Return the value of the matrix element at column 0 and row 3.
    Matrix4f m03​(float m03)
    Set the value of the matrix element at column 0 and row 3.
    float m10()
    Return the value of the matrix element at column 1 and row 0.
    Matrix4f m10​(float m10)
    Set the value of the matrix element at column 1 and row 0.
    float m11()
    Return the value of the matrix element at column 1 and row 1.
    Matrix4f m11​(float m11)
    Set the value of the matrix element at column 1 and row 1.
    float m12()
    Return the value of the matrix element at column 1 and row 2.
    Matrix4f m12​(float m12)
    Set the value of the matrix element at column 1 and row 2.
    float m13()
    Return the value of the matrix element at column 1 and row 3.
    Matrix4f m13​(float m13)
    Set the value of the matrix element at column 1 and row 3.
    float m20()
    Return the value of the matrix element at column 2 and row 0.
    Matrix4f m20​(float m20)
    Set the value of the matrix element at column 2 and row 0.
    float m21()
    Return the value of the matrix element at column 2 and row 1.
    Matrix4f m21​(float m21)
    Set the value of the matrix element at column 2 and row 1.
    float m22()
    Return the value of the matrix element at column 2 and row 2.
    Matrix4f m22​(float m22)
    Set the value of the matrix element at column 2 and row 2.
    float m23()
    Return the value of the matrix element at column 2 and row 3.
    Matrix4f m23​(float m23)
    Set the value of the matrix element at column 2 and row 3.
    float m30()
    Return the value of the matrix element at column 3 and row 0.
    Matrix4f m30​(float m30)
    Set the value of the matrix element at column 3 and row 0.
    float m31()
    Return the value of the matrix element at column 3 and row 1.
    Matrix4f m31​(float m31)
    Set the value of the matrix element at column 3 and row 1.
    float m32()
    Return the value of the matrix element at column 3 and row 2.
    Matrix4f m32​(float m32)
    Set the value of the matrix element at column 3 and row 2.
    float m33()
    Return the value of the matrix element at column 3 and row 3.
    Matrix4f m33​(float m33)
    Set the value of the matrix element at column 3 and row 3.
    Matrix4f mul​(Matrix3x2fc right)
    Multiply this matrix by the supplied right matrix and store the result in this.
    Matrix4f mul​(Matrix3x2fc right, Matrix4f dest)
    Multiply this matrix by the supplied right matrix and store the result in dest.
    Matrix4f mul​(Matrix4fc right)
    Multiply this matrix by the supplied right matrix and store the result in this.
    Matrix4f mul​(Matrix4fc right, Matrix4f dest)
    Multiply this matrix by the supplied right matrix and store the result in dest.
    Matrix4f mul​(Matrix4x3fc right)
    Multiply this matrix by the supplied right matrix and store the result in this.
    Matrix4f mul​(Matrix4x3fc right, Matrix4f dest)
    Multiply this matrix by the supplied right matrix and store the result in dest.
    Matrix4f mul4x3ComponentWise​(Matrix4fc other)
    Component-wise multiply the upper 4x3 submatrices of this by other.
    Matrix4f mul4x3ComponentWise​(Matrix4fc other, Matrix4f dest)
    Component-wise multiply the upper 4x3 submatrices of this by other and store the result in dest.
    Matrix4f mulAffine​(Matrix4fc right)
    Multiply this matrix by the supplied right matrix, both of which are assumed to be affine, and store the result in this.
    Matrix4f mulAffine​(Matrix4fc right, Matrix4f dest)
    Multiply this matrix by the supplied right matrix, both of which are assumed to be affine, and store the result in dest.
    Matrix4f mulAffineR​(Matrix4fc right)
    Multiply this matrix by the supplied right matrix, which is assumed to be affine, and store the result in this.
    Matrix4f mulAffineR​(Matrix4fc right, Matrix4f dest)
    Multiply this matrix by the supplied right matrix, which is assumed to be affine, and store the result in dest.
    Matrix4f mulComponentWise​(Matrix4fc other)
    Component-wise multiply this by other.
    Matrix4f mulComponentWise​(Matrix4fc other, Matrix4f dest)
    Component-wise multiply this by other and store the result in dest.
    Matrix4f mulLocal​(Matrix4fc left)
    Pre-multiply this matrix by the supplied left matrix and store the result in this.
    Matrix4f mulLocal​(Matrix4fc left, Matrix4f dest)
    Pre-multiply this matrix by the supplied left matrix and store the result in dest.
    Matrix4f mulLocalAffine​(Matrix4fc left)
    Pre-multiply this matrix by the supplied left matrix, both of which are assumed to be affine, and store the result in this.
    Matrix4f mulLocalAffine​(Matrix4fc left, Matrix4f dest)
    Pre-multiply this matrix by the supplied left matrix, both of which are assumed to be affine, and store the result in dest.
    Matrix4f mulOrthoAffine​(Matrix4fc view)
    Multiply this orthographic projection matrix by the supplied affine view matrix.
    Matrix4f mulOrthoAffine​(Matrix4fc view, Matrix4f dest)
    Multiply this orthographic projection matrix by the supplied affine view matrix and store the result in dest.
    Matrix4f mulPerspectiveAffine​(Matrix4fc view)
    Multiply this symmetric perspective projection matrix by the supplied affine view matrix.
    Matrix4f mulPerspectiveAffine​(Matrix4fc view, Matrix4f dest)
    Multiply this symmetric perspective projection matrix by the supplied affine view matrix and store the result in dest.
    Matrix4f mulPerspectiveAffine​(Matrix4x3fc view)
    Multiply this symmetric perspective projection matrix by the supplied view matrix.
    Matrix4f mulPerspectiveAffine​(Matrix4x3fc view, Matrix4f dest)
    Multiply this symmetric perspective projection matrix by the supplied view matrix and store the result in dest.
    Matrix4f mulTranslationAffine​(Matrix4fc right, Matrix4f dest)
    Multiply this matrix, which is assumed to only contain a translation, by the supplied right matrix, which is assumed to be affine, and store the result in dest.
    Matrix4f normal()
    Compute a normal matrix from the upper left 3x3 submatrix of this and store it into the upper left 3x3 submatrix of this.
    Matrix3f normal​(Matrix3f dest)
    Compute a normal matrix from the upper left 3x3 submatrix of this and store it into dest.
    Matrix4f normal​(Matrix4f dest)
    Compute a normal matrix from the upper left 3x3 submatrix of this and store it into the upper left 3x3 submatrix of dest.
    Matrix4f normalize3x3()
    Normalize the upper left 3x3 submatrix of this matrix.
    Matrix3f normalize3x3​(Matrix3f dest)
    Normalize the upper left 3x3 submatrix of this matrix and store the result in dest.
    Matrix4f normalize3x3​(Matrix4f dest)
    Normalize the upper left 3x3 submatrix of this matrix and store the result in dest.
    Vector3f normalizedPositiveX​(Vector3f dir)
    Obtain the direction of +X before the transformation represented by this orthogonal matrix is applied.
    Vector3f normalizedPositiveY​(Vector3f dir)
    Obtain the direction of +Y before the transformation represented by this orthogonal matrix is applied.
    Vector3f normalizedPositiveZ​(Vector3f dir)
    Obtain the direction of +Z before the transformation represented by this orthogonal matrix is applied.
    Matrix4f obliqueZ​(float a, float b)
    Apply an oblique projection transformation to this matrix with the given values for a and b.
    Matrix4f obliqueZ​(float a, float b, Matrix4f dest)
    Apply an oblique projection transformation to this matrix with the given values for a and b and store the result in dest.
    Vector3f origin​(Vector3f dest)
    Obtain the position that gets transformed to the origin by this matrix.
    Vector3f originAffine​(Vector3f origin)
    Obtain the position that gets transformed to the origin by this affine matrix.
    Matrix4f ortho​(float left, float right, float bottom, float top, float zNear, float zFar)
    Apply an orthographic projection transformation for a right-handed coordinate system using OpenGL's NDC z range of [-1..+1] to this matrix.
    Matrix4f ortho​(float left, float right, float bottom, float top, float zNear, float zFar, boolean zZeroToOne)
    Apply an orthographic projection transformation for a right-handed coordinate system using the given NDC z range to this matrix.
    Matrix4f ortho​(float left, float right, float bottom, float top, float zNear, float zFar, boolean zZeroToOne, Matrix4f dest)
    Apply an orthographic projection transformation for a right-handed coordinate system using the given NDC z range to this matrix and store the result in dest.
    Matrix4f ortho​(float left, float right, float bottom, float top, float zNear, float zFar, Matrix4f dest)
    Apply an orthographic projection transformation for a right-handed coordinate system using OpenGL's NDC z range of [-1..+1] to this matrix and store the result in dest.
    Matrix4f ortho2D​(float left, float right, float bottom, float top)
    Apply an orthographic projection transformation for a right-handed coordinate system to this matrix.
    Matrix4f ortho2D​(float left, float right, float bottom, float top, Matrix4f dest)
    Apply an orthographic projection transformation for a right-handed coordinate system to this matrix and store the result in dest.
    Matrix4f ortho2DLH​(float left, float right, float bottom, float top)
    Apply an orthographic projection transformation for a left-handed coordinate system to this matrix.
    Matrix4f ortho2DLH​(float left, float right, float bottom, float top, Matrix4f dest)
    Apply an orthographic projection transformation for a left-handed coordinate system to this matrix and store the result in dest.
    Matrix4f orthoCrop​(Matrix4fc view, Matrix4f dest)
    Build an ortographic projection transformation that fits the view-projection transformation represented by this into the given affine view transformation.
    Matrix4f orthoLH​(float left, float right, float bottom, float top, float zNear, float zFar)
    Apply an orthographic projection transformation for a left-handed coordiante system using OpenGL's NDC z range of [-1..+1] to this matrix.
    Matrix4f orthoLH​(float left, float right, float bottom, float top, float zNear, float zFar, boolean zZeroToOne)
    Apply an orthographic projection transformation for a left-handed coordiante system using the given NDC z range to this matrix.
    Matrix4f orthoLH​(float left, float right, float bottom, float top, float zNear, float zFar, boolean zZeroToOne, Matrix4f dest)
    Apply an orthographic projection transformation for a left-handed coordiante system using the given NDC z range to this matrix and store the result in dest.
    Matrix4f orthoLH​(float left, float right, float bottom, float top, float zNear, float zFar, Matrix4f dest)
    Apply an orthographic projection transformation for a left-handed coordiante system using OpenGL's NDC z range of [-1..+1] to this matrix and store the result in dest.
    Matrix4f orthoSymmetric​(float width, float height, float zNear, float zFar)
    Apply a symmetric orthographic projection transformation for a right-handed coordinate system using OpenGL's NDC z range of [-1..+1] to this matrix.
    Matrix4f orthoSymmetric​(float width, float height, float zNear, float zFar, boolean zZeroToOne)
    Apply a symmetric orthographic projection transformation for a right-handed coordinate system using the given NDC z range to this matrix.
    Matrix4f orthoSymmetric​(float width, float height, float zNear, float zFar, boolean zZeroToOne, Matrix4f dest)
    Apply a symmetric orthographic projection transformation for a right-handed coordinate system using the given NDC z range to this matrix and store the result in dest.
    Matrix4f orthoSymmetric​(float width, float height, float zNear, float zFar, Matrix4f dest)
    Apply a symmetric orthographic projection transformation for a right-handed coordinate system using OpenGL's NDC z range of [-1..+1] to this matrix and store the result in dest.
    Matrix4f orthoSymmetricLH​(float width, float height, float zNear, float zFar)
    Apply a symmetric orthographic projection transformation for a left-handed coordinate system using OpenGL's NDC z range of [-1..+1] to this matrix.
    Matrix4f orthoSymmetricLH​(float width, float height, float zNear, float zFar, boolean zZeroToOne)
    Apply a symmetric orthographic projection transformation for a left-handed coordinate system using the given NDC z range to this matrix.
    Matrix4f orthoSymmetricLH​(float width, float height, float zNear, float zFar, boolean zZeroToOne, Matrix4f dest)
    Apply a symmetric orthographic projection transformation for a left-handed coordinate system using the given NDC z range to this matrix and store the result in dest.
    Matrix4f orthoSymmetricLH​(float width, float height, float zNear, float zFar, Matrix4f dest)
    Apply a symmetric orthographic projection transformation for a left-handed coordinate system using OpenGL's NDC z range of [-1..+1] to this matrix and store the result in dest.
    Matrix4f perspective​(float fovy, float aspect, float zNear, float zFar)
    Apply a symmetric perspective projection frustum transformation for a right-handed coordinate system using OpenGL's NDC z range of [-1..+1] to this matrix.
    Matrix4f perspective​(float fovy, float aspect, float zNear, float zFar, boolean zZeroToOne)
    Apply a symmetric perspective projection frustum transformation using for a right-handed coordinate system the given NDC z range to this matrix.
    Matrix4f perspective​(float fovy, float aspect, float zNear, float zFar, boolean zZeroToOne, Matrix4f dest)
    Apply a symmetric perspective projection frustum transformation for a right-handed coordinate system using the given NDC z range to this matrix and store the result in dest.
    Matrix4f perspective​(float fovy, float aspect, float zNear, float zFar, Matrix4f dest)
    Apply a symmetric perspective projection frustum transformation for a right-handed coordinate system using OpenGL's NDC z range of [-1..+1] to this matrix and store the result in dest.
    float perspectiveFar()
    Extract the far clip plane distance from this perspective projection matrix.
    float perspectiveFov()
    Return the vertical field-of-view angle in radians of this perspective transformation matrix.
    Matrix4f perspectiveFrustumSlice​(float near, float far, Matrix4f dest)
    Change the near and far clip plane distances of this perspective frustum transformation matrix and store the result in dest.
    Vector3f perspectiveInvOrigin​(Vector3f dest)
    Compute the eye/origin of the inverse of the perspective frustum transformation defined by this matrix, which can be the inverse of a projection matrix or the inverse of a combined modelview-projection matrix, and store the result in the given dest.
    Matrix4f perspectiveLH​(float fovy, float aspect, float zNear, float zFar)
    Apply a symmetric perspective projection frustum transformation for a left-handed coordinate system using OpenGL's NDC z range of [-1..+1] to this matrix.
    Matrix4f perspectiveLH​(float fovy, float aspect, float zNear, float zFar, boolean zZeroToOne)
    Apply a symmetric perspective projection frustum transformation for a left-handed coordinate system using the given NDC z range to this matrix.
    Matrix4f perspectiveLH​(float fovy, float aspect, float zNear, float zFar, boolean zZeroToOne, Matrix4f dest)
    Apply a symmetric perspective projection frustum transformation for a left-handed coordinate system using the given NDC z range to this matrix and store the result in dest.
    Matrix4f perspectiveLH​(float fovy, float aspect, float zNear, float zFar, Matrix4f dest)
    Apply a symmetric perspective projection frustum transformation for a left-handed coordinate system using OpenGL's NDC z range of [-1..+1] to this matrix and store the result in dest.
    float perspectiveNear()
    Extract the near clip plane distance from this perspective projection matrix.
    Matrix4f perspectiveOffCenter​(float fovy, float offAngleX, float offAngleY, float aspect, float zNear, float zFar)
    Apply an asymmetric off-center perspective projection frustum transformation for a right-handed coordinate system using OpenGL's NDC z range of [-1..+1] to this matrix.
    Matrix4f perspectiveOffCenter​(float fovy, float offAngleX, float offAngleY, float aspect, float zNear, float zFar, boolean zZeroToOne)
    Apply an asymmetric off-center perspective projection frustum transformation using for a right-handed coordinate system the given NDC z range to this matrix.
    Matrix4f perspectiveOffCenter​(float fovy, float offAngleX, float offAngleY, float aspect, float zNear, float zFar, boolean zZeroToOne, Matrix4f dest)
    Apply an asymmetric off-center perspective projection frustum transformation for a right-handed coordinate system using the given NDC z range to this matrix and store the result in dest.
    Matrix4f perspectiveOffCenter​(float fovy, float offAngleX, float offAngleY, float aspect, float zNear, float zFar, Matrix4f dest)
    Apply an asymmetric off-center perspective projection frustum transformation for a right-handed coordinate system using OpenGL's NDC z range of [-1..+1] to this matrix and store the result in dest.
    Vector3f perspectiveOrigin​(Vector3f origin)
    Compute the eye/origin of the perspective frustum transformation defined by this matrix, which can be a projection matrix or a combined modelview-projection matrix, and store the result in the given origin.
    Matrix4f perspectiveRect​(float width, float height, float zNear, float zFar)
    Apply a symmetric perspective projection frustum transformation for a right-handed coordinate system using OpenGL's NDC z range of [-1..+1] to this matrix.
    Matrix4f perspectiveRect​(float width, float height, float zNear, float zFar, boolean zZeroToOne)
    Apply a symmetric perspective projection frustum transformation using for a right-handed coordinate system the given NDC z range to this matrix.
    Matrix4f perspectiveRect​(float width, float height, float zNear, float zFar, boolean zZeroToOne, Matrix4f dest)
    Apply a symmetric perspective projection frustum transformation for a right-handed coordinate system using the given NDC z range to this matrix and store the result in dest.
    Matrix4f perspectiveRect​(float width, float height, float zNear, float zFar, Matrix4f dest)
    Apply a symmetric perspective projection frustum transformation for a right-handed coordinate system using OpenGL's NDC z range of [-1..+1] to this matrix and store the result in dest.
    Matrix4f pick​(float x, float y, float width, float height, int[] viewport)
    Apply a picking transformation to this matrix using the given window coordinates (x, y) as the pick center and the given (width, height) as the size of the picking region in window coordinates.
    Matrix4f pick​(float x, float y, float width, float height, int[] viewport, Matrix4f dest)
    Apply a picking transformation to this matrix using the given window coordinates (x, y) as the pick center and the given (width, height) as the size of the picking region in window coordinates, and store the result in dest.
    Vector3f positiveX​(Vector3f dir)
    Obtain the direction of +X before the transformation represented by this matrix is applied.
    Vector3f positiveY​(Vector3f dir)
    Obtain the direction of +Y before the transformation represented by this matrix is applied.
    Vector3f positiveZ​(Vector3f dir)
    Obtain the direction of +Z before the transformation represented by this matrix is applied.
    Vector3f project​(float x, float y, float z, int[] viewport, Vector3f winCoordsDest)
    Project the given (x, y, z) position via this matrix using the specified viewport and store the resulting window coordinates in winCoordsDest.
    Vector4f project​(float x, float y, float z, int[] viewport, Vector4f winCoordsDest)
    Project the given (x, y, z) position via this matrix using the specified viewport and store the resulting window coordinates in winCoordsDest.
    Vector3f project​(Vector3fc position, int[] viewport, Vector3f winCoordsDest)
    Project the given position via this matrix using the specified viewport and store the resulting window coordinates in winCoordsDest.
    Vector4f project​(Vector3fc position, int[] viewport, Vector4f winCoordsDest)
    Project the given position via this matrix using the specified viewport and store the resulting window coordinates in winCoordsDest.
    Matrix4f projectedGridRange​(Matrix4fc projector, float sLower, float sUpper, Matrix4f dest)
    Compute the range matrix for the Projected Grid transformation as described in chapter "2.4.2 Creating the range conversion matrix" of the paper Real-time water rendering - Introducing the projected grid concept based on the inverse of the view-projection matrix which is assumed to be this, and store that range matrix into dest.
    static void projViewFromRectangle​(Vector3f eye, Vector3f p, Vector3f x, Vector3f y, float nearFarDist, boolean zeroToOne, Matrix4f projDest, Matrix4f viewDest)
    Create a view and projection matrix from a given eye position, a given bottom left corner position p of the near plane rectangle and the extents of the near plane rectangle along its local x and y axes, and store the resulting matrices in projDest and viewDest.
    int properties()
    Return the assumed properties of this matrix.
    void readExternal​(java.io.ObjectInput in)  
    Matrix4f reflect​(float a, float b, float c, float d)
    Apply a mirror/reflection transformation to this matrix that reflects about the given plane specified via the equation x*a + y*b + z*c + d = 0.
    Matrix4f reflect​(float nx, float ny, float nz, float px, float py, float pz)
    Apply a mirror/reflection transformation to this matrix that reflects about the given plane specified via the plane normal and a point on the plane.
    Matrix4f reflect​(float nx, float ny, float nz, float px, float py, float pz, Matrix4f dest)
    Apply a mirror/reflection transformation to this matrix that reflects about the given plane specified via the plane normal and a point on the plane, and store the result in dest.
    Matrix4f reflect​(float a, float b, float c, float d, Matrix4f dest)
    Apply a mirror/reflection transformation to this matrix that reflects about the given plane specified via the equation x*a + y*b + z*c + d = 0 and store the result in dest.
    Matrix4f reflect​(Quaternionfc orientation, Vector3fc point)
    Apply a mirror/reflection transformation to this matrix that reflects about a plane specified via the plane orientation and a point on the plane.
    Matrix4f reflect​(Quaternionfc orientation, Vector3fc point, Matrix4f dest)
    Apply a mirror/reflection transformation to this matrix that reflects about a plane specified via the plane orientation and a point on the plane, and store the result in dest.
    Matrix4f reflect​(Vector3fc normal, Vector3fc point)
    Apply a mirror/reflection transformation to this matrix that reflects about the given plane specified via the plane normal and a point on the plane.
    Matrix4f reflect​(Vector3fc normal, Vector3fc point, Matrix4f dest)
    Apply a mirror/reflection transformation to this matrix that reflects about the given plane specified via the plane normal and a point on the plane, and store the result in dest.
    Matrix4f reflection​(float a, float b, float c, float d)
    Set this matrix to a mirror/reflection transformation that reflects about the given plane specified via the equation x*a + y*b + z*c + d = 0.
    Matrix4f reflection​(float nx, float ny, float nz, float px, float py, float pz)
    Set this matrix to a mirror/reflection transformation that reflects about the given plane specified via the plane normal and a point on the plane.
    Matrix4f reflection​(Quaternionfc orientation, Vector3fc point)
    Set this matrix to a mirror/reflection transformation that reflects about a plane specified via the plane orientation and a point on the plane.
    Matrix4f reflection​(Vector3fc normal, Vector3fc point)
    Set this matrix to a mirror/reflection transformation that reflects about the given plane specified via the plane normal and a point on the plane.
    Matrix4f rotate​(float ang, float x, float y, float z)
    Apply rotation to this matrix by rotating the given amount of radians about the specified (x, y, z) axis.
    Matrix4f rotate​(float ang, float x, float y, float z, Matrix4f dest)
    Apply rotation to this matrix by rotating the given amount of radians about the specified (x, y, z) axis and store the result in dest.
    Matrix4f rotate​(float angle, Vector3fc axis)
    Apply a rotation transformation, rotating the given radians about the specified axis, to this matrix.
    Matrix4f rotate​(float angle, Vector3fc axis, Matrix4f dest)
    Apply a rotation transformation, rotating the given radians about the specified axis and store the result in dest.
    Matrix4f rotate​(AxisAngle4f axisAngle)
    Apply a rotation transformation, rotating about the given AxisAngle4f, to this matrix.
    Matrix4f rotate​(AxisAngle4f axisAngle, Matrix4f dest)
    Apply a rotation transformation, rotating about the given AxisAngle4f and store the result in dest.
    Matrix4f rotate​(Quaternionfc quat)
    Apply the rotation transformation of the given Quaternionfc to this matrix.
    Matrix4f rotate​(Quaternionfc quat, Matrix4f dest)
    Apply the rotation transformation of the given Quaternionfc to this matrix and store the result in dest.
    Matrix4f rotateAffine​(float ang, float x, float y, float z)
    Apply rotation to this affine matrix by rotating the given amount of radians about the specified (x, y, z) axis.
    Matrix4f rotateAffine​(float ang, float x, float y, float z, Matrix4f dest)
    Apply rotation to this affine matrix by rotating the given amount of radians about the specified (x, y, z) axis and store the result in dest.
    Matrix4f rotateAffine​(Quaternionfc quat)
    Apply the rotation transformation of the given Quaternionfc to this matrix.
    Matrix4f rotateAffine​(Quaternionfc quat, Matrix4f dest)
    Apply the rotation transformation of the given Quaternionfc to this affine matrix and store the result in dest.
    Matrix4f rotateAffineXYZ​(float angleX, float angleY, float angleZ)
    Apply rotation of angleX radians about the X axis, followed by a rotation of angleY radians about the Y axis and followed by a rotation of angleZ radians about the Z axis.
    Matrix4f rotateAffineXYZ​(float angleX, float angleY, float angleZ, Matrix4f dest)
    Apply rotation of angleX radians about the X axis, followed by a rotation of angleY radians about the Y axis and followed by a rotation of angleZ radians about the Z axis and store the result in dest.
    Matrix4f rotateAffineYXZ​(float angleY, float angleX, float angleZ)
    Apply rotation of angleY radians about the Y axis, followed by a rotation of angleX radians about the X axis and followed by a rotation of angleZ radians about the Z axis.
    Matrix4f rotateAffineYXZ​(float angleY, float angleX, float angleZ, Matrix4f dest)
    Apply rotation of angleY radians about the Y axis, followed by a rotation of angleX radians about the X axis and followed by a rotation of angleZ radians about the Z axis and store the result in dest.
    Matrix4f rotateAffineZYX​(float angleZ, float angleY, float angleX)
    Apply rotation of angleZ radians about the Z axis, followed by a rotation of angleY radians about the Y axis and followed by a rotation of angleX radians about the X axis.
    Matrix4f rotateAffineZYX​(float angleZ, float angleY, float angleX, Matrix4f dest)
    Apply rotation of angleZ radians about the Z axis, followed by a rotation of angleY radians about the Y axis and followed by a rotation of angleX radians about the X axis and store the result in dest.
    Matrix4f rotateAround​(Quaternionfc quat, float ox, float oy, float oz)
    Apply the rotation transformation of the given Quaternionfc to this matrix while using (ox, oy, oz) as the rotation origin.
    Matrix4f rotateAround​(Quaternionfc quat, float ox, float oy, float oz, Matrix4f dest)
    Apply the rotation - and possibly scaling - transformation of the given Quaternionfc to this matrix while using (ox, oy, oz) as the rotation origin, and store the result in dest.
    Matrix4f rotateAroundAffine​(Quaternionfc quat, float ox, float oy, float oz, Matrix4f dest)
    Apply the rotation - and possibly scaling - transformation of the given Quaternionfc to this affine matrix while using (ox, oy, oz) as the rotation origin, and store the result in dest.
    Matrix4f rotateAroundLocal​(Quaternionfc quat, float ox, float oy, float oz)
    Pre-multiply the rotation transformation of the given Quaternionfc to this matrix while using (ox, oy, oz) as the rotation origin.
    Matrix4f rotateAroundLocal​(Quaternionfc quat, float ox, float oy, float oz, Matrix4f dest)
    Pre-multiply the rotation - and possibly scaling - transformation of the given Quaternionfc to this matrix while using (ox, oy, oz) as the rotation origin, and store the result in dest.
    Matrix4f rotateLocal​(float ang, float x, float y, float z)
    Pre-multiply a rotation to this matrix by rotating the given amount of radians about the specified (x, y, z) axis.
    Matrix4f rotateLocal​(float ang, float x, float y, float z, Matrix4f dest)
    Pre-multiply a rotation to this matrix by rotating the given amount of radians about the specified (x, y, z) axis and store the result in dest.
    Matrix4f rotateLocal​(Quaternionfc quat)
    Pre-multiply the rotation transformation of the given Quaternionfc to this matrix.
    Matrix4f rotateLocal​(Quaternionfc quat, Matrix4f dest)
    Pre-multiply the rotation transformation of the given Quaternionfc to this matrix and store the result in dest.
    Matrix4f rotateLocalX​(float ang)
    Pre-multiply a rotation to this matrix by rotating the given amount of radians about the X axis.
    Matrix4f rotateLocalX​(float ang, Matrix4f dest)
    Pre-multiply a rotation around the X axis to this matrix by rotating the given amount of radians about the X axis and store the result in dest.
    Matrix4f rotateLocalY​(float ang)
    Pre-multiply a rotation to this matrix by rotating the given amount of radians about the Y axis.
    Matrix4f rotateLocalY​(float ang, Matrix4f dest)
    Pre-multiply a rotation around the Y axis to this matrix by rotating the given amount of radians about the Y axis and store the result in dest.
    Matrix4f rotateLocalZ​(float ang)
    Pre-multiply a rotation to this matrix by rotating the given amount of radians about the Z axis.
    Matrix4f rotateLocalZ​(float ang, Matrix4f dest)
    Pre-multiply a rotation around the Z axis to this matrix by rotating the given amount of radians about the Z axis and store the result in dest.
    Matrix4f rotateTowards​(float dirX, float dirY, float dirZ, float upX, float upY, float upZ)
    Apply a model transformation to this matrix for a right-handed coordinate system, that aligns the local +Z axis with (dirX, dirY, dirZ).
    Matrix4f rotateTowards​(float dirX, float dirY, float dirZ, float upX, float upY, float upZ, Matrix4f dest)
    Apply a model transformation to this matrix for a right-handed coordinate system, that aligns the local +Z axis with (dirX, dirY, dirZ) and store the result in dest.
    Matrix4f rotateTowards​(Vector3fc dir, Vector3fc up)
    Apply a model transformation to this matrix for a right-handed coordinate system, that aligns the local +Z axis with dir.
    Matrix4f rotateTowards​(Vector3fc dir, Vector3fc up, Matrix4f dest)
    Apply a model transformation to this matrix for a right-handed coordinate system, that aligns the local +Z axis with dir and store the result in dest.
    Matrix4f rotateTowardsXY​(float dirX, float dirY)
    Apply rotation about the Z axis to align the local +X towards (dirX, dirY).
    Matrix4f rotateTowardsXY​(float dirX, float dirY, Matrix4f dest)
    Apply rotation about the Z axis to align the local +X towards (dirX, dirY) and store the result in dest.
    Matrix4f rotateTranslation​(float ang, float x, float y, float z, Matrix4f dest)
    Apply rotation to this matrix, which is assumed to only contain a translation, by rotating the given amount of radians about the specified (x, y, z) axis and store the result in dest.
    Matrix4f rotateTranslation​(Quaternionfc quat, Matrix4f dest)
    Apply the rotation transformation of the given Quaternionfc to this matrix, which is assumed to only contain a translation, and store the result in dest.
    Matrix4f rotateX​(float ang)
    Apply rotation about the X axis to this matrix by rotating the given amount of radians.
    Matrix4f rotateX​(float ang, Matrix4f dest)
    Apply rotation about the X axis to this matrix by rotating the given amount of radians and store the result in dest.
    Matrix4f rotateXYZ​(float angleX, float angleY, float angleZ)
    Apply rotation of angleX radians about the X axis, followed by a rotation of angleY radians about the Y axis and followed by a rotation of angleZ radians about the Z axis.
    Matrix4f rotateXYZ​(float angleX, float angleY, float angleZ, Matrix4f dest)
    Apply rotation of angleX radians about the X axis, followed by a rotation of angleY radians about the Y axis and followed by a rotation of angleZ radians about the Z axis and store the result in dest.
    Matrix4f rotateXYZ​(Vector3f angles)
    Apply rotation of angles.x radians about the X axis, followed by a rotation of angles.y radians about the Y axis and followed by a rotation of angles.z radians about the Z axis.
    Matrix4f rotateY​(float ang)
    Apply rotation about the Y axis to this matrix by rotating the given amount of radians.
    Matrix4f rotateY​(float ang, Matrix4f dest)
    Apply rotation about the Y axis to this matrix by rotating the given amount of radians and store the result in dest.
    Matrix4f rotateYXZ​(float angleY, float angleX, float angleZ)
    Apply rotation of angleY radians about the Y axis, followed by a rotation of angleX radians about the X axis and followed by a rotation of angleZ radians about the Z axis.
    Matrix4f rotateYXZ​(float angleY, float angleX, float angleZ, Matrix4f dest)
    Apply rotation of angleY radians about the Y axis, followed by a rotation of angleX radians about the X axis and followed by a rotation of angleZ radians about the Z axis and store the result in dest.
    Matrix4f rotateYXZ​(Vector3f angles)
    Apply rotation of angles.y radians about the Y axis, followed by a rotation of angles.x radians about the X axis and followed by a rotation of angles.z radians about the Z axis.
    Matrix4f rotateZ​(float ang)
    Apply rotation about the Z axis to this matrix by rotating the given amount of radians.
    Matrix4f rotateZ​(float ang, Matrix4f dest)
    Apply rotation about the Z axis to this matrix by rotating the given amount of radians and store the result in dest.
    Matrix4f rotateZYX​(float angleZ, float angleY, float angleX)
    Apply rotation of angleZ radians about the Z axis, followed by a rotation of angleY radians about the Y axis and followed by a rotation of angleX radians about the X axis.
    Matrix4f rotateZYX​(float angleZ, float angleY, float angleX, Matrix4f dest)
    Apply rotation of angleZ radians about the Z axis, followed by a rotation of angleY radians about the Y axis and followed by a rotation of angleX radians about the X axis and store the result in dest.
    Matrix4f rotateZYX​(Vector3f angles)
    Apply rotation of angles.z radians about the Z axis, followed by a rotation of angles.y radians about the Y axis and followed by a rotation of angles.x radians about the X axis.
    Matrix4f rotation​(float angle, float x, float y, float z)
    Set this matrix to a rotation matrix which rotates the given radians about a given axis.
    Matrix4f rotation​(float angle, Vector3fc axis)
    Set this matrix to a rotation matrix which rotates the given radians about a given axis.
    Matrix4f rotation​(AxisAngle4f axisAngle)
    Set this matrix to a rotation transformation using the given AxisAngle4f.
    Matrix4f rotation​(Quaternionfc quat)
    Set this matrix to the rotation transformation of the given Quaternionfc.
    Matrix4f rotationAround​(Quaternionfc quat, float ox, float oy, float oz)
    Set this matrix to a transformation composed of a rotation of the specified Quaternionfc while using (ox, oy, oz) as the rotation origin.
    Matrix4f rotationTowards​(float dirX, float dirY, float dirZ, float upX, float upY, float upZ)
    Set this matrix to a model transformation for a right-handed coordinate system, that aligns the local -z axis with (dirX, dirY, dirZ).
    Matrix4f rotationTowards​(Vector3fc dir, Vector3fc up)
    Set this matrix to a model transformation for a right-handed coordinate system, that aligns the local -z axis with dir.
    Matrix4f rotationTowardsXY​(float dirX, float dirY)
    Set this matrix to a rotation transformation about the Z axis to align the local +X towards (dirX, dirY).
    Matrix4f rotationX​(float ang)
    Set this matrix to a rotation transformation about the X axis.
    Matrix4f rotationXYZ​(float angleX, float angleY, float angleZ)
    Set this matrix to a rotation of angleX radians about the X axis, followed by a rotation of angleY radians about the Y axis and followed by a rotation of angleZ radians about the Z axis.
    Matrix4f rotationY​(float ang)
    Set this matrix to a rotation transformation about the Y axis.
    Matrix4f rotationYXZ​(float angleY, float angleX, float angleZ)
    Set this matrix to a rotation of angleY radians about the Y axis, followed by a rotation of angleX radians about the X axis and followed by a rotation of angleZ radians about the Z axis.
    Matrix4f rotationZ​(float ang)
    Set this matrix to a rotation transformation about the Z axis.
    Matrix4f rotationZYX​(float angleZ, float angleY, float angleX)
    Set this matrix to a rotation of angleZ radians about the Z axis, followed by a rotation of angleY radians about the Y axis and followed by a rotation of angleX radians about the X axis.
    Matrix4f scale​(float xyz)
    Apply scaling to this matrix by uniformly scaling all base axes by the given xyz factor.
    Matrix4f scale​(float x, float y, float z)
    Apply scaling to this matrix by scaling the base axes by the given sx, sy and sz factors.
    Matrix4f scale​(float x, float y, float z, Matrix4f dest)
    Apply scaling to this matrix by scaling the base axes by the given x, y and z factors and store the result in dest.
    Matrix4f scale​(float xyz, Matrix4f dest)
    Apply scaling to this matrix by uniformly scaling all base axes by the given xyz factor and store the result in dest.
    Matrix4f scale​(Vector3fc xyz)
    Apply scaling to this matrix by scaling the base axes by the given xyz.x, xyz.y and xyz.z factors, respectively.
    Matrix4f scale​(Vector3fc xyz, Matrix4f dest)
    Apply scaling to this matrix by scaling the base axes by the given xyz.x, xyz.y and xyz.z factors, respectively and store the result in dest.
    Matrix4f scaleAround​(float factor, float ox, float oy, float oz)
    Apply scaling to this matrix by scaling all three base axes by the given factor while using (ox, oy, oz) as the scaling origin.
    Matrix4f scaleAround​(float sx, float sy, float sz, float ox, float oy, float oz)
    Apply scaling to this matrix by scaling the base axes by the given sx, sy and sz factors while using (ox, oy, oz) as the scaling origin.
    Matrix4f scaleAround​(float sx, float sy, float sz, float ox, float oy, float oz, Matrix4f dest)
    Apply scaling to this matrix by scaling the base axes by the given sx, sy and sz factors while using (ox, oy, oz) as the scaling origin, and store the result in dest.
    Matrix4f scaleAround​(float factor, float ox, float oy, float oz, Matrix4f dest)
    Apply scaling to this matrix by scaling all three base axes by the given factor while using (ox, oy, oz) as the scaling origin, and store the result in dest.
    Matrix4f scaleAroundLocal​(float factor, float ox, float oy, float oz)
    Pre-multiply scaling to this matrix by scaling all three base axes by the given factor while using (ox, oy, oz) as the scaling origin.
    Matrix4f scaleAroundLocal​(float sx, float sy, float sz, float ox, float oy, float oz)
    Pre-multiply scaling to this matrix by scaling the base axes by the given sx, sy and sz factors while using (ox, oy, oz) as the scaling origin.
    Matrix4f scaleAroundLocal​(float sx, float sy, float sz, float ox, float oy, float oz, Matrix4f dest)
    Pre-multiply scaling to this matrix by scaling the base axes by the given sx, sy and sz factors while using the given (ox, oy, oz) as the scaling origin, and store the result in dest.
    Matrix4f scaleAroundLocal​(float factor, float ox, float oy, float oz, Matrix4f dest)
    Pre-multiply scaling to this matrix by scaling all three base axes by the given factor while using (ox, oy, oz) as the scaling origin, and store the result in dest.
    Matrix4f scaleLocal​(float xyz)
    Pre-multiply scaling to this matrix by scaling the base axes by the given xyz factor.
    Matrix4f scaleLocal​(float x, float y, float z)
    Pre-multiply scaling to this matrix by scaling the base axes by the given x, y and z factors.
    Matrix4f scaleLocal​(float x, float y, float z, Matrix4f dest)
    Pre-multiply scaling to this matrix by scaling the base axes by the given x, y and z factors and store the result in dest.
    Matrix4f scaleLocal​(float xyz, Matrix4f dest)
    Pre-multiply scaling to this matrix by scaling all base axes by the given xyz factor, and store the result in dest.
    Matrix4f scaleXY​(float x, float y)
    Apply scaling to this matrix by scaling the X axis by x and the Y axis by y.
    Matrix4f scaleXY​(float x, float y, Matrix4f dest)
    Apply scaling to this matrix by by scaling the X axis by x and the Y axis by y and store the result in dest.
    Matrix4f scaling​(float factor)
    Set this matrix to be a simple scale matrix, which scales all axes uniformly by the given factor.
    Matrix4f scaling​(float x, float y, float z)
    Set this matrix to be a simple scale matrix.
    Matrix4f scaling​(Vector3fc xyz)
    Set this matrix to be a simple scale matrix which scales the base axes by xyz.x, xyz.y and xyz.z respectively.
    Matrix4f set​(float[] m)
    Set the values in the matrix using a float array that contains the matrix elements in column-major order.
    Matrix4f set​(float[] m, int off)
    Set the values in the matrix using a float array that contains the matrix elements in column-major order.
    Matrix4f set​(float m00, float m01, float m02, float m03, float m10, float m11, float m12, float m13, float m20, float m21, float m22, float m23, float m30, float m31, float m32, float m33)
    Set the values within this matrix to the supplied float values.
    Matrix4f set​(java.nio.ByteBuffer buffer)
    Set the values of this matrix by reading 16 float values from the given ByteBuffer in column-major order, starting at its current position.
    Matrix4f set​(java.nio.FloatBuffer buffer)
    Set the values of this matrix by reading 16 float values from the given FloatBuffer in column-major order, starting at its current position.
    Matrix4f set​(AxisAngle4d axisAngle)
    Set this matrix to be equivalent to the rotation specified by the given AxisAngle4d.
    Matrix4f set​(AxisAngle4f axisAngle)
    Set this matrix to be equivalent to the rotation specified by the given AxisAngle4f.
    Matrix4f set​(Matrix3fc mat)
    Set the upper left 3x3 submatrix of this Matrix4f to the given Matrix3fc and the rest to identity.
    Matrix4f set​(Matrix4dc m)
    Store the values of the given matrix m into this matrix.
    Matrix4f set​(Matrix4fc m)
    Store the values of the given matrix m into this matrix.
    Matrix4f set​(Matrix4x3fc m)
    Store the values of the given matrix m into this matrix and set the other matrix elements to identity.
    Matrix4f set​(Quaterniondc q)
    Set this matrix to be equivalent to the rotation specified by the given Quaterniondc.
    Matrix4f set​(Quaternionfc q)
    Set this matrix to be equivalent to the rotation specified by the given Quaternionfc.
    Matrix4f set​(Vector4fc col0, Vector4fc col1, Vector4fc col2, Vector4fc col3)
    Set the four columns of this matrix to the supplied vectors, respectively.
    Matrix4f set3x3​(Matrix3fc mat)
    Set the upper left 3x3 submatrix of this Matrix4f to the given Matrix3fc and don't change the other elements.
    Matrix4f set3x3​(Matrix4f mat)
    Set the upper left 3x3 submatrix of this Matrix4f to that of the given Matrix4f and don't change the other elements.
    Matrix4f set4x3​(Matrix4f mat)
    Set the upper 4x3 submatrix of this Matrix4f to the upper 4x3 submatrix of the given Matrix4f and don't change the other elements.
    Matrix4f set4x3​(Matrix4x3fc mat)
    Set the upper 4x3 submatrix of this Matrix4f to the given Matrix4x3fc and don't change the other elements.
    Matrix4f setColumn​(int column, Vector4fc src)
    Set the column at the given column index, starting with 0.
    Matrix4f setFromAddress​(long address)
    Set the values of this matrix by reading 16 float values from off-heap memory in column-major order, starting at the given address.
    Matrix4f setFromIntrinsic​(float alphaX, float alphaY, float gamma, float u0, float v0, int imgWidth, int imgHeight, float near, float far)
    Set this matrix to represent a perspective projection equivalent to the given intrinsic camera calibration parameters.
    Matrix4f setFrustum​(float left, float right, float bottom, float top, float zNear, float zFar)
    Set this matrix to be an arbitrary perspective projection frustum transformation for a right-handed coordinate system using OpenGL's NDC z range of [-1..+1].
    Matrix4f setFrustum​(float left, float right, float bottom, float top, float zNear, float zFar, boolean zZeroToOne)
    Set this matrix to be an arbitrary perspective projection frustum transformation for a right-handed coordinate system using the given NDC z range.
    Matrix4f setFrustumLH​(float left, float right, float bottom, float top, float zNear, float zFar)
    Set this matrix to be an arbitrary perspective projection frustum transformation for a left-handed coordinate system using OpenGL's NDC z range of [-1..+1].
    Matrix4f setFrustumLH​(float left, float right, float bottom, float top, float zNear, float zFar, boolean zZeroToOne)
    Set this matrix to be an arbitrary perspective projection frustum transformation for a left-handed coordinate system using OpenGL's NDC z range of [-1..+1].
    Matrix4f setLookAlong​(float dirX, float dirY, float dirZ, float upX, float upY, float upZ)
    Set this matrix to a rotation transformation to make -z point along dir.
    Matrix4f setLookAlong​(Vector3fc dir, Vector3fc up)
    Set this matrix to a rotation transformation to make -z point along dir.
    Matrix4f setLookAt​(float eyeX, float eyeY, float eyeZ, float centerX, float centerY, float centerZ, float upX, float upY, float upZ)
    Set this matrix to be a "lookat" transformation for a right-handed coordinate system, that aligns -z with center - eye.
    Matrix4f setLookAt​(Vector3fc eye, Vector3fc center, Vector3fc up)
    Set this matrix to be a "lookat" transformation for a right-handed coordinate system, that aligns -z with center - eye.
    Matrix4f setLookAtLH​(float eyeX, float eyeY, float eyeZ, float centerX, float centerY, float centerZ, float upX, float upY, float upZ)
    Set this matrix to be a "lookat" transformation for a left-handed coordinate system, that aligns +z with center - eye.
    Matrix4f setLookAtLH​(Vector3fc eye, Vector3fc center, Vector3fc up)
    Set this matrix to be a "lookat" transformation for a left-handed coordinate system, that aligns +z with center - eye.
    Matrix4f setOrtho​(float left, float right, float bottom, float top, float zNear, float zFar)
    Set this matrix to be an orthographic projection transformation for a right-handed coordinate system using OpenGL's NDC z range of [-1..+1].
    Matrix4f setOrtho​(float left, float right, float bottom, float top, float zNear, float zFar, boolean zZeroToOne)
    Set this matrix to be an orthographic projection transformation for a right-handed coordinate system using the given NDC z range.
    Matrix4f setOrtho2D​(float left, float right, float bottom, float top)
    Set this matrix to be an orthographic projection transformation for a right-handed coordinate system.
    Matrix4f setOrtho2DLH​(float left, float right, float bottom, float top)
    Set this matrix to be an orthographic projection transformation for a left-handed coordinate system.
    Matrix4f setOrthoLH​(float left, float right, float bottom, float top, float zNear, float zFar)
    Set this matrix to be an orthographic projection transformation for a left-handed coordinate system using OpenGL's NDC z range of [-1..+1].
    Matrix4f setOrthoLH​(float left, float right, float bottom, float top, float zNear, float zFar, boolean zZeroToOne)
    Set this matrix to be an orthographic projection transformation for a left-handed coordinate system using the given NDC z range.
    Matrix4f setOrthoSymmetric​(float width, float height, float zNear, float zFar)
    Set this matrix to be a symmetric orthographic projection transformation for a right-handed coordinate system using OpenGL's NDC z range of [-1..+1].
    Matrix4f setOrthoSymmetric​(float width, float height, float zNear, float zFar, boolean zZeroToOne)
    Set this matrix to be a symmetric orthographic projection transformation for a right-handed coordinate system using the given NDC z range.
    Matrix4f setOrthoSymmetricLH​(float width, float height, float zNear, float zFar)
    Set this matrix to be a symmetric orthographic projection transformation for a left-handed coordinate system using OpenGL's NDC z range of [-1..+1].
    Matrix4f setOrthoSymmetricLH​(float width, float height, float zNear, float zFar, boolean zZeroToOne)
    Set this matrix to be a symmetric orthographic projection transformation for a left-handed coordinate system using the given NDC z range.
    Matrix4f setPerspective​(float fovy, float aspect, float zNear, float zFar)
    Set this matrix to be a symmetric perspective projection frustum transformation for a right-handed coordinate system using OpenGL's NDC z range of [-1..+1].
    Matrix4f setPerspective​(float fovy, float aspect, float zNear, float zFar, boolean zZeroToOne)
    Set this matrix to be a symmetric perspective projection frustum transformation for a right-handed coordinate system using the given NDC z range.
    Matrix4f setPerspectiveLH​(float fovy, float aspect, float zNear, float zFar)
    Set this matrix to be a symmetric perspective projection frustum transformation for a left-handed coordinate system using OpenGL's NDC z range of [-1..+1].
    Matrix4f setPerspectiveLH​(float fovy, float aspect, float zNear, float zFar, boolean zZeroToOne)
    Set this matrix to be a symmetric perspective projection frustum transformation for a left-handed coordinate system using the given NDC z range of [-1..+1].
    Matrix4f setPerspectiveOffCenter​(float fovy, float offAngleX, float offAngleY, float aspect, float zNear, float zFar)
    Set this matrix to be an asymmetric off-center perspective projection frustum transformation for a right-handed coordinate system using OpenGL's NDC z range of [-1..+1].
    Matrix4f setPerspectiveOffCenter​(float fovy, float offAngleX, float offAngleY, float aspect, float zNear, float zFar, boolean zZeroToOne)
    Set this matrix to be an asymmetric off-center perspective projection frustum transformation for a right-handed coordinate system using the given NDC z range.
    Matrix4f setPerspectiveRect​(float width, float height, float zNear, float zFar)
    Set this matrix to be a symmetric perspective projection frustum transformation for a right-handed coordinate system using OpenGL's NDC z range of [-1..+1].
    Matrix4f setPerspectiveRect​(float width, float height, float zNear, float zFar, boolean zZeroToOne)
    Set this matrix to be a symmetric perspective projection frustum transformation for a right-handed coordinate system using the given NDC z range.
    Matrix4f setRotationXYZ​(float angleX, float angleY, float angleZ)
    Set only the upper left 3x3 submatrix of this matrix to a rotation of angleX radians about the X axis, followed by a rotation of angleY radians about the Y axis and followed by a rotation of angleZ radians about the Z axis.
    Matrix4f setRotationYXZ​(float angleY, float angleX, float angleZ)
    Set only the upper left 3x3 submatrix of this matrix to a rotation of angleY radians about the Y axis, followed by a rotation of angleX radians about the X axis and followed by a rotation of angleZ radians about the Z axis.
    Matrix4f setRotationZYX​(float angleZ, float angleY, float angleX)
    Set only the upper left 3x3 submatrix of this matrix to a rotation of angleZ radians about the Z axis, followed by a rotation of angleY radians about the Y axis and followed by a rotation of angleX radians about the X axis.
    Matrix4f setRow​(int row, Vector4fc src)
    Set the row at the given row index, starting with 0.
    Matrix4f setTranslation​(float x, float y, float z)
    Set only the translation components (m30, m31, m32) of this matrix to the given values (x, y, z).
    Matrix4f setTranslation​(Vector3fc xyz)
    Set only the translation components (m30, m31, m32) of this matrix to the values (xyz.x, xyz.y, xyz.z).
    Matrix4f shadow​(float lightX, float lightY, float lightZ, float lightW, float a, float b, float c, float d)
    Apply a projection transformation to this matrix that projects onto the plane specified via the general plane equation x*a + y*b + z*c + d = 0 as if casting a shadow from a given light position/direction (lightX, lightY, lightZ, lightW).
    Matrix4f shadow​(float lightX, float lightY, float lightZ, float lightW, float a, float b, float c, float d, Matrix4f dest)
    Apply a projection transformation to this matrix that projects onto the plane specified via the general plane equation x*a + y*b + z*c + d = 0 as if casting a shadow from a given light position/direction (lightX, lightY, lightZ, lightW) and store the result in dest.
    Matrix4f shadow​(float lightX, float lightY, float lightZ, float lightW, Matrix4f planeTransform)
    Apply a projection transformation to this matrix that projects onto the plane with the general plane equation y = 0 as if casting a shadow from a given light position/direction (lightX, lightY, lightZ, lightW).
    Matrix4f shadow​(float lightX, float lightY, float lightZ, float lightW, Matrix4fc planeTransform, Matrix4f dest)
    Apply a projection transformation to this matrix that projects onto the plane with the general plane equation y = 0 as if casting a shadow from a given light position/direction (lightX, lightY, lightZ, lightW) and store the result in dest.
    Matrix4f shadow​(Vector4f light, float a, float b, float c, float d)
    Apply a projection transformation to this matrix that projects onto the plane specified via the general plane equation x*a + y*b + z*c + d = 0 as if casting a shadow from a given light position/direction light.
    Matrix4f shadow​(Vector4f light, float a, float b, float c, float d, Matrix4f dest)
    Apply a projection transformation to this matrix that projects onto the plane specified via the general plane equation x*a + y*b + z*c + d = 0 as if casting a shadow from a given light position/direction light and store the result in dest.
    Matrix4f shadow​(Vector4f light, Matrix4f planeTransform)
    Apply a projection transformation to this matrix that projects onto the plane with the general plane equation y = 0 as if casting a shadow from a given light position/direction light.
    Matrix4f shadow​(Vector4f light, Matrix4fc planeTransform, Matrix4f dest)
    Apply a projection transformation to this matrix that projects onto the plane with the general plane equation y = 0 as if casting a shadow from a given light position/direction light and store the result in dest.
    Matrix4f sub​(Matrix4fc subtrahend)
    Component-wise subtract subtrahend from this.
    Matrix4f sub​(Matrix4fc subtrahend, Matrix4f dest)
    Component-wise subtract subtrahend from this and store the result in dest.
    Matrix4f sub4x3​(Matrix4f subtrahend)
    Component-wise subtract the upper 4x3 submatrices of subtrahend from this.
    Matrix4f sub4x3​(Matrix4fc subtrahend, Matrix4f dest)
    Component-wise subtract the upper 4x3 submatrices of subtrahend from this and store the result in dest.
    Matrix4f swap​(Matrix4f other)
    Exchange the values of this matrix with the given other matrix.
    boolean testAab​(float minX, float minY, float minZ, float maxX, float maxY, float maxZ)
    Test whether the given axis-aligned box is partly or completely within or outside of the frustum defined by this matrix.
    boolean testPoint​(float x, float y, float z)
    Test whether the given point (x, y, z) is within the frustum defined by this matrix.
    boolean testSphere​(float x, float y, float z, float r)
    Test whether the given sphere is partly or completely within or outside of the frustum defined by this matrix.
    java.lang.String toString()
    Return a string representation of this matrix.
    java.lang.String toString​(java.text.NumberFormat formatter)
    Return a string representation of this matrix by formatting the matrix elements with the given NumberFormat.
    Vector4f transform​(float x, float y, float z, float w, Vector4f dest)
    Transform/multiply the vector (x, y, z, w) by this matrix and store the result in dest.
    Vector4f transform​(Vector4f v)
    Transform/multiply the given vector by this matrix and store the result in that vector.
    Vector4f transform​(Vector4fc v, Vector4f dest)
    Transform/multiply the given vector by this matrix and store the result in dest.
    Matrix4f transformAab​(float minX, float minY, float minZ, float maxX, float maxY, float maxZ, Vector3f outMin, Vector3f outMax)
    Transform the axis-aligned box given as the minimum corner (minX, minY, minZ) and maximum corner (maxX, maxY, maxZ) by this affine matrix and compute the axis-aligned box of the result whose minimum corner is stored in outMin and maximum corner stored in outMax.
    Matrix4f transformAab​(Vector3fc min, Vector3fc max, Vector3f outMin, Vector3f outMax)
    Transform the axis-aligned box given as the minimum corner min and maximum corner max by this affine matrix and compute the axis-aligned box of the result whose minimum corner is stored in outMin and maximum corner stored in outMax.
    Vector4f transformAffine​(float x, float y, float z, float w, Vector4f dest)
    Transform/multiply the 4D-vector (x, y, z, w) by assuming that this matrix represents an affine transformation (i.e. its last row is equal to (0, 0, 0, 1)) and store the result in dest.
    Vector4f transformAffine​(Vector4f v)
    Transform/multiply the given 4D-vector by assuming that this matrix represents an affine transformation (i.e. its last row is equal to (0, 0, 0, 1)).
    Vector4f transformAffine​(Vector4fc v, Vector4f dest)
    Transform/multiply the given 4D-vector by assuming that this matrix represents an affine transformation (i.e. its last row is equal to (0, 0, 0, 1)) and store the result in dest.
    Vector3f transformDirection​(float x, float y, float z, Vector3f dest)
    Transform/multiply the given 3D-vector (x, y, z), as if it was a 4D-vector with w=0, by this matrix and store the result in dest.
    Vector3f transformDirection​(Vector3f v)
    Transform/multiply the given 3D-vector, as if it was a 4D-vector with w=0, by this matrix and store the result in that vector.
    Vector3f transformDirection​(Vector3fc v, Vector3f dest)
    Transform/multiply the given 3D-vector, as if it was a 4D-vector with w=0, by this matrix and store the result in dest.
    Vector3f transformPosition​(float x, float y, float z, Vector3f dest)
    Transform/multiply the 3D-vector (x, y, z), as if it was a 4D-vector with w=1, by this matrix and store the result in dest.
    Vector3f transformPosition​(Vector3f v)
    Transform/multiply the given 3D-vector, as if it was a 4D-vector with w=1, by this matrix and store the result in that vector.
    Vector3f transformPosition​(Vector3fc v, Vector3f dest)
    Transform/multiply the given 3D-vector, as if it was a 4D-vector with w=1, by this matrix and store the result in dest.
    Vector3f transformProject​(float x, float y, float z, float w, Vector3f dest)
    Transform/multiply the vector (x, y, z, w) by this matrix, perform perspective divide and store (x, y, z) of the result in dest.
    Vector4f transformProject​(float x, float y, float z, float w, Vector4f dest)
    Transform/multiply the vector (x, y, z, w) by this matrix, perform perspective divide and store the result in dest.
    Vector3f transformProject​(float x, float y, float z, Vector3f dest)
    Transform/multiply the vector (x, y, z) by this matrix, perform perspective divide and store the result in dest.
    Vector3f transformProject​(Vector3f v)
    Transform/multiply the given vector by this matrix, perform perspective divide and store the result in that vector.
    Vector3f transformProject​(Vector3fc v, Vector3f dest)
    Transform/multiply the given vector by this matrix, perform perspective divide and store the result in dest.
    Vector4f transformProject​(Vector4f v)
    Transform/multiply the given vector by this matrix, perform perspective divide and store the result in that vector.
    Vector3f transformProject​(Vector4fc v, Vector3f dest)  
    Vector4f transformProject​(Vector4fc v, Vector4f dest)
    Transform/multiply the given vector by this matrix, perform perspective divide and store the result in dest.
    Matrix4f translate​(float x, float y, float z)
    Apply a translation to this matrix by translating by the given number of units in x, y and z.
    Matrix4f translate​(float x, float y, float z, Matrix4f dest)
    Apply a translation to this matrix by translating by the given number of units in x, y and z and store the result in dest.
    Matrix4f translate​(Vector3fc offset)
    Apply a translation to this matrix by translating by the given number of units in x, y and z.
    Matrix4f translate​(Vector3fc offset, Matrix4f dest)
    Apply a translation to this matrix by translating by the given number of units in x, y and z and store the result in dest.
    Matrix4f translateLocal​(float x, float y, float z)
    Pre-multiply a translation to this matrix by translating by the given number of units in x, y and z.
    Matrix4f translateLocal​(float x, float y, float z, Matrix4f dest)
    Pre-multiply a translation to this matrix by translating by the given number of units in x, y and z and store the result in dest.
    Matrix4f translateLocal​(Vector3fc offset)
    Pre-multiply a translation to this matrix by translating by the given number of units in x, y and z.
    Matrix4f translateLocal​(Vector3fc offset, Matrix4f dest)
    Pre-multiply a translation to this matrix by translating by the given number of units in x, y and z and store the result in dest.
    Matrix4f translation​(float x, float y, float z)
    Set this matrix to be a simple translation matrix.
    Matrix4f translation​(Vector3fc offset)
    Set this matrix to be a simple translation matrix.
    Matrix4f translationRotate​(float tx, float ty, float tz, float qx, float qy, float qz, float qw)
    Set this matrix to T * R, where T is a translation by the given (tx, ty, tz) and R is a rotation - and possibly scaling - transformation specified by the quaternion (qx, qy, qz, qw).
    Matrix4f translationRotate​(float tx, float ty, float tz, Quaternionfc quat)
    Set this matrix to T * R, where T is a translation by the given (tx, ty, tz) and R is a rotation - and possibly scaling - transformation specified by the given quaternion.
    Matrix4f translationRotateScale​(float tx, float ty, float tz, float qx, float qy, float qz, float qw, float scale)
    Set this matrix to T * R * S, where T is a translation by the given (tx, ty, tz), R is a rotation transformation specified by the quaternion (qx, qy, qz, qw), and S is a scaling transformation which scales all three axes by scale.
    Matrix4f translationRotateScale​(float tx, float ty, float tz, float qx, float qy, float qz, float qw, float sx, float sy, float sz)
    Set this matrix to T * R * S, where T is a translation by the given (tx, ty, tz), R is a rotation transformation specified by the quaternion (qx, qy, qz, qw), and S is a scaling transformation which scales the three axes x, y and z by (sx, sy, sz).
    Matrix4f translationRotateScale​(Vector3fc translation, Quaternionfc quat, float scale)
    Set this matrix to T * R * S, where T is the given translation, R is a rotation transformation specified by the given quaternion, and S is a scaling transformation which scales all three axes by scale.
    Matrix4f translationRotateScale​(Vector3fc translation, Quaternionfc quat, Vector3fc scale)
    Set this matrix to T * R * S, where T is the given translation, R is a rotation transformation specified by the given quaternion, and S is a scaling transformation which scales the axes by scale.
    Matrix4f translationRotateScaleInvert​(float tx, float ty, float tz, float qx, float qy, float qz, float qw, float sx, float sy, float sz)
    Set this matrix to (T * R * S)-1, where T is a translation by the given (tx, ty, tz), R is a rotation transformation specified by the quaternion (qx, qy, qz, qw), and S is a scaling transformation which scales the three axes x, y and z by (sx, sy, sz).
    Matrix4f translationRotateScaleInvert​(Vector3fc translation, Quaternionfc quat, float scale)
    Set this matrix to (T * R * S)-1, where T is the given translation, R is a rotation transformation specified by the given quaternion, and S is a scaling transformation which scales all three axes by scale.
    Matrix4f translationRotateScaleInvert​(Vector3fc translation, Quaternionfc quat, Vector3fc scale)
    Set this matrix to (T * R * S)-1, where T is the given translation, R is a rotation transformation specified by the given quaternion, and S is a scaling transformation which scales the axes by scale.
    Matrix4f translationRotateScaleMulAffine​(float tx, float ty, float tz, float qx, float qy, float qz, float qw, float sx, float sy, float sz, Matrix4f m)
    Set this matrix to T * R * S * M, where T is a translation by the given (tx, ty, tz), R is a rotation - and possibly scaling - transformation specified by the quaternion (qx, qy, qz, qw), S is a scaling transformation which scales the three axes x, y and z by (sx, sy, sz) and M is an affine matrix.
    Matrix4f translationRotateScaleMulAffine​(Vector3fc translation, Quaternionfc quat, Vector3fc scale, Matrix4f m)
    Set this matrix to T * R * S * M, where T is the given translation, R is a rotation - and possibly scaling - transformation specified by the given quaternion, S is a scaling transformation which scales the axes by scale and M is an affine matrix.
    Matrix4f translationRotateTowards​(float posX, float posY, float posZ, float dirX, float dirY, float dirZ, float upX, float upY, float upZ)
    Set this matrix to a model transformation for a right-handed coordinate system, that translates to the given (posX, posY, posZ) and aligns the local -z axis with (dirX, dirY, dirZ).
    Matrix4f translationRotateTowards​(Vector3fc pos, Vector3fc dir, Vector3fc up)
    Set this matrix to a model transformation for a right-handed coordinate system, that translates to the given pos and aligns the local -z axis with dir.
    Matrix4f transpose()
    Transpose this matrix.
    Matrix4f transpose​(Matrix4f dest)
    Transpose this matrix and store the result in dest.
    Matrix4f transpose3x3()
    Transpose only the upper left 3x3 submatrix of this matrix.
    Matrix3f transpose3x3​(Matrix3f dest)
    Transpose only the upper left 3x3 submatrix of this matrix and store the result in dest.
    Matrix4f transpose3x3​(Matrix4f dest)
    Transpose only the upper left 3x3 submatrix of this matrix and store the result in dest.
    Matrix4f trapezoidCrop​(float p0x, float p0y, float p1x, float p1y, float p2x, float p2y, float p3x, float p3y)
    Set this matrix to a perspective transformation that maps the trapezoid spanned by the four corner coordinates (p0x, p0y), (p1x, p1y), (p2x, p2y) and (p3x, p3y) to the unit square [(-1, -1)..(+1, +1)].
    Vector3f unproject​(float winX, float winY, float winZ, int[] viewport, Vector3f dest)
    Unproject the given window coordinates (winX, winY, winZ) by this matrix using the specified viewport.
    Vector4f unproject​(float winX, float winY, float winZ, int[] viewport, Vector4f dest)
    Unproject the given window coordinates (winX, winY, winZ) by this matrix using the specified viewport.
    Vector3f unproject​(Vector3fc winCoords, int[] viewport, Vector3f dest)
    Unproject the given window coordinates winCoords by this matrix using the specified viewport.
    Vector4f unproject​(Vector3fc winCoords, int[] viewport, Vector4f dest)
    Unproject the given window coordinates winCoords by this matrix using the specified viewport.
    Vector3f unprojectInv​(float winX, float winY, float winZ, int[] viewport, Vector3f dest)
    Unproject the given window coordinates (winX, winY, winZ) by this matrix using the specified viewport.
    Vector4f unprojectInv​(float winX, float winY, float winZ, int[] viewport, Vector4f dest)
    Unproject the given window coordinates (winX, winY, winZ) by this matrix using the specified viewport.
    Vector3f unprojectInv​(Vector3fc winCoords, int[] viewport, Vector3f dest)
    Unproject the given window coordinates winCoords by this matrix using the specified viewport.
    Vector4f unprojectInv​(Vector3fc winCoords, int[] viewport, Vector4f dest)
    Unproject the given window coordinates winCoords by this matrix using the specified viewport.
    Matrix4f unprojectInvRay​(float winX, float winY, int[] viewport, Vector3f originDest, Vector3f dirDest)
    Unproject the given 2D window coordinates (winX, winY) by this matrix using the specified viewport and compute the origin and the direction of the resulting ray which starts at NDC z = -1.0 and goes through NDC z = +1.0.
    Matrix4f unprojectInvRay​(Vector2fc winCoords, int[] viewport, Vector3f originDest, Vector3f dirDest)
    Unproject the given window coordinates winCoords by this matrix using the specified viewport and compute the origin and the direction of the resulting ray which starts at NDC z = -1.0 and goes through NDC z = +1.0.
    Matrix4f unprojectRay​(float winX, float winY, int[] viewport, Vector3f originDest, Vector3f dirDest)
    Unproject the given 2D window coordinates (winX, winY) by this matrix using the specified viewport and compute the origin and the direction of the resulting ray which starts at NDC z = -1.0 and goes through NDC z = +1.0.
    Matrix4f unprojectRay​(Vector2fc winCoords, int[] viewport, Vector3f originDest, Vector3f dirDest)
    Unproject the given 2D window coordinates winCoords by this matrix using the specified viewport and compute the origin and the direction of the resulting ray which starts at NDC z = -1.0 and goes through NDC z = +1.0.
    Matrix4f withLookAtUp​(float upX, float upY, float upZ)
    Apply a transformation to this matrix to ensure that the local Y axis (as obtained by positiveY(Vector3f)) will be coplanar to the plane spanned by the local Z axis (as obtained by positiveZ(Vector3f)) and the given vector (upX, upY, upZ).
    Matrix4f withLookAtUp​(float upX, float upY, float upZ, Matrix4f dest)
    Apply a transformation to this matrix to ensure that the local Y axis (as obtained by Matrix4fc.positiveY(Vector3f)) will be coplanar to the plane spanned by the local Z axis (as obtained by Matrix4fc.positiveZ(Vector3f)) and the given vector (upX, upY, upZ), and store the result in dest.
    Matrix4f withLookAtUp​(Vector3fc up)
    Apply a transformation to this matrix to ensure that the local Y axis (as obtained by positiveY(Vector3f)) will be coplanar to the plane spanned by the local Z axis (as obtained by positiveZ(Vector3f)) and the given vector up.
    Matrix4f withLookAtUp​(Vector3fc up, Matrix4f dest)
    Apply a transformation to this matrix to ensure that the local Y axis (as obtained by Matrix4fc.positiveY(Vector3f)) will be coplanar to the plane spanned by the local Z axis (as obtained by Matrix4fc.positiveZ(Vector3f)) and the given vector up, and store the result in dest.
    void writeExternal​(java.io.ObjectOutput out)  
    Matrix4f zero()
    Set all the values within this matrix to 0.

    Methods inherited from class java.lang.Object

    clone, finalize, getClass, notify, notifyAll, wait, wait, wait
  • Constructor Details

    • Matrix4f

      public Matrix4f()
      Create a new Matrix4f and set it to identity.
    • Matrix4f

      public Matrix4f​(Matrix3fc mat)
      Create a new Matrix4f by setting its uppper left 3x3 submatrix to the values of the given Matrix3fc and the rest to identity.
      Parameters:
      mat - the Matrix3fc
    • Matrix4f

      public Matrix4f​(Matrix4fc mat)
      Create a new Matrix4f and make it a copy of the given matrix.
      Parameters:
      mat - the Matrix4fc to copy the values from
    • Matrix4f

      public Matrix4f​(Matrix4x3fc mat)
      Create a new Matrix4f and set its upper 4x3 submatrix to the given matrix mat and all other elements to identity.
      Parameters:
      mat - the Matrix4x3fc to copy the values from
    • Matrix4f

      public Matrix4f​(Matrix4dc mat)
      Create a new Matrix4f and make it a copy of the given matrix.

      Note that due to the given Matrix4dc storing values in double-precision and the constructed Matrix4f storing them in single-precision, there is the possibility of losing precision.

      Parameters:
      mat - the Matrix4dc to copy the values from
    • Matrix4f

      public Matrix4f​(float m00, float m01, float m02, float m03, float m10, float m11, float m12, float m13, float m20, float m21, float m22, float m23, float m30, float m31, float m32, float m33)
      Create a new 4x4 matrix using the supplied float values.

      The matrix layout will be:

      m00, m10, m20, m30
      m01, m11, m21, m31
      m02, m12, m22, m32
      m03, m13, m23, m33

      Parameters:
      m00 - the value of m00
      m01 - the value of m01
      m02 - the value of m02
      m03 - the value of m03
      m10 - the value of m10
      m11 - the value of m11
      m12 - the value of m12
      m13 - the value of m13
      m20 - the value of m20
      m21 - the value of m21
      m22 - the value of m22
      m23 - the value of m23
      m30 - the value of m30
      m31 - the value of m31
      m32 - the value of m32
      m33 - the value of m33
    • Matrix4f

      public Matrix4f​(java.nio.FloatBuffer buffer)
      Create a new Matrix4f by reading its 16 float components from the given FloatBuffer at the buffer's current position.

      That FloatBuffer is expected to hold the values in column-major order.

      The buffer's position will not be changed by this method.

      Parameters:
      buffer - the FloatBuffer to read the matrix values from
    • Matrix4f

      public Matrix4f​(Vector4fc col0, Vector4fc col1, Vector4fc col2, Vector4fc col3)
      Create a new Matrix4f and initialize its four columns using the supplied vectors.
      Parameters:
      col0 - the first column
      col1 - the second column
      col2 - the third column
      col3 - the fourth column
  • Method Details

    • assume

      public Matrix4f assume​(int properties)
      Parameters:
      properties - bitset of the properties to assume about this matrix
      Returns:
      this
    • determineProperties

      public Matrix4f determineProperties()
      Compute and set the matrix properties returned by properties() based on the current matrix element values.
      Returns:
      this
    • properties

      public int properties()
      Description copied from interface: Matrix4fc
      Return the assumed properties of this matrix. This is a bit-combination of Matrix4fc.PROPERTY_IDENTITY, Matrix4fc.PROPERTY_AFFINE, Matrix4fc.PROPERTY_TRANSLATION and Matrix4fc.PROPERTY_PERSPECTIVE.
      Specified by:
      properties in interface Matrix4fc
      Returns:
      the properties of the matrix
    • m00

      public float m00()
      Description copied from interface: Matrix4fc
      Return the value of the matrix element at column 0 and row 0.
      Specified by:
      m00 in interface Matrix4fc
      Returns:
      the value of the matrix element
    • m01

      public float m01()
      Description copied from interface: Matrix4fc
      Return the value of the matrix element at column 0 and row 1.
      Specified by:
      m01 in interface Matrix4fc
      Returns:
      the value of the matrix element
    • m02

      public float m02()
      Description copied from interface: Matrix4fc
      Return the value of the matrix element at column 0 and row 2.
      Specified by:
      m02 in interface Matrix4fc
      Returns:
      the value of the matrix element
    • m03

      public float m03()
      Description copied from interface: Matrix4fc
      Return the value of the matrix element at column 0 and row 3.
      Specified by:
      m03 in interface Matrix4fc
      Returns:
      the value of the matrix element
    • m10

      public float m10()
      Description copied from interface: Matrix4fc
      Return the value of the matrix element at column 1 and row 0.
      Specified by:
      m10 in interface Matrix4fc
      Returns:
      the value of the matrix element
    • m11

      public float m11()
      Description copied from interface: Matrix4fc
      Return the value of the matrix element at column 1 and row 1.
      Specified by:
      m11 in interface Matrix4fc
      Returns:
      the value of the matrix element
    • m12

      public float m12()
      Description copied from interface: Matrix4fc
      Return the value of the matrix element at column 1 and row 2.
      Specified by:
      m12 in interface Matrix4fc
      Returns:
      the value of the matrix element
    • m13

      public float m13()
      Description copied from interface: Matrix4fc
      Return the value of the matrix element at column 1 and row 3.
      Specified by:
      m13 in interface Matrix4fc
      Returns:
      the value of the matrix element
    • m20

      public float m20()
      Description copied from interface: Matrix4fc
      Return the value of the matrix element at column 2 and row 0.
      Specified by:
      m20 in interface Matrix4fc
      Returns:
      the value of the matrix element
    • m21

      public float m21()
      Description copied from interface: Matrix4fc
      Return the value of the matrix element at column 2 and row 1.
      Specified by:
      m21 in interface Matrix4fc
      Returns:
      the value of the matrix element
    • m22

      public float m22()
      Description copied from interface: Matrix4fc
      Return the value of the matrix element at column 2 and row 2.
      Specified by:
      m22 in interface Matrix4fc
      Returns:
      the value of the matrix element
    • m23

      public float m23()
      Description copied from interface: Matrix4fc
      Return the value of the matrix element at column 2 and row 3.
      Specified by:
      m23 in interface Matrix4fc
      Returns:
      the value of the matrix element
    • m30

      public float m30()
      Description copied from interface: Matrix4fc
      Return the value of the matrix element at column 3 and row 0.
      Specified by:
      m30 in interface Matrix4fc
      Returns:
      the value of the matrix element
    • m31

      public float m31()
      Description copied from interface: Matrix4fc
      Return the value of the matrix element at column 3 and row 1.
      Specified by:
      m31 in interface Matrix4fc
      Returns:
      the value of the matrix element
    • m32

      public float m32()
      Description copied from interface: Matrix4fc
      Return the value of the matrix element at column 3 and row 2.
      Specified by:
      m32 in interface Matrix4fc
      Returns:
      the value of the matrix element
    • m33

      public float m33()
      Description copied from interface: Matrix4fc
      Return the value of the matrix element at column 3 and row 3.
      Specified by:
      m33 in interface Matrix4fc
      Returns:
      the value of the matrix element
    • m00

      public Matrix4f m00​(float m00)
      Set the value of the matrix element at column 0 and row 0.
      Parameters:
      m00 - the new value
      Returns:
      this
    • m01

      public Matrix4f m01​(float m01)
      Set the value of the matrix element at column 0 and row 1.
      Parameters:
      m01 - the new value
      Returns:
      this
    • m02

      public Matrix4f m02​(float m02)
      Set the value of the matrix element at column 0 and row 2.
      Parameters:
      m02 - the new value
      Returns:
      this
    • m03

      public Matrix4f m03​(float m03)
      Set the value of the matrix element at column 0 and row 3.
      Parameters:
      m03 - the new value
      Returns:
      this
    • m10

      public Matrix4f m10​(float m10)
      Set the value of the matrix element at column 1 and row 0.
      Parameters:
      m10 - the new value
      Returns:
      this
    • m11

      public Matrix4f m11​(float m11)
      Set the value of the matrix element at column 1 and row 1.
      Parameters:
      m11 - the new value
      Returns:
      this
    • m12

      public Matrix4f m12​(float m12)
      Set the value of the matrix element at column 1 and row 2.
      Parameters:
      m12 - the new value
      Returns:
      this
    • m13

      public Matrix4f m13​(float m13)
      Set the value of the matrix element at column 1 and row 3.
      Parameters:
      m13 - the new value
      Returns:
      this
    • m20

      public Matrix4f m20​(float m20)
      Set the value of the matrix element at column 2 and row 0.
      Parameters:
      m20 - the new value
      Returns:
      this
    • m21

      public Matrix4f m21​(float m21)
      Set the value of the matrix element at column 2 and row 1.
      Parameters:
      m21 - the new value
      Returns:
      this
    • m22

      public Matrix4f m22​(float m22)
      Set the value of the matrix element at column 2 and row 2.
      Parameters:
      m22 - the new value
      Returns:
      this
    • m23

      public Matrix4f m23​(float m23)
      Set the value of the matrix element at column 2 and row 3.
      Parameters:
      m23 - the new value
      Returns:
      this
    • m30

      public Matrix4f m30​(float m30)
      Set the value of the matrix element at column 3 and row 0.
      Parameters:
      m30 - the new value
      Returns:
      this
    • m31

      public Matrix4f m31​(float m31)
      Set the value of the matrix element at column 3 and row 1.
      Parameters:
      m31 - the new value
      Returns:
      this
    • m32

      public Matrix4f m32​(float m32)
      Set the value of the matrix element at column 3 and row 2.
      Parameters:
      m32 - the new value
      Returns:
      this
    • m33

      public Matrix4f m33​(float m33)
      Set the value of the matrix element at column 3 and row 3.
      Parameters:
      m33 - the new value
      Returns:
      this
    • _m00

      public Matrix4f _m00​(float m00)
      Set the value of the matrix element at column 0 and row 0 without updating the properties of the matrix.
      Parameters:
      m00 - the new value
      Returns:
      this
    • _m01

      public Matrix4f _m01​(float m01)
      Set the value of the matrix element at column 0 and row 1 without updating the properties of the matrix.
      Parameters:
      m01 - the new value
      Returns:
      this
    • _m02

      public Matrix4f _m02​(float m02)
      Set the value of the matrix element at column 0 and row 2 without updating the properties of the matrix.
      Parameters:
      m02 - the new value
      Returns:
      this
    • _m03

      public Matrix4f _m03​(float m03)
      Set the value of the matrix element at column 0 and row 3 without updating the properties of the matrix.
      Parameters:
      m03 - the new value
      Returns:
      this
    • _m10

      public Matrix4f _m10​(float m10)
      Set the value of the matrix element at column 1 and row 0 without updating the properties of the matrix.
      Parameters:
      m10 - the new value
      Returns:
      this
    • _m11

      public Matrix4f _m11​(float m11)
      Set the value of the matrix element at column 1 and row 1 without updating the properties of the matrix.
      Parameters:
      m11 - the new value
      Returns:
      this
    • _m12

      public Matrix4f _m12​(float m12)
      Set the value of the matrix element at column 1 and row 2 without updating the properties of the matrix.
      Parameters:
      m12 - the new value
      Returns:
      this
    • _m13

      public Matrix4f _m13​(float m13)
      Set the value of the matrix element at column 1 and row 3 without updating the properties of the matrix.
      Parameters:
      m13 - the new value
      Returns:
      this
    • _m20

      public Matrix4f _m20​(float m20)
      Set the value of the matrix element at column 2 and row 0 without updating the properties of the matrix.
      Parameters:
      m20 - the new value
      Returns:
      this
    • _m21

      public Matrix4f _m21​(float m21)
      Set the value of the matrix element at column 2 and row 1 without updating the properties of the matrix.
      Parameters:
      m21 - the new value
      Returns:
      this
    • _m22

      public Matrix4f _m22​(float m22)
      Set the value of the matrix element at column 2 and row 2 without updating the properties of the matrix.
      Parameters:
      m22 - the new value
      Returns:
      this
    • _m23

      public Matrix4f _m23​(float m23)
      Set the value of the matrix element at column 2 and row 3 without updating the properties of the matrix.
      Parameters:
      m23 - the new value
      Returns:
      this
    • _m30

      public Matrix4f _m30​(float m30)
      Set the value of the matrix element at column 3 and row 0 without updating the properties of the matrix.
      Parameters:
      m30 - the new value
      Returns:
      this
    • _m31

      public Matrix4f _m31​(float m31)
      Set the value of the matrix element at column 3 and row 1 without updating the properties of the matrix.
      Parameters:
      m31 - the new value
      Returns:
      this
    • _m32

      public Matrix4f _m32​(float m32)
      Set the value of the matrix element at column 3 and row 2 without updating the properties of the matrix.
      Parameters:
      m32 - the new value
      Returns:
      this
    • _m33

      public Matrix4f _m33​(float m33)
      Set the value of the matrix element at column 3 and row 3 without updating the properties of the matrix.
      Parameters:
      m33 - the new value
      Returns:
      this
    • identity

      public Matrix4f identity()
      Reset this matrix to the identity.

      Please note that if a call to identity() is immediately followed by a call to: translate, rotate, scale, perspective, frustum, ortho, ortho2D, lookAt, lookAlong, or any of their overloads, then the call to identity() can be omitted and the subsequent call replaced with: translation, rotation, scaling, setPerspective, setFrustum, setOrtho, setOrtho2D, setLookAt, setLookAlong, or any of their overloads.

      Returns:
      this
    • set

      public Matrix4f set​(Matrix4fc m)
      Store the values of the given matrix m into this matrix.
      Parameters:
      m - the matrix to copy the values from
      Returns:
      this
      See Also:
      Matrix4f(Matrix4fc), get(Matrix4f)
    • set

      public Matrix4f set​(Matrix4x3fc m)
      Store the values of the given matrix m into this matrix and set the other matrix elements to identity.
      Parameters:
      m - the matrix to copy the values from
      Returns:
      this
      See Also:
      Matrix4f(Matrix4x3fc)
    • set

      public Matrix4f set​(Matrix4dc m)
      Store the values of the given matrix m into this matrix.

      Note that due to the given matrix m storing values in double-precision and this matrix storing them in single-precision, there is the possibility to lose precision.

      Parameters:
      m - the matrix to copy the values from
      Returns:
      this
      See Also:
      Matrix4f(Matrix4dc), get(Matrix4d)
    • set

      public Matrix4f set​(Matrix3fc mat)
      Set the upper left 3x3 submatrix of this Matrix4f to the given Matrix3fc and the rest to identity.
      Parameters:
      mat - the Matrix3fc
      Returns:
      this
      See Also:
      Matrix4f(Matrix3fc)
    • set

      public Matrix4f set​(AxisAngle4f axisAngle)
      Set this matrix to be equivalent to the rotation specified by the given AxisAngle4f.
      Parameters:
      axisAngle - the AxisAngle4f
      Returns:
      this
    • set

      public Matrix4f set​(AxisAngle4d axisAngle)
      Set this matrix to be equivalent to the rotation specified by the given AxisAngle4d.
      Parameters:
      axisAngle - the AxisAngle4d
      Returns:
      this
    • set

      public Matrix4f set​(Quaternionfc q)
      Set this matrix to be equivalent to the rotation specified by the given Quaternionfc.

      This method is equivalent to calling: rotation(q)

      Reference: http://www.euclideanspace.com/

      Parameters:
      q - the Quaternionfc
      Returns:
      this
      See Also:
      rotation(Quaternionfc)
    • set

      public Matrix4f set​(Quaterniondc q)
      Set this matrix to be equivalent to the rotation specified by the given Quaterniondc.

      Reference: http://www.euclideanspace.com/

      Parameters:
      q - the Quaterniondc
      Returns:
      this
    • set3x3

      public Matrix4f set3x3​(Matrix4f mat)
      Set the upper left 3x3 submatrix of this Matrix4f to that of the given Matrix4f and don't change the other elements.
      Parameters:
      mat - the Matrix4f
      Returns:
      this
    • set4x3

      public Matrix4f set4x3​(Matrix4x3fc mat)
      Set the upper 4x3 submatrix of this Matrix4f to the given Matrix4x3fc and don't change the other elements.
      Parameters:
      mat - the Matrix4x3fc
      Returns:
      this
      See Also:
      Matrix4x3f.get(Matrix4f)
    • set4x3

      public Matrix4f set4x3​(Matrix4f mat)
      Set the upper 4x3 submatrix of this Matrix4f to the upper 4x3 submatrix of the given Matrix4f and don't change the other elements.
      Parameters:
      mat - the Matrix4f
      Returns:
      this
    • mul

      public Matrix4f mul​(Matrix4fc right)
      Multiply this matrix by the supplied right matrix and store the result in this.

      If M is this matrix and R the right matrix, then the new matrix will be M * R. So when transforming a vector v with the new matrix by using M * R * v, the transformation of the right matrix will be applied first!

      Parameters:
      right - the right operand of the matrix multiplication
      Returns:
      a matrix holding the result
    • mul

      public Matrix4f mul​(Matrix4fc right, Matrix4f dest)
      Description copied from interface: Matrix4fc
      Multiply this matrix by the supplied right matrix and store the result in dest.

      If M is this matrix and R the right matrix, then the new matrix will be M * R. So when transforming a vector v with the new matrix by using M * R * v, the transformation of the right matrix will be applied first!

      Specified by:
      mul in interface Matrix4fc
      Parameters:
      right - the right operand of the matrix multiplication
      dest - the destination matrix, which will hold the result
      Returns:
      dest
    • mulLocal

      public Matrix4f mulLocal​(Matrix4fc left)
      Pre-multiply this matrix by the supplied left matrix and store the result in this.

      If M is this matrix and L the left matrix, then the new matrix will be L * M. So when transforming a vector v with the new matrix by using L * M * v, the transformation of this matrix will be applied first!

      Parameters:
      left - the left operand of the matrix multiplication
      Returns:
      a matrix holding the result
    • mulLocal

      public Matrix4f mulLocal​(Matrix4fc left, Matrix4f dest)
      Description copied from interface: Matrix4fc
      Pre-multiply this matrix by the supplied left matrix and store the result in dest.

      If M is this matrix and L the left matrix, then the new matrix will be L * M. So when transforming a vector v with the new matrix by using L * M * v, the transformation of this matrix will be applied first!

      Specified by:
      mulLocal in interface Matrix4fc
      Parameters:
      left - the left operand of the matrix multiplication
      dest - the destination matrix, which will hold the result
      Returns:
      dest
    • mulLocalAffine

      public Matrix4f mulLocalAffine​(Matrix4fc left)
      Pre-multiply this matrix by the supplied left matrix, both of which are assumed to be affine, and store the result in this.

      This method assumes that this matrix and the given left matrix both represent an affine transformation (i.e. their last rows are equal to (0, 0, 0, 1)) and can be used to speed up matrix multiplication if the matrices only represent affine transformations, such as translation, rotation, scaling and shearing (in any combination).

      This method will not modify either the last row of this or the last row of left.

      If M is this matrix and L the left matrix, then the new matrix will be L * M. So when transforming a vector v with the new matrix by using L * M * v, the transformation of this matrix will be applied first!

      Parameters:
      left - the left operand of the matrix multiplication (the last row is assumed to be (0, 0, 0, 1))
      Returns:
      a matrix holding the result
    • mulLocalAffine

      public Matrix4f mulLocalAffine​(Matrix4fc left, Matrix4f dest)
      Description copied from interface: Matrix4fc
      Pre-multiply this matrix by the supplied left matrix, both of which are assumed to be affine, and store the result in dest.

      This method assumes that this matrix and the given left matrix both represent an affine transformation (i.e. their last rows are equal to (0, 0, 0, 1)) and can be used to speed up matrix multiplication if the matrices only represent affine transformations, such as translation, rotation, scaling and shearing (in any combination).

      This method will not modify either the last row of this or the last row of left.

      If M is this matrix and L the left matrix, then the new matrix will be L * M. So when transforming a vector v with the new matrix by using L * M * v, the transformation of this matrix will be applied first!

      Specified by:
      mulLocalAffine in interface Matrix4fc
      Parameters:
      left - the left operand of the matrix multiplication (the last row is assumed to be (0, 0, 0, 1))
      dest - the destination matrix, which will hold the result
      Returns:
      dest
    • mul

      public Matrix4f mul​(Matrix4x3fc right)
      Multiply this matrix by the supplied right matrix and store the result in this.

      If M is this matrix and R the right matrix, then the new matrix will be M * R. So when transforming a vector v with the new matrix by using M * R * v, the transformation of the right matrix will be applied first!

      Parameters:
      right - the right operand of the matrix multiplication
      Returns:
      a matrix holding the result
    • mul

      public Matrix4f mul​(Matrix4x3fc right, Matrix4f dest)
      Description copied from interface: Matrix4fc
      Multiply this matrix by the supplied right matrix and store the result in dest.

      The last row of the right matrix is assumed to be (0, 0, 0, 1).

      If M is this matrix and R the right matrix, then the new matrix will be M * R. So when transforming a vector v with the new matrix by using M * R * v, the transformation of the right matrix will be applied first!

      Specified by:
      mul in interface Matrix4fc
      Parameters:
      right - the right operand of the matrix multiplication
      dest - the destination matrix, which will hold the result
      Returns:
      dest
    • mul

      public Matrix4f mul​(Matrix3x2fc right)
      Multiply this matrix by the supplied right matrix and store the result in this.

      If M is this matrix and R the right matrix, then the new matrix will be M * R. So when transforming a vector v with the new matrix by using M * R * v, the transformation of the right matrix will be applied first!

      Parameters:
      right - the right operand of the matrix multiplication
      Returns:
      a matrix holding the result
    • mul

      public Matrix4f mul​(Matrix3x2fc right, Matrix4f dest)
      Description copied from interface: Matrix4fc
      Multiply this matrix by the supplied right matrix and store the result in dest.

      If M is this matrix and R the right matrix, then the new matrix will be M * R. So when transforming a vector v with the new matrix by using M * R * v, the transformation of the right matrix will be applied first!

      Specified by:
      mul in interface Matrix4fc
      Parameters:
      right - the right operand of the matrix multiplication
      dest - the destination matrix, which will hold the result
      Returns:
      dest
    • mulPerspectiveAffine

      public Matrix4f mulPerspectiveAffine​(Matrix4fc view)
      Multiply this symmetric perspective projection matrix by the supplied affine view matrix.

      If P is this matrix and V the view matrix, then the new matrix will be P * V. So when transforming a vector v with the new matrix by using P * V * v, the transformation of the view matrix will be applied first!

      Parameters:
      view - the affine matrix to multiply this symmetric perspective projection matrix by
      Returns:
      a matrix holding the result
    • mulPerspectiveAffine

      public Matrix4f mulPerspectiveAffine​(Matrix4fc view, Matrix4f dest)
      Description copied from interface: Matrix4fc
      Multiply this symmetric perspective projection matrix by the supplied affine view matrix and store the result in dest.

      If P is this matrix and V the view matrix, then the new matrix will be P * V. So when transforming a vector v with the new matrix by using P * V * v, the transformation of the view matrix will be applied first!

      Specified by:
      mulPerspectiveAffine in interface Matrix4fc
      Parameters:
      view - the affine matrix to multiply this symmetric perspective projection matrix by
      dest - the destination matrix, which will hold the result
      Returns:
      dest
    • mulPerspectiveAffine

      public Matrix4f mulPerspectiveAffine​(Matrix4x3fc view)
      Multiply this symmetric perspective projection matrix by the supplied view matrix.

      If P is this matrix and V the view matrix, then the new matrix will be P * V. So when transforming a vector v with the new matrix by using P * V * v, the transformation of the view matrix will be applied first!

      Parameters:
      view - the matrix to multiply this symmetric perspective projection matrix by
      Returns:
      a matrix holding the result
    • mulPerspectiveAffine

      public Matrix4f mulPerspectiveAffine​(Matrix4x3fc view, Matrix4f dest)
      Description copied from interface: Matrix4fc
      Multiply this symmetric perspective projection matrix by the supplied view matrix and store the result in dest.

      If P is this matrix and V the view matrix, then the new matrix will be P * V. So when transforming a vector v with the new matrix by using P * V * v, the transformation of the view matrix will be applied first!

      Specified by:
      mulPerspectiveAffine in interface Matrix4fc
      Parameters:
      view - the matrix to multiply this symmetric perspective projection matrix by
      dest - the destination matrix, which will hold the result
      Returns:
      dest
    • mulAffineR

      public Matrix4f mulAffineR​(Matrix4fc right)
      Multiply this matrix by the supplied right matrix, which is assumed to be affine, and store the result in this.

      This method assumes that the given right matrix represents an affine transformation (i.e. its last row is equal to (0, 0, 0, 1)) and can be used to speed up matrix multiplication if the matrix only represents affine transformations, such as translation, rotation, scaling and shearing (in any combination).

      If M is this matrix and R the right matrix, then the new matrix will be M * R. So when transforming a vector v with the new matrix by using M * R * v, the transformation of the right matrix will be applied first!

      Parameters:
      right - the right operand of the matrix multiplication (the last row is assumed to be (0, 0, 0, 1))
      Returns:
      a matrix holding the result
    • mulAffineR

      public Matrix4f mulAffineR​(Matrix4fc right, Matrix4f dest)
      Description copied from interface: Matrix4fc
      Multiply this matrix by the supplied right matrix, which is assumed to be affine, and store the result in dest.

      This method assumes that the given right matrix represents an affine transformation (i.e. its last row is equal to (0, 0, 0, 1)) and can be used to speed up matrix multiplication if the matrix only represents affine transformations, such as translation, rotation, scaling and shearing (in any combination).

      If M is this matrix and R the right matrix, then the new matrix will be M * R. So when transforming a vector v with the new matrix by using M * R * v, the transformation of the right matrix will be applied first!

      Specified by:
      mulAffineR in interface Matrix4fc
      Parameters:
      right - the right operand of the matrix multiplication (the last row is assumed to be (0, 0, 0, 1))
      dest - the destination matrix, which will hold the result
      Returns:
      dest
    • mulAffine

      public Matrix4f mulAffine​(Matrix4fc right)
      Multiply this matrix by the supplied right matrix, both of which are assumed to be affine, and store the result in this.

      This method assumes that this matrix and the given right matrix both represent an affine transformation (i.e. their last rows are equal to (0, 0, 0, 1)) and can be used to speed up matrix multiplication if the matrices only represent affine transformations, such as translation, rotation, scaling and shearing (in any combination).

      This method will not modify either the last row of this or the last row of right.

      If M is this matrix and R the right matrix, then the new matrix will be M * R. So when transforming a vector v with the new matrix by using M * R * v, the transformation of the right matrix will be applied first!

      Parameters:
      right - the right operand of the matrix multiplication (the last row is assumed to be (0, 0, 0, 1))
      Returns:
      a matrix holding the result
    • mulAffine

      public Matrix4f mulAffine​(Matrix4fc right, Matrix4f dest)
      Description copied from interface: Matrix4fc
      Multiply this matrix by the supplied right matrix, both of which are assumed to be affine, and store the result in dest.

      This method assumes that this matrix and the given right matrix both represent an affine transformation (i.e. their last rows are equal to (0, 0, 0, 1)) and can be used to speed up matrix multiplication if the matrices only represent affine transformations, such as translation, rotation, scaling and shearing (in any combination).

      This method will not modify either the last row of this or the last row of right.

      If M is this matrix and R the right matrix, then the new matrix will be M * R. So when transforming a vector v with the new matrix by using M * R * v, the transformation of the right matrix will be applied first!

      Specified by:
      mulAffine in interface Matrix4fc
      Parameters:
      right - the right operand of the matrix multiplication (the last row is assumed to be (0, 0, 0, 1))
      dest - the destination matrix, which will hold the result
      Returns:
      dest
    • mulTranslationAffine

      public Matrix4f mulTranslationAffine​(Matrix4fc right, Matrix4f dest)
      Description copied from interface: Matrix4fc
      Multiply this matrix, which is assumed to only contain a translation, by the supplied right matrix, which is assumed to be affine, and store the result in dest.

      This method assumes that this matrix only contains a translation, and that the given right matrix represents an affine transformation (i.e. its last row is equal to (0, 0, 0, 1)).

      This method will not modify either the last row of this or the last row of right.

      If M is this matrix and R the right matrix, then the new matrix will be M * R. So when transforming a vector v with the new matrix by using M * R * v, the transformation of the right matrix will be applied first!

      Specified by:
      mulTranslationAffine in interface Matrix4fc
      Parameters:
      right - the right operand of the matrix multiplication (the last row is assumed to be (0, 0, 0, 1))
      dest - the destination matrix, which will hold the result
      Returns:
      dest
    • mulOrthoAffine

      public Matrix4f mulOrthoAffine​(Matrix4fc view)
      Multiply this orthographic projection matrix by the supplied affine view matrix.

      If M is this matrix and V the view matrix, then the new matrix will be M * V. So when transforming a vector v with the new matrix by using M * V * v, the transformation of the view matrix will be applied first!

      Parameters:
      view - the affine matrix which to multiply this with
      Returns:
      a matrix holding the result
    • mulOrthoAffine

      public Matrix4f mulOrthoAffine​(Matrix4fc view, Matrix4f dest)
      Description copied from interface: Matrix4fc
      Multiply this orthographic projection matrix by the supplied affine view matrix and store the result in dest.

      If M is this matrix and V the view matrix, then the new matrix will be M * V. So when transforming a vector v with the new matrix by using M * V * v, the transformation of the view matrix will be applied first!

      Specified by:
      mulOrthoAffine in interface Matrix4fc
      Parameters:
      view - the affine matrix which to multiply this with
      dest - the destination matrix, which will hold the result
      Returns:
      dest
    • fma4x3

      public Matrix4f fma4x3​(Matrix4fc other, float otherFactor)
      Component-wise add the upper 4x3 submatrices of this and other by first multiplying each component of other's 4x3 submatrix by otherFactor and adding that result to this.

      The matrix other will not be changed.

      Parameters:
      other - the other matrix
      otherFactor - the factor to multiply each of the other matrix's 4x3 components
      Returns:
      a matrix holding the result
    • fma4x3

      public Matrix4f fma4x3​(Matrix4fc other, float otherFactor, Matrix4f dest)
      Description copied from interface: Matrix4fc
      Component-wise add the upper 4x3 submatrices of this and other by first multiplying each component of other's 4x3 submatrix by otherFactor, adding that to this and storing the final result in dest.

      The other components of dest will be set to the ones of this.

      The matrices this and other will not be changed.

      Specified by:
      fma4x3 in interface Matrix4fc
      Parameters:
      other - the other matrix
      otherFactor - the factor to multiply each of the other matrix's 4x3 components
      dest - will hold the result
      Returns:
      dest
    • add

      public Matrix4f add​(Matrix4fc other)
      Component-wise add this and other.
      Parameters:
      other - the other addend
      Returns:
      a matrix holding the result
    • add

      public Matrix4f add​(Matrix4fc other, Matrix4f dest)
      Description copied from interface: Matrix4fc
      Component-wise add this and other and store the result in dest.
      Specified by:
      add in interface Matrix4fc
      Parameters:
      other - the other addend
      dest - will hold the result
      Returns:
      dest
    • sub

      public Matrix4f sub​(Matrix4fc subtrahend)
      Component-wise subtract subtrahend from this.
      Parameters:
      subtrahend - the subtrahend
      Returns:
      a matrix holding the result
    • sub

      public Matrix4f sub​(Matrix4fc subtrahend, Matrix4f dest)
      Description copied from interface: Matrix4fc
      Component-wise subtract subtrahend from this and store the result in dest.
      Specified by:
      sub in interface Matrix4fc
      Parameters:
      subtrahend - the subtrahend
      dest - will hold the result
      Returns:
      dest
    • mulComponentWise

      public Matrix4f mulComponentWise​(Matrix4fc other)
      Component-wise multiply this by other.
      Parameters:
      other - the other matrix
      Returns:
      a matrix holding the result
    • mulComponentWise

      public Matrix4f mulComponentWise​(Matrix4fc other, Matrix4f dest)
      Description copied from interface: Matrix4fc
      Component-wise multiply this by other and store the result in dest.
      Specified by:
      mulComponentWise in interface Matrix4fc
      Parameters:
      other - the other matrix
      dest - will hold the result
      Returns:
      dest
    • add4x3

      public Matrix4f add4x3​(Matrix4fc other)
      Component-wise add the upper 4x3 submatrices of this and other.
      Parameters:
      other - the other addend
      Returns:
      a matrix holding the result
    • add4x3

      public Matrix4f add4x3​(Matrix4fc other, Matrix4f dest)
      Description copied from interface: Matrix4fc
      Component-wise add the upper 4x3 submatrices of this and other and store the result in dest.

      The other components of dest will be set to the ones of this.

      Specified by:
      add4x3 in interface Matrix4fc
      Parameters:
      other - the other addend
      dest - will hold the result
      Returns:
      dest
    • sub4x3

      public Matrix4f sub4x3​(Matrix4f subtrahend)
      Component-wise subtract the upper 4x3 submatrices of subtrahend from this.
      Parameters:
      subtrahend - the subtrahend
      Returns:
      a matrix holding the result
    • sub4x3

      public Matrix4f sub4x3​(Matrix4fc subtrahend, Matrix4f dest)
      Description copied from interface: Matrix4fc
      Component-wise subtract the upper 4x3 submatrices of subtrahend from this and store the result in dest.

      The other components of dest will be set to the ones of this.

      Specified by:
      sub4x3 in interface Matrix4fc
      Parameters:
      subtrahend - the subtrahend
      dest - will hold the result
      Returns:
      dest
    • mul4x3ComponentWise

      public Matrix4f mul4x3ComponentWise​(Matrix4fc other)
      Component-wise multiply the upper 4x3 submatrices of this by other.
      Parameters:
      other - the other matrix
      Returns:
      a matrix holding the result
    • mul4x3ComponentWise

      public Matrix4f mul4x3ComponentWise​(Matrix4fc other, Matrix4f dest)
      Description copied from interface: Matrix4fc
      Component-wise multiply the upper 4x3 submatrices of this by other and store the result in dest.

      The other components of dest will be set to the ones of this.

      Specified by:
      mul4x3ComponentWise in interface Matrix4fc
      Parameters:
      other - the other matrix
      dest - will hold the result
      Returns:
      dest
    • set

      public Matrix4f set​(float m00, float m01, float m02, float m03, float m10, float m11, float m12, float m13, float m20, float m21, float m22, float m23, float m30, float m31, float m32, float m33)
      Set the values within this matrix to the supplied float values. The matrix will look like this:

      m00, m10, m20, m30
      m01, m11, m21, m31
      m02, m12, m22, m32
      m03, m13, m23, m33
      Parameters:
      m00 - the new value of m00
      m01 - the new value of m01
      m02 - the new value of m02
      m03 - the new value of m03
      m10 - the new value of m10
      m11 - the new value of m11
      m12 - the new value of m12
      m13 - the new value of m13
      m20 - the new value of m20
      m21 - the new value of m21
      m22 - the new value of m22
      m23 - the new value of m23
      m30 - the new value of m30
      m31 - the new value of m31
      m32 - the new value of m32
      m33 - the new value of m33
      Returns:
      this
    • set

      public Matrix4f set​(float[] m, int off)
      Set the values in the matrix using a float array that contains the matrix elements in column-major order.

      The results will look like this:

      0, 4, 8, 12
      1, 5, 9, 13
      2, 6, 10, 14
      3, 7, 11, 15

      Parameters:
      m - the array to read the matrix values from
      off - the offset into the array
      Returns:
      this
      See Also:
      set(float[])
    • set

      public Matrix4f set​(float[] m)
      Set the values in the matrix using a float array that contains the matrix elements in column-major order.

      The results will look like this:

      0, 4, 8, 12
      1, 5, 9, 13
      2, 6, 10, 14
      3, 7, 11, 15

      Parameters:
      m - the array to read the matrix values from
      Returns:
      this
      See Also:
      set(float[], int)
    • set

      public Matrix4f set​(java.nio.FloatBuffer buffer)
      Set the values of this matrix by reading 16 float values from the given FloatBuffer in column-major order, starting at its current position.

      The FloatBuffer is expected to contain the values in column-major order.

      The position of the FloatBuffer will not be changed by this method.

      Parameters:
      buffer - the FloatBuffer to read the matrix values from in column-major order
      Returns:
      this
    • set

      public Matrix4f set​(java.nio.ByteBuffer buffer)
      Set the values of this matrix by reading 16 float values from the given ByteBuffer in column-major order, starting at its current position.

      The ByteBuffer is expected to contain the values in column-major order.

      The position of the ByteBuffer will not be changed by this method.

      Parameters:
      buffer - the ByteBuffer to read the matrix values from in column-major order
      Returns:
      this
    • setFromAddress

      public Matrix4f setFromAddress​(long address)
      Set the values of this matrix by reading 16 float values from off-heap memory in column-major order, starting at the given address.

      This method will throw an UnsupportedOperationException when JOML is used with `-Djoml.nounsafe`.

      This method is unsafe as it can result in a crash of the JVM process when the specified address range does not belong to this process.

      Parameters:
      address - the off-heap memory address to read the matrix values from in column-major order
      Returns:
      this
    • set

      public Matrix4f set​(Vector4fc col0, Vector4fc col1, Vector4fc col2, Vector4fc col3)
      Set the four columns of this matrix to the supplied vectors, respectively.
      Parameters:
      col0 - the first column
      col1 - the second column
      col2 - the third column
      col3 - the fourth column
      Returns:
      this
    • determinant

      public float determinant()
      Description copied from interface: Matrix4fc
      Return the determinant of this matrix.

      If this matrix represents an affine transformation, such as translation, rotation, scaling and shearing, and thus its last row is equal to (0, 0, 0, 1), then Matrix4fc.determinantAffine() can be used instead of this method.

      Specified by:
      determinant in interface Matrix4fc
      Returns:
      the determinant
      See Also:
      Matrix4fc.determinantAffine()
    • determinant3x3

      public float determinant3x3()
      Description copied from interface: Matrix4fc
      Return the determinant of the upper left 3x3 submatrix of this matrix.
      Specified by:
      determinant3x3 in interface Matrix4fc
      Returns:
      the determinant
    • determinantAffine

      public float determinantAffine()
      Description copied from interface: Matrix4fc
      Return the determinant of this matrix by assuming that it represents an affine transformation and thus its last row is equal to (0, 0, 0, 1).
      Specified by:
      determinantAffine in interface Matrix4fc
      Returns:
      the determinant
    • invert

      public Matrix4f invert​(Matrix4f dest)
      Description copied from interface: Matrix4fc
      Invert this matrix and write the result into dest.

      If this matrix represents an affine transformation, such as translation, rotation, scaling and shearing, and thus its last row is equal to (0, 0, 0, 1), then Matrix4fc.invertAffine(Matrix4f) can be used instead of this method.

      Specified by:
      invert in interface Matrix4fc
      Parameters:
      dest - will hold the result
      Returns:
      dest
      See Also:
      Matrix4fc.invertAffine(Matrix4f)
    • invert

      public Matrix4f invert()
      Invert this matrix.

      If this matrix represents an affine transformation, such as translation, rotation, scaling and shearing, and thus its last row is equal to (0, 0, 0, 1), then invertAffine() can be used instead of this method.

      Returns:
      a matrix holding the result
      See Also:
      invertAffine()
    • invertPerspective

      public Matrix4f invertPerspective​(Matrix4f dest)
      If this is a perspective projection matrix obtained via one of the perspective() methods or via setPerspective(), that is, if this is a symmetrical perspective frustum transformation, then this method builds the inverse of this and stores it into the given dest.

      This method can be used to quickly obtain the inverse of a perspective projection matrix when being obtained via perspective().

      Specified by:
      invertPerspective in interface Matrix4fc
      Parameters:
      dest - will hold the inverse of this
      Returns:
      dest
      See Also:
      perspective(float, float, float, float)
    • invertPerspective

      public Matrix4f invertPerspective()
      If this is a perspective projection matrix obtained via one of the perspective() methods or via setPerspective(), that is, if this is a symmetrical perspective frustum transformation, then this method builds the inverse of this.

      This method can be used to quickly obtain the inverse of a perspective projection matrix when being obtained via perspective().

      Returns:
      a matrix holding the result
      See Also:
      perspective(float, float, float, float)
    • invertFrustum

      public Matrix4f invertFrustum​(Matrix4f dest)
      If this is an arbitrary perspective projection matrix obtained via one of the frustum() methods or via setFrustum(), then this method builds the inverse of this and stores it into the given dest.

      This method can be used to quickly obtain the inverse of a perspective projection matrix.

      If this matrix represents a symmetric perspective frustum transformation, as obtained via perspective(), then invertPerspective(Matrix4f) should be used instead.

      Specified by:
      invertFrustum in interface Matrix4fc
      Parameters:
      dest - will hold the inverse of this
      Returns:
      dest
      See Also:
      frustum(float, float, float, float, float, float), invertPerspective(Matrix4f)
    • invertFrustum

      public Matrix4f invertFrustum()
      If this is an arbitrary perspective projection matrix obtained via one of the frustum() methods or via setFrustum(), then this method builds the inverse of this.

      This method can be used to quickly obtain the inverse of a perspective projection matrix.

      If this matrix represents a symmetric perspective frustum transformation, as obtained via perspective(), then invertPerspective() should be used instead.

      Returns:
      a matrix holding the result
      See Also:
      frustum(float, float, float, float, float, float), invertPerspective()
    • invertOrtho

      public Matrix4f invertOrtho​(Matrix4f dest)
      Description copied from interface: Matrix4fc
      Invert this orthographic projection matrix and store the result into the given dest.

      This method can be used to quickly obtain the inverse of an orthographic projection matrix.

      Specified by:
      invertOrtho in interface Matrix4fc
      Parameters:
      dest - will hold the inverse of this
      Returns:
      dest
    • invertOrtho

      public Matrix4f invertOrtho()
      Invert this orthographic projection matrix.

      This method can be used to quickly obtain the inverse of an orthographic projection matrix.

      Returns:
      a matrix holding the result
    • invertPerspectiveView

      public Matrix4f invertPerspectiveView​(Matrix4fc view, Matrix4f dest)
      If this is a perspective projection matrix obtained via one of the perspective() methods or via setPerspective(), that is, if this is a symmetrical perspective frustum transformation and the given view matrix is affine and has unit scaling (for example by being obtained via lookAt()), then this method builds the inverse of this * view and stores it into the given dest.

      This method can be used to quickly obtain the inverse of the combination of the view and projection matrices, when both were obtained via the common methods perspective() and lookAt() or other methods, that build affine matrices, such as translate and rotate(float, float, float, float), except for scale().

      For the special cases of the matrices this and view mentioned above, this method is equivalent to the following code:

       dest.set(this).mul(view).invert();
       
      Specified by:
      invertPerspectiveView in interface Matrix4fc
      Parameters:
      view - the view transformation (must be affine and have unit scaling)
      dest - will hold the inverse of this * view
      Returns:
      dest
    • invertPerspectiveView

      public Matrix4f invertPerspectiveView​(Matrix4x3fc view, Matrix4f dest)
      If this is a perspective projection matrix obtained via one of the perspective() methods or via setPerspective(), that is, if this is a symmetrical perspective frustum transformation and the given view matrix has unit scaling, then this method builds the inverse of this * view and stores it into the given dest.

      This method can be used to quickly obtain the inverse of the combination of the view and projection matrices, when both were obtained via the common methods perspective() and lookAt() or other methods, that build affine matrices, such as translate and rotate(float, float, float, float), except for scale().

      For the special cases of the matrices this and view mentioned above, this method is equivalent to the following code:

       dest.set(this).mul(view).invert();
       
      Specified by:
      invertPerspectiveView in interface Matrix4fc
      Parameters:
      view - the view transformation (must have unit scaling)
      dest - will hold the inverse of this * view
      Returns:
      dest
    • invertAffine

      public Matrix4f invertAffine​(Matrix4f dest)
      Description copied from interface: Matrix4fc
      Invert this matrix by assuming that it is an affine transformation (i.e. its last row is equal to (0, 0, 0, 1)) and write the result into dest.
      Specified by:
      invertAffine in interface Matrix4fc
      Parameters:
      dest - will hold the result
      Returns:
      dest
    • invertAffine

      public Matrix4f invertAffine()
      Invert this matrix by assuming that it is an affine transformation (i.e. its last row is equal to (0, 0, 0, 1)).
      Returns:
      a matrix holding the result
    • transpose

      public Matrix4f transpose​(Matrix4f dest)
      Description copied from interface: Matrix4fc
      Transpose this matrix and store the result in dest.
      Specified by:
      transpose in interface Matrix4fc
      Parameters:
      dest - will hold the result
      Returns:
      dest
    • transpose3x3

      public Matrix4f transpose3x3()
      Transpose only the upper left 3x3 submatrix of this matrix.

      All other matrix elements are left unchanged.

      Returns:
      a matrix holding the result
    • transpose3x3

      public Matrix4f transpose3x3​(Matrix4f dest)
      Description copied from interface: Matrix4fc
      Transpose only the upper left 3x3 submatrix of this matrix and store the result in dest.

      All other matrix elements are left unchanged.

      Specified by:
      transpose3x3 in interface Matrix4fc
      Parameters:
      dest - will hold the result
      Returns:
      dest
    • transpose3x3

      public Matrix3f transpose3x3​(Matrix3f dest)
      Description copied from interface: Matrix4fc
      Transpose only the upper left 3x3 submatrix of this matrix and store the result in dest.
      Specified by:
      transpose3x3 in interface Matrix4fc
      Parameters:
      dest - will hold the result
      Returns:
      dest
    • transpose

      public Matrix4f transpose()
      Transpose this matrix.
      Returns:
      a matrix holding the result
    • translation

      public Matrix4f translation​(float x, float y, float z)
      Set this matrix to be a simple translation matrix.

      The resulting matrix can be multiplied against another transformation matrix to obtain an additional translation.

      In order to post-multiply a translation transformation directly to a matrix, use translate() instead.

      Parameters:
      x - the offset to translate in x
      y - the offset to translate in y
      z - the offset to translate in z
      Returns:
      this
      See Also:
      translate(float, float, float)
    • translation

      public Matrix4f translation​(Vector3fc offset)
      Set this matrix to be a simple translation matrix.

      The resulting matrix can be multiplied against another transformation matrix to obtain an additional translation.

      In order to post-multiply a translation transformation directly to a matrix, use translate() instead.

      Parameters:
      offset - the offsets in x, y and z to translate
      Returns:
      this
      See Also:
      translate(float, float, float)
    • setTranslation

      public Matrix4f setTranslation​(float x, float y, float z)
      Set only the translation components (m30, m31, m32) of this matrix to the given values (x, y, z).

      Note that this will only work properly for orthogonal matrices (without any perspective).

      To build a translation matrix instead, use translation(float, float, float). To apply a translation, use translate(float, float, float).

      Parameters:
      x - the offset to translate in x
      y - the offset to translate in y
      z - the offset to translate in z
      Returns:
      this
      See Also:
      translation(float, float, float), translate(float, float, float)
    • setTranslation

      public Matrix4f setTranslation​(Vector3fc xyz)
      Set only the translation components (m30, m31, m32) of this matrix to the values (xyz.x, xyz.y, xyz.z).

      Note that this will only work properly for orthogonal matrices (without any perspective).

      To build a translation matrix instead, use translation(Vector3fc). To apply a translation, use translate(Vector3fc).

      Parameters:
      xyz - the units to translate in (x, y, z)
      Returns:
      this
      See Also:
      translation(Vector3fc), translate(Vector3fc)
    • getTranslation

      public Vector3f getTranslation​(Vector3f dest)
      Description copied from interface: Matrix4fc
      Get only the translation components (m30, m31, m32) of this matrix and store them in the given vector xyz.
      Specified by:
      getTranslation in interface Matrix4fc
      Parameters:
      dest - will hold the translation components of this matrix
      Returns:
      dest
    • getScale

      public Vector3f getScale​(Vector3f dest)
      Description copied from interface: Matrix4fc
      Get the scaling factors of this matrix for the three base axes.
      Specified by:
      getScale in interface Matrix4fc
      Parameters:
      dest - will hold the scaling factors for x, y and z
      Returns:
      dest
    • toString

      public java.lang.String toString()
      Return a string representation of this matrix.

      This method creates a new DecimalFormat on every invocation with the format string "0.000E0;-".

      Overrides:
      toString in class java.lang.Object
      Returns:
      the string representation
    • toString

      public java.lang.String toString​(java.text.NumberFormat formatter)
      Return a string representation of this matrix by formatting the matrix elements with the given NumberFormat.
      Parameters:
      formatter - the NumberFormat used to format the matrix values with
      Returns:
      the string representation
    • get

      public Matrix4f get​(Matrix4f dest)
      Get the current values of this matrix and store them into dest.

      This is the reverse method of set(Matrix4fc) and allows to obtain intermediate calculation results when chaining multiple transformations.

      Specified by:
      get in interface Matrix4fc
      Parameters:
      dest - the destination matrix
      Returns:
      the passed in destination
      See Also:
      set(Matrix4fc)
    • get4x3

      public Matrix4x3f get4x3​(Matrix4x3f dest)
      Description copied from interface: Matrix4fc
      Get the current values of the upper 4x3 submatrix of this matrix and store them into dest.
      Specified by:
      get4x3 in interface Matrix4fc
      Parameters:
      dest - the destination matrix
      Returns:
      the passed in destination
      See Also:
      Matrix4x3f.set(Matrix4fc)
    • get

      public Matrix4d get​(Matrix4d dest)
      Get the current values of this matrix and store them into dest.

      This is the reverse method of set(Matrix4dc) and allows to obtain intermediate calculation results when chaining multiple transformations.

      Specified by:
      get in interface Matrix4fc
      Parameters:
      dest - the destination matrix
      Returns:
      the passed in destination
      See Also:
      set(Matrix4dc)
    • get3x3

      public Matrix3f get3x3​(Matrix3f dest)
      Description copied from interface: Matrix4fc
      Get the current values of the upper left 3x3 submatrix of this matrix and store them into dest.
      Specified by:
      get3x3 in interface Matrix4fc
      Parameters:
      dest - the destination matrix
      Returns:
      the passed in destination
      See Also:
      Matrix3f.set(Matrix4fc)
    • get3x3

      public Matrix3d get3x3​(Matrix3d dest)
      Description copied from interface: Matrix4fc
      Get the current values of the upper left 3x3 submatrix of this matrix and store them into dest.
      Specified by:
      get3x3 in interface Matrix4fc
      Parameters:
      dest - the destination matrix
      Returns:
      the passed in destination
      See Also:
      Matrix3d.set(Matrix4fc)
    • getRotation

      public AxisAngle4f getRotation​(AxisAngle4f dest)
      Description copied from interface: Matrix4fc
      Get the rotational component of this matrix and store the represented rotation into the given AxisAngle4f.
      Specified by:
      getRotation in interface Matrix4fc
      Parameters:
      dest - the destination AxisAngle4f
      Returns:
      the passed in destination
      See Also:
      AxisAngle4f.set(Matrix4fc)
    • getRotation

      public AxisAngle4d getRotation​(AxisAngle4d dest)
      Description copied from interface: Matrix4fc
      Get the rotational component of this matrix and store the represented rotation into the given AxisAngle4d.
      Specified by:
      getRotation in interface Matrix4fc
      Parameters:
      dest - the destination AxisAngle4d
      Returns:
      the passed in destination
      See Also:
      AxisAngle4f.set(Matrix4fc)
    • getUnnormalizedRotation

      public Quaternionf getUnnormalizedRotation​(Quaternionf dest)
      Description copied from interface: Matrix4fc
      Get the current values of this matrix and store the represented rotation into the given Quaternionf.

      This method assumes that the first three column vectors of the upper left 3x3 submatrix are not normalized and thus allows to ignore any additional scaling factor that is applied to the matrix.

      Specified by:
      getUnnormalizedRotation in interface Matrix4fc
      Parameters:
      dest - the destination Quaternionf
      Returns:
      the passed in destination
      See Also:
      Quaternionf.setFromUnnormalized(Matrix4fc)
    • getNormalizedRotation

      public Quaternionf getNormalizedRotation​(Quaternionf dest)
      Description copied from interface: Matrix4fc
      Get the current values of this matrix and store the represented rotation into the given Quaternionf.

      This method assumes that the first three column vectors of the upper left 3x3 submatrix are normalized.

      Specified by:
      getNormalizedRotation in interface Matrix4fc
      Parameters:
      dest - the destination Quaternionf
      Returns:
      the passed in destination
      See Also:
      Quaternionf.setFromNormalized(Matrix4fc)
    • getUnnormalizedRotation

      public Quaterniond getUnnormalizedRotation​(Quaterniond dest)
      Description copied from interface: Matrix4fc
      Get the current values of this matrix and store the represented rotation into the given Quaterniond.

      This method assumes that the first three column vectors of the upper left 3x3 submatrix are not normalized and thus allows to ignore any additional scaling factor that is applied to the matrix.

      Specified by:
      getUnnormalizedRotation in interface Matrix4fc
      Parameters:
      dest - the destination Quaterniond
      Returns:
      the passed in destination
      See Also:
      Quaterniond.setFromUnnormalized(Matrix4fc)
    • getNormalizedRotation

      public Quaterniond getNormalizedRotation​(Quaterniond dest)
      Description copied from interface: Matrix4fc
      Get the current values of this matrix and store the represented rotation into the given Quaterniond.

      This method assumes that the first three column vectors of the upper left 3x3 submatrix are normalized.

      Specified by:
      getNormalizedRotation in interface Matrix4fc
      Parameters:
      dest - the destination Quaterniond
      Returns:
      the passed in destination
      See Also:
      Quaterniond.setFromNormalized(Matrix4fc)
    • get

      public java.nio.FloatBuffer get​(java.nio.FloatBuffer buffer)
      Description copied from interface: Matrix4fc
      Store this matrix in column-major order into the supplied FloatBuffer at the current buffer position.

      This method will not increment the position of the given FloatBuffer.

      In order to specify the offset into the FloatBuffer at which the matrix is stored, use Matrix4fc.get(int, FloatBuffer), taking the absolute position as parameter.

      Specified by:
      get in interface Matrix4fc
      Parameters:
      buffer - will receive the values of this matrix in column-major order at its current position
      Returns:
      the passed in buffer
      See Also:
      Matrix4fc.get(int, FloatBuffer)
    • get

      public java.nio.FloatBuffer get​(int index, java.nio.FloatBuffer buffer)
      Description copied from interface: Matrix4fc
      Store this matrix in column-major order into the supplied FloatBuffer starting at the specified absolute buffer position/index.

      This method will not increment the position of the given FloatBuffer.

      Specified by:
      get in interface Matrix4fc
      Parameters:
      index - the absolute position into the FloatBuffer
      buffer - will receive the values of this matrix in column-major order
      Returns:
      the passed in buffer
    • get

      public java.nio.ByteBuffer get​(java.nio.ByteBuffer buffer)
      Description copied from interface: Matrix4fc
      Store this matrix in column-major order into the supplied ByteBuffer at the current buffer position.

      This method will not increment the position of the given ByteBuffer.

      In order to specify the offset into the ByteBuffer at which the matrix is stored, use Matrix4fc.get(int, ByteBuffer), taking the absolute position as parameter.

      Specified by:
      get in interface Matrix4fc
      Parameters:
      buffer - will receive the values of this matrix in column-major order at its current position
      Returns:
      the passed in buffer
      See Also:
      Matrix4fc.get(int, ByteBuffer)
    • get

      public java.nio.ByteBuffer get​(int index, java.nio.ByteBuffer buffer)
      Description copied from interface: Matrix4fc
      Store this matrix in column-major order into the supplied ByteBuffer starting at the specified absolute buffer position/index.

      This method will not increment the position of the given ByteBuffer.

      Specified by:
      get in interface Matrix4fc
      Parameters:
      index - the absolute position into the ByteBuffer
      buffer - will receive the values of this matrix in column-major order
      Returns:
      the passed in buffer
    • get4x3

      public java.nio.FloatBuffer get4x3​(java.nio.FloatBuffer buffer)
      Description copied from interface: Matrix4fc
      Store the upper 4x3 submatrix in column-major order into the supplied FloatBuffer at the current buffer position.

      This method will not increment the position of the given FloatBuffer.

      In order to specify the offset into the FloatBuffer at which the matrix is stored, use Matrix4fc.get(int, FloatBuffer), taking the absolute position as parameter.

      Specified by:
      get4x3 in interface Matrix4fc
      Parameters:
      buffer - will receive the values of the upper 4x3 submatrix in column-major order at its current position
      Returns:
      the passed in buffer
      See Also:
      Matrix4fc.get(int, FloatBuffer)
    • get4x3

      public java.nio.FloatBuffer get4x3​(int index, java.nio.FloatBuffer buffer)
      Description copied from interface: Matrix4fc
      Store the upper 4x3 submatrix in column-major order into the supplied FloatBuffer starting at the specified absolute buffer position/index.

      This method will not increment the position of the given FloatBuffer.

      Specified by:
      get4x3 in interface Matrix4fc
      Parameters:
      index - the absolute position into the FloatBuffer
      buffer - will receive the values of the upper 4x3 submatrix in column-major order
      Returns:
      the passed in buffer
    • get4x3

      public java.nio.ByteBuffer get4x3​(java.nio.ByteBuffer buffer)
      Description copied from interface: Matrix4fc
      Store the upper 4x3 submatrix in column-major order into the supplied ByteBuffer at the current buffer position.

      This method will not increment the position of the given ByteBuffer.

      In order to specify the offset into the ByteBuffer at which the matrix is stored, use Matrix4fc.get(int, ByteBuffer), taking the absolute position as parameter.

      Specified by:
      get4x3 in interface Matrix4fc
      Parameters:
      buffer - will receive the values of the upper 4x3 submatrix in column-major order at its current position
      Returns:
      the passed in buffer
      See Also:
      Matrix4fc.get(int, ByteBuffer)
    • get4x3

      public java.nio.ByteBuffer get4x3​(int index, java.nio.ByteBuffer buffer)
      Description copied from interface: Matrix4fc
      Store the upper 4x3 submatrix in column-major order into the supplied ByteBuffer starting at the specified absolute buffer position/index.

      This method will not increment the position of the given ByteBuffer.

      Specified by:
      get4x3 in interface Matrix4fc
      Parameters:
      index - the absolute position into the ByteBuffer
      buffer - will receive the values of the upper 4x3 submatrix in column-major order
      Returns:
      the passed in buffer
    • get3x4

      public java.nio.FloatBuffer get3x4​(java.nio.FloatBuffer buffer)
      Description copied from interface: Matrix4fc
      Store the left 3x4 submatrix in column-major order into the supplied FloatBuffer at the current buffer position.

      This method will not increment the position of the given FloatBuffer.

      In order to specify the offset into the FloatBuffer at which the matrix is stored, use Matrix4fc.get3x4(int, FloatBuffer), taking the absolute position as parameter.

      Specified by:
      get3x4 in interface Matrix4fc
      Parameters:
      buffer - will receive the values of the left 3x4 submatrix in column-major order at its current position
      Returns:
      the passed in buffer
      See Also:
      Matrix4fc.get3x4(int, FloatBuffer)
    • get3x4

      public java.nio.FloatBuffer get3x4​(int index, java.nio.FloatBuffer buffer)
      Description copied from interface: Matrix4fc
      Store the left 3x4 submatrix in column-major order into the supplied FloatBuffer starting at the specified absolute buffer position/index.

      This method will not increment the position of the given FloatBuffer.

      Specified by:
      get3x4 in interface Matrix4fc
      Parameters:
      index - the absolute position into the FloatBuffer
      buffer - will receive the values of the left 3x4 submatrix in column-major order
      Returns:
      the passed in buffer
    • get3x4

      public java.nio.ByteBuffer get3x4​(java.nio.ByteBuffer buffer)
      Description copied from interface: Matrix4fc
      Store the left 3x4 submatrix in column-major order into the supplied ByteBuffer at the current buffer position.

      This method will not increment the position of the given ByteBuffer.

      In order to specify the offset into the ByteBuffer at which the matrix is stored, use Matrix4fc.get3x4(int, ByteBuffer), taking the absolute position as parameter.

      Specified by:
      get3x4 in interface Matrix4fc
      Parameters:
      buffer - will receive the values of the left 3x4 submatrix in column-major order at its current position
      Returns:
      the passed in buffer
      See Also:
      Matrix4fc.get3x4(int, ByteBuffer)
    • get3x4

      public java.nio.ByteBuffer get3x4​(int index, java.nio.ByteBuffer buffer)
      Description copied from interface: Matrix4fc
      Store the left 3x4 submatrix in column-major order into the supplied ByteBuffer starting at the specified absolute buffer position/index.

      This method will not increment the position of the given ByteBuffer.

      Specified by:
      get3x4 in interface Matrix4fc
      Parameters:
      index - the absolute position into the ByteBuffer
      buffer - will receive the values of the left 3x4 submatrix in column-major order
      Returns:
      the passed in buffer
    • getTransposed

      public java.nio.FloatBuffer getTransposed​(java.nio.FloatBuffer buffer)
      Description copied from interface: Matrix4fc
      Store the transpose of this matrix in column-major order into the supplied FloatBuffer at the current buffer position.

      This method will not increment the position of the given FloatBuffer.

      In order to specify the offset into the FloatBuffer at which the matrix is stored, use Matrix4fc.getTransposed(int, FloatBuffer), taking the absolute position as parameter.

      Specified by:
      getTransposed in interface Matrix4fc
      Parameters:
      buffer - will receive the values of this matrix in column-major order at its current position
      Returns:
      the passed in buffer
      See Also:
      Matrix4fc.getTransposed(int, FloatBuffer)
    • getTransposed

      public java.nio.FloatBuffer getTransposed​(int index, java.nio.FloatBuffer buffer)
      Description copied from interface: Matrix4fc
      Store the transpose of this matrix in column-major order into the supplied FloatBuffer starting at the specified absolute buffer position/index.

      This method will not increment the position of the given FloatBuffer.

      Specified by:
      getTransposed in interface Matrix4fc
      Parameters:
      index - the absolute position into the FloatBuffer
      buffer - will receive the values of this matrix in column-major order
      Returns:
      the passed in buffer
    • getTransposed

      public java.nio.ByteBuffer getTransposed​(java.nio.ByteBuffer buffer)
      Description copied from interface: Matrix4fc
      Store the transpose of this matrix in column-major order into the supplied ByteBuffer at the current buffer position.

      This method will not increment the position of the given ByteBuffer.

      In order to specify the offset into the ByteBuffer at which the matrix is stored, use Matrix4fc.getTransposed(int, ByteBuffer), taking the absolute position as parameter.

      Specified by:
      getTransposed in interface Matrix4fc
      Parameters:
      buffer - will receive the values of this matrix in column-major order at its current position
      Returns:
      the passed in buffer
      See Also:
      Matrix4fc.getTransposed(int, ByteBuffer)
    • getTransposed

      public java.nio.ByteBuffer getTransposed​(int index, java.nio.ByteBuffer buffer)
      Description copied from interface: Matrix4fc
      Store the transpose of this matrix in column-major order into the supplied ByteBuffer starting at the specified absolute buffer position/index.

      This method will not increment the position of the given ByteBuffer.

      Specified by:
      getTransposed in interface Matrix4fc
      Parameters:
      index - the absolute position into the ByteBuffer
      buffer - will receive the values of this matrix in column-major order
      Returns:
      the passed in buffer
    • get4x3Transposed

      public java.nio.FloatBuffer get4x3Transposed​(java.nio.FloatBuffer buffer)
      Description copied from interface: Matrix4fc
      Store the upper 4x3 submatrix of this matrix in row-major order into the supplied FloatBuffer at the current buffer position.

      This method will not increment the position of the given FloatBuffer.

      In order to specify the offset into the FloatBuffer at which the matrix is stored, use Matrix4fc.get4x3Transposed(int, FloatBuffer), taking the absolute position as parameter.

      Specified by:
      get4x3Transposed in interface Matrix4fc
      Parameters:
      buffer - will receive the values of the upper 4x3 submatrix in row-major order at its current position
      Returns:
      the passed in buffer
      See Also:
      Matrix4fc.get4x3Transposed(int, FloatBuffer)
    • get4x3Transposed

      public java.nio.FloatBuffer get4x3Transposed​(int index, java.nio.FloatBuffer buffer)
      Description copied from interface: Matrix4fc
      Store the upper 4x3 submatrix of this matrix in row-major order into the supplied FloatBuffer starting at the specified absolute buffer position/index.

      This method will not increment the position of the given FloatBuffer.

      Specified by:
      get4x3Transposed in interface Matrix4fc
      Parameters:
      index - the absolute position into the FloatBuffer
      buffer - will receive the values of the upper 4x3 submatrix in row-major order
      Returns:
      the passed in buffer
    • get4x3Transposed

      public java.nio.ByteBuffer get4x3Transposed​(java.nio.ByteBuffer buffer)
      Description copied from interface: Matrix4fc
      Store the upper 4x3 submatrix of this matrix in row-major order into the supplied ByteBuffer at the current buffer position.

      This method will not increment the position of the given ByteBuffer.

      In order to specify the offset into the ByteBuffer at which the matrix is stored, use Matrix4fc.get4x3Transposed(int, ByteBuffer), taking the absolute position as parameter.

      Specified by:
      get4x3Transposed in interface Matrix4fc
      Parameters:
      buffer - will receive the values of the upper 4x3 submatrix in row-major order at its current position
      Returns:
      the passed in buffer
      See Also:
      Matrix4fc.get4x3Transposed(int, ByteBuffer)
    • get4x3Transposed

      public java.nio.ByteBuffer get4x3Transposed​(int index, java.nio.ByteBuffer buffer)
      Description copied from interface: Matrix4fc
      Store the upper 4x3 submatrix of this matrix in row-major order into the supplied ByteBuffer starting at the specified absolute buffer position/index.

      This method will not increment the position of the given ByteBuffer.

      Specified by:
      get4x3Transposed in interface Matrix4fc
      Parameters:
      index - the absolute position into the ByteBuffer
      buffer - will receive the values of the upper 4x3 submatrix in row-major order
      Returns:
      the passed in buffer
    • getToAddress

      public Matrix4fc getToAddress​(long address)
      Description copied from interface: Matrix4fc
      Store this matrix in column-major order at the given off-heap address.

      This method will throw an UnsupportedOperationException when JOML is used with `-Djoml.nounsafe`.

      This method is unsafe as it can result in a crash of the JVM process when the specified address range does not belong to this process.

      Specified by:
      getToAddress in interface Matrix4fc
      Parameters:
      address - the off-heap address where to store this matrix
      Returns:
      this
    • get

      public float[] get​(float[] arr, int offset)
      Description copied from interface: Matrix4fc
      Store this matrix into the supplied float array in column-major order at the given offset.
      Specified by:
      get in interface Matrix4fc
      Parameters:
      arr - the array to write the matrix values into
      offset - the offset into the array
      Returns:
      the passed in array
    • get

      public float[] get​(float[] arr)
      Description copied from interface: Matrix4fc
      Store this matrix into the supplied float array in column-major order.

      In order to specify an explicit offset into the array, use the method Matrix4fc.get(float[], int).

      Specified by:
      get in interface Matrix4fc
      Parameters:
      arr - the array to write the matrix values into
      Returns:
      the passed in array
      See Also:
      Matrix4fc.get(float[], int)
    • zero

      public Matrix4f zero()
      Set all the values within this matrix to 0.
      Returns:
      a matrix holding the result
    • scaling

      public Matrix4f scaling​(float factor)
      Set this matrix to be a simple scale matrix, which scales all axes uniformly by the given factor.

      The resulting matrix can be multiplied against another transformation matrix to obtain an additional scaling.

      In order to post-multiply a scaling transformation directly to a matrix, use scale() instead.

      Parameters:
      factor - the scale factor in x, y and z
      Returns:
      this
      See Also:
      scale(float)
    • scaling

      public Matrix4f scaling​(float x, float y, float z)
      Set this matrix to be a simple scale matrix.

      The resulting matrix can be multiplied against another transformation matrix to obtain an additional scaling.

      In order to post-multiply a scaling transformation directly to a matrix, use scale() instead.

      Parameters:
      x - the scale in x
      y - the scale in y
      z - the scale in z
      Returns:
      this
      See Also:
      scale(float, float, float)
    • scaling

      public Matrix4f scaling​(Vector3fc xyz)
      Set this matrix to be a simple scale matrix which scales the base axes by xyz.x, xyz.y and xyz.z respectively.

      The resulting matrix can be multiplied against another transformation matrix to obtain an additional scaling.

      In order to post-multiply a scaling transformation directly to a matrix use scale() instead.

      Parameters:
      xyz - the scale in x, y and z respectively
      Returns:
      this
      See Also:
      scale(Vector3fc)
    • rotation

      public Matrix4f rotation​(float angle, Vector3fc axis)
      Set this matrix to a rotation matrix which rotates the given radians about a given axis.

      The axis described by the axis vector needs to be a unit vector.

      When used with a right-handed coordinate system, the produced rotation will rotate a vector counter-clockwise around the rotation axis, when viewing along the negative axis direction towards the origin. When used with a left-handed coordinate system, the rotation is clockwise.

      The resulting matrix can be multiplied against another transformation matrix to obtain an additional rotation.

      In order to post-multiply a rotation transformation directly to a matrix, use rotate() instead.

      Parameters:
      angle - the angle in radians
      axis - the axis to rotate about (needs to be normalized)
      Returns:
      this
      See Also:
      rotate(float, Vector3fc)
    • rotation

      public Matrix4f rotation​(AxisAngle4f axisAngle)
      Set this matrix to a rotation transformation using the given AxisAngle4f.

      When used with a right-handed coordinate system, the produced rotation will rotate a vector counter-clockwise around the rotation axis, when viewing along the negative axis direction towards the origin. When used with a left-handed coordinate system, the rotation is clockwise.

      The resulting matrix can be multiplied against another transformation matrix to obtain an additional rotation.

      In order to apply the rotation transformation to an existing transformation, use rotate() instead.

      Reference: http://en.wikipedia.org

      Parameters:
      axisAngle - the AxisAngle4f (needs to be normalized)
      Returns:
      this
      See Also:
      rotate(AxisAngle4f)
    • rotation

      public Matrix4f rotation​(float angle, float x, float y, float z)
      Set this matrix to a rotation matrix which rotates the given radians about a given axis.

      The axis described by the three components needs to be a unit vector.

      When used with a right-handed coordinate system, the produced rotation will rotate a vector counter-clockwise around the rotation axis, when viewing along the negative axis direction towards the origin. When used with a left-handed coordinate system, the rotation is clockwise.

      The resulting matrix can be multiplied against another transformation matrix to obtain an additional rotation.

      In order to apply the rotation transformation to an existing transformation, use rotate() instead.

      Reference: http://en.wikipedia.org

      Parameters:
      angle - the angle in radians
      x - the x-component of the rotation axis
      y - the y-component of the rotation axis
      z - the z-component of the rotation axis
      Returns:
      this
      See Also:
      rotate(float, float, float, float)
    • rotationX

      public Matrix4f rotationX​(float ang)
      Set this matrix to a rotation transformation about the X axis.

      When used with a right-handed coordinate system, the produced rotation will rotate a vector counter-clockwise around the rotation axis, when viewing along the negative axis direction towards the origin. When used with a left-handed coordinate system, the rotation is clockwise.

      Reference: http://en.wikipedia.org

      Parameters:
      ang - the angle in radians
      Returns:
      this
    • rotationY

      public Matrix4f rotationY​(float ang)
      Set this matrix to a rotation transformation about the Y axis.

      When used with a right-handed coordinate system, the produced rotation will rotate a vector counter-clockwise around the rotation axis, when viewing along the negative axis direction towards the origin. When used with a left-handed coordinate system, the rotation is clockwise.

      Reference: http://en.wikipedia.org

      Parameters:
      ang - the angle in radians
      Returns:
      this
    • rotationZ

      public Matrix4f rotationZ​(float ang)
      Set this matrix to a rotation transformation about the Z axis.

      When used with a right-handed coordinate system, the produced rotation will rotate a vector counter-clockwise around the rotation axis, when viewing along the negative axis direction towards the origin. When used with a left-handed coordinate system, the rotation is clockwise.

      Reference: http://en.wikipedia.org

      Parameters:
      ang - the angle in radians
      Returns:
      this
    • rotationTowardsXY

      public Matrix4f rotationTowardsXY​(float dirX, float dirY)
      Set this matrix to a rotation transformation about the Z axis to align the local +X towards (dirX, dirY).

      The vector (dirX, dirY) must be a unit vector.

      Parameters:
      dirX - the x component of the normalized direction
      dirY - the y component of the normalized direction
      Returns:
      this
    • rotationXYZ

      public Matrix4f rotationXYZ​(float angleX, float angleY, float angleZ)
      Set this matrix to a rotation of angleX radians about the X axis, followed by a rotation of angleY radians about the Y axis and followed by a rotation of angleZ radians about the Z axis.

      When used with a right-handed coordinate system, the produced rotation will rotate a vector counter-clockwise around the rotation axis, when viewing along the negative axis direction towards the origin. When used with a left-handed coordinate system, the rotation is clockwise.

      This method is equivalent to calling: rotationX(angleX).rotateY(angleY).rotateZ(angleZ)

      Parameters:
      angleX - the angle to rotate about X
      angleY - the angle to rotate about Y
      angleZ - the angle to rotate about Z
      Returns:
      this
    • rotationZYX

      public Matrix4f rotationZYX​(float angleZ, float angleY, float angleX)
      Set this matrix to a rotation of angleZ radians about the Z axis, followed by a rotation of angleY radians about the Y axis and followed by a rotation of angleX radians about the X axis.

      When used with a right-handed coordinate system, the produced rotation will rotate a vector counter-clockwise around the rotation axis, when viewing along the negative axis direction towards the origin. When used with a left-handed coordinate system, the rotation is clockwise.

      This method is equivalent to calling: rotationZ(angleZ).rotateY(angleY).rotateX(angleX)

      Parameters:
      angleZ - the angle to rotate about Z
      angleY - the angle to rotate about Y
      angleX - the angle to rotate about X
      Returns:
      this
    • rotationYXZ

      public Matrix4f rotationYXZ​(float angleY, float angleX, float angleZ)
      Set this matrix to a rotation of angleY radians about the Y axis, followed by a rotation of angleX radians about the X axis and followed by a rotation of angleZ radians about the Z axis.

      When used with a right-handed coordinate system, the produced rotation will rotate a vector counter-clockwise around the rotation axis, when viewing along the negative axis direction towards the origin. When used with a left-handed coordinate system, the rotation is clockwise.

      This method is equivalent to calling: rotationY(angleY).rotateX(angleX).rotateZ(angleZ)

      Parameters:
      angleY - the angle to rotate about Y
      angleX - the angle to rotate about X
      angleZ - the angle to rotate about Z
      Returns:
      this
    • setRotationXYZ

      public Matrix4f setRotationXYZ​(float angleX, float angleY, float angleZ)
      Set only the upper left 3x3 submatrix of this matrix to a rotation of angleX radians about the X axis, followed by a rotation of angleY radians about the Y axis and followed by a rotation of angleZ radians about the Z axis.

      When used with a right-handed coordinate system, the produced rotation will rotate a vector counter-clockwise around the rotation axis, when viewing along the negative axis direction towards the origin. When used with a left-handed coordinate system, the rotation is clockwise.

      Parameters:
      angleX - the angle to rotate about X
      angleY - the angle to rotate about Y
      angleZ - the angle to rotate about Z
      Returns:
      this
    • setRotationZYX

      public Matrix4f setRotationZYX​(float angleZ, float angleY, float angleX)
      Set only the upper left 3x3 submatrix of this matrix to a rotation of angleZ radians about the Z axis, followed by a rotation of angleY radians about the Y axis and followed by a rotation of angleX radians about the X axis.

      When used with a right-handed coordinate system, the produced rotation will rotate a vector counter-clockwise around the rotation axis, when viewing along the negative axis direction towards the origin. When used with a left-handed coordinate system, the rotation is clockwise.

      Parameters:
      angleZ - the angle to rotate about Z
      angleY - the angle to rotate about Y
      angleX - the angle to rotate about X
      Returns:
      this
    • setRotationYXZ

      public Matrix4f setRotationYXZ​(float angleY, float angleX, float angleZ)
      Set only the upper left 3x3 submatrix of this matrix to a rotation of angleY radians about the Y axis, followed by a rotation of angleX radians about the X axis and followed by a rotation of angleZ radians about the Z axis.

      When used with a right-handed coordinate system, the produced rotation will rotate a vector counter-clockwise around the rotation axis, when viewing along the negative axis direction towards the origin. When used with a left-handed coordinate system, the rotation is clockwise.

      Parameters:
      angleY - the angle to rotate about Y
      angleX - the angle to rotate about X
      angleZ - the angle to rotate about Z
      Returns:
      this
    • rotation

      public Matrix4f rotation​(Quaternionfc quat)
      Set this matrix to the rotation transformation of the given Quaternionfc.

      When used with a right-handed coordinate system, the produced rotation will rotate a vector counter-clockwise around the rotation axis, when viewing along the negative axis direction towards the origin. When used with a left-handed coordinate system, the rotation is clockwise.

      The resulting matrix can be multiplied against another transformation matrix to obtain an additional rotation.

      In order to apply the rotation transformation to an existing transformation, use rotate() instead.

      Reference: http://en.wikipedia.org

      Parameters:
      quat - the Quaternionfc
      Returns:
      this
      See Also:
      rotate(Quaternionfc)
    • translationRotateScale

      public Matrix4f translationRotateScale​(float tx, float ty, float tz, float qx, float qy, float qz, float qw, float sx, float sy, float sz)
      Set this matrix to T * R * S, where T is a translation by the given (tx, ty, tz), R is a rotation transformation specified by the quaternion (qx, qy, qz, qw), and S is a scaling transformation which scales the three axes x, y and z by (sx, sy, sz).

      When transforming a vector by the resulting matrix the scaling transformation will be applied first, then the rotation and at last the translation.

      When used with a right-handed coordinate system, the produced rotation will rotate a vector counter-clockwise around the rotation axis, when viewing along the negative axis direction towards the origin. When used with a left-handed coordinate system, the rotation is clockwise.

      This method is equivalent to calling: translation(tx, ty, tz).rotate(quat).scale(sx, sy, sz)

      Parameters:
      tx - the number of units by which to translate the x-component
      ty - the number of units by which to translate the y-component
      tz - the number of units by which to translate the z-component
      qx - the x-coordinate of the vector part of the quaternion
      qy - the y-coordinate of the vector part of the quaternion
      qz - the z-coordinate of the vector part of the quaternion
      qw - the scalar part of the quaternion
      sx - the scaling factor for the x-axis
      sy - the scaling factor for the y-axis
      sz - the scaling factor for the z-axis
      Returns:
      this
      See Also:
      translation(float, float, float), rotate(Quaternionfc), scale(float, float, float)
    • translationRotateScale

      public Matrix4f translationRotateScale​(Vector3fc translation, Quaternionfc quat, Vector3fc scale)
      Set this matrix to T * R * S, where T is the given translation, R is a rotation transformation specified by the given quaternion, and S is a scaling transformation which scales the axes by scale.

      When transforming a vector by the resulting matrix the scaling transformation will be applied first, then the rotation and at last the translation.

      When used with a right-handed coordinate system, the produced rotation will rotate a vector counter-clockwise around the rotation axis, when viewing along the negative axis direction towards the origin. When used with a left-handed coordinate system, the rotation is clockwise.

      This method is equivalent to calling: translation(translation).rotate(quat).scale(scale)

      Parameters:
      translation - the translation
      quat - the quaternion representing a rotation
      scale - the scaling factors
      Returns:
      this
      See Also:
      translation(Vector3fc), rotate(Quaternionfc), scale(Vector3fc)
    • translationRotateScale

      public Matrix4f translationRotateScale​(float tx, float ty, float tz, float qx, float qy, float qz, float qw, float scale)
      Set this matrix to T * R * S, where T is a translation by the given (tx, ty, tz), R is a rotation transformation specified by the quaternion (qx, qy, qz, qw), and S is a scaling transformation which scales all three axes by scale.

      When transforming a vector by the resulting matrix the scaling transformation will be applied first, then the rotation and at last the translation.

      When used with a right-handed coordinate system, the produced rotation will rotate a vector counter-clockwise around the rotation axis, when viewing along the negative axis direction towards the origin. When used with a left-handed coordinate system, the rotation is clockwise.

      This method is equivalent to calling: translation(tx, ty, tz).rotate(quat).scale(scale)

      Parameters:
      tx - the number of units by which to translate the x-component
      ty - the number of units by which to translate the y-component
      tz - the number of units by which to translate the z-component
      qx - the x-coordinate of the vector part of the quaternion
      qy - the y-coordinate of the vector part of the quaternion
      qz - the z-coordinate of the vector part of the quaternion
      qw - the scalar part of the quaternion
      scale - the scaling factor for all three axes
      Returns:
      this
      See Also:
      translation(float, float, float), rotate(Quaternionfc), scale(float)
    • translationRotateScale

      public Matrix4f translationRotateScale​(Vector3fc translation, Quaternionfc quat, float scale)
      Set this matrix to T * R * S, where T is the given translation, R is a rotation transformation specified by the given quaternion, and S is a scaling transformation which scales all three axes by scale.

      When transforming a vector by the resulting matrix the scaling transformation will be applied first, then the rotation and at last the translation.

      When used with a right-handed coordinate system, the produced rotation will rotate a vector counter-clockwise around the rotation axis, when viewing along the negative axis direction towards the origin. When used with a left-handed coordinate system, the rotation is clockwise.

      This method is equivalent to calling: translation(translation).rotate(quat).scale(scale)

      Parameters:
      translation - the translation
      quat - the quaternion representing a rotation
      scale - the scaling factors
      Returns:
      this
      See Also:
      translation(Vector3fc), rotate(Quaternionfc), scale(float)
    • translationRotateScaleInvert

      public Matrix4f translationRotateScaleInvert​(float tx, float ty, float tz, float qx, float qy, float qz, float qw, float sx, float sy, float sz)
      Set this matrix to (T * R * S)-1, where T is a translation by the given (tx, ty, tz), R is a rotation transformation specified by the quaternion (qx, qy, qz, qw), and S is a scaling transformation which scales the three axes x, y and z by (sx, sy, sz).

      This method is equivalent to calling: translationRotateScale(...).invert()

      Parameters:
      tx - the number of units by which to translate the x-component
      ty - the number of units by which to translate the y-component
      tz - the number of units by which to translate the z-component
      qx - the x-coordinate of the vector part of the quaternion
      qy - the y-coordinate of the vector part of the quaternion
      qz - the z-coordinate of the vector part of the quaternion
      qw - the scalar part of the quaternion
      sx - the scaling factor for the x-axis
      sy - the scaling factor for the y-axis
      sz - the scaling factor for the z-axis
      Returns:
      this
      See Also:
      translationRotateScale(float, float, float, float, float, float, float, float, float, float), invert()
    • translationRotateScaleInvert

      public Matrix4f translationRotateScaleInvert​(Vector3fc translation, Quaternionfc quat, Vector3fc scale)
      Set this matrix to (T * R * S)-1, where T is the given translation, R is a rotation transformation specified by the given quaternion, and S is a scaling transformation which scales the axes by scale.

      This method is equivalent to calling: translationRotateScale(...).invert()

      Parameters:
      translation - the translation
      quat - the quaternion representing a rotation
      scale - the scaling factors
      Returns:
      this
      See Also:
      translationRotateScale(Vector3fc, Quaternionfc, Vector3fc), invert()
    • translationRotateScaleInvert

      public Matrix4f translationRotateScaleInvert​(Vector3fc translation, Quaternionfc quat, float scale)
      Set this matrix to (T * R * S)-1, where T is the given translation, R is a rotation transformation specified by the given quaternion, and S is a scaling transformation which scales all three axes by scale.

      This method is equivalent to calling: translationRotateScale(...).invert()

      Parameters:
      translation - the translation
      quat - the quaternion representing a rotation
      scale - the scaling factors
      Returns:
      this
      See Also:
      translationRotateScale(Vector3fc, Quaternionfc, float), invert()
    • translationRotateScaleMulAffine

      public Matrix4f translationRotateScaleMulAffine​(float tx, float ty, float tz, float qx, float qy, float qz, float qw, float sx, float sy, float sz, Matrix4f m)
      Set this matrix to T * R * S * M, where T is a translation by the given (tx, ty, tz), R is a rotation - and possibly scaling - transformation specified by the quaternion (qx, qy, qz, qw), S is a scaling transformation which scales the three axes x, y and z by (sx, sy, sz) and M is an affine matrix.

      When transforming a vector by the resulting matrix the transformation described by M will be applied first, then the scaling, then rotation and at last the translation.

      When used with a right-handed coordinate system, the produced rotation will rotate a vector counter-clockwise around the rotation axis, when viewing along the negative axis direction towards the origin. When used with a left-handed coordinate system, the rotation is clockwise.

      This method is equivalent to calling: translation(tx, ty, tz).rotate(quat).scale(sx, sy, sz).mulAffine(m)

      Parameters:
      tx - the number of units by which to translate the x-component
      ty - the number of units by which to translate the y-component
      tz - the number of units by which to translate the z-component
      qx - the x-coordinate of the vector part of the quaternion
      qy - the y-coordinate of the vector part of the quaternion
      qz - the z-coordinate of the vector part of the quaternion
      qw - the scalar part of the quaternion
      sx - the scaling factor for the x-axis
      sy - the scaling factor for the y-axis
      sz - the scaling factor for the z-axis
      m - the affine matrix to multiply by
      Returns:
      this
      See Also:
      translation(float, float, float), rotate(Quaternionfc), scale(float, float, float), mulAffine(Matrix4fc)
    • translationRotateScaleMulAffine

      public Matrix4f translationRotateScaleMulAffine​(Vector3fc translation, Quaternionfc quat, Vector3fc scale, Matrix4f m)
      Set this matrix to T * R * S * M, where T is the given translation, R is a rotation - and possibly scaling - transformation specified by the given quaternion, S is a scaling transformation which scales the axes by scale and M is an affine matrix.

      When transforming a vector by the resulting matrix the transformation described by M will be applied first, then the scaling, then rotation and at last the translation.

      When used with a right-handed coordinate system, the produced rotation will rotate a vector counter-clockwise around the rotation axis, when viewing along the negative axis direction towards the origin. When used with a left-handed coordinate system, the rotation is clockwise.

      This method is equivalent to calling: translation(translation).rotate(quat).scale(scale).mulAffine(m)

      Parameters:
      translation - the translation
      quat - the quaternion representing a rotation
      scale - the scaling factors
      m - the affine matrix to multiply by
      Returns:
      this
      See Also:
      translation(Vector3fc), rotate(Quaternionfc), mulAffine(Matrix4fc)
    • translationRotate

      public Matrix4f translationRotate​(float tx, float ty, float tz, float qx, float qy, float qz, float qw)
      Set this matrix to T * R, where T is a translation by the given (tx, ty, tz) and R is a rotation - and possibly scaling - transformation specified by the quaternion (qx, qy, qz, qw).

      When transforming a vector by the resulting matrix the rotation - and possibly scaling - transformation will be applied first and then the translation.

      When used with a right-handed coordinate system, the produced rotation will rotate a vector counter-clockwise around the rotation axis, when viewing along the negative axis direction towards the origin. When used with a left-handed coordinate system, the rotation is clockwise.

      This method is equivalent to calling: translation(tx, ty, tz).rotate(quat)

      Parameters:
      tx - the number of units by which to translate the x-component
      ty - the number of units by which to translate the y-component
      tz - the number of units by which to translate the z-component
      qx - the x-coordinate of the vector part of the quaternion
      qy - the y-coordinate of the vector part of the quaternion
      qz - the z-coordinate of the vector part of the quaternion
      qw - the scalar part of the quaternion
      Returns:
      this
      See Also:
      translation(float, float, float), rotate(Quaternionfc)
    • translationRotate

      public Matrix4f translationRotate​(float tx, float ty, float tz, Quaternionfc quat)
      Set this matrix to T * R, where T is a translation by the given (tx, ty, tz) and R is a rotation - and possibly scaling - transformation specified by the given quaternion.

      When transforming a vector by the resulting matrix the rotation - and possibly scaling - transformation will be applied first and then the translation.

      When used with a right-handed coordinate system, the produced rotation will rotate a vector counter-clockwise around the rotation axis, when viewing along the negative axis direction towards the origin. When used with a left-handed coordinate system, the rotation is clockwise.

      This method is equivalent to calling: translation(tx, ty, tz).rotate(quat)

      Parameters:
      tx - the number of units by which to translate the x-component
      ty - the number of units by which to translate the y-component
      tz - the number of units by which to translate the z-component
      quat - the quaternion representing a rotation
      Returns:
      this
      See Also:
      translation(float, float, float), rotate(Quaternionfc)
    • set3x3

      public Matrix4f set3x3​(Matrix3fc mat)
      Set the upper left 3x3 submatrix of this Matrix4f to the given Matrix3fc and don't change the other elements.
      Parameters:
      mat - the 3x3 matrix
      Returns:
      this
    • transform

      public Vector4f transform​(Vector4f v)
      Description copied from interface: Matrix4fc
      Transform/multiply the given vector by this matrix and store the result in that vector.
      Specified by:
      transform in interface Matrix4fc
      Parameters:
      v - the vector to transform and to hold the final result
      Returns:
      v
      See Also:
      Vector4f.mul(Matrix4fc)
    • transform

      public Vector4f transform​(Vector4fc v, Vector4f dest)
      Description copied from interface: Matrix4fc
      Transform/multiply the given vector by this matrix and store the result in dest.
      Specified by:
      transform in interface Matrix4fc
      Parameters:
      v - the vector to transform
      dest - will contain the result
      Returns:
      dest
      See Also:
      Vector4f.mul(Matrix4fc, Vector4f)
    • transform

      public Vector4f transform​(float x, float y, float z, float w, Vector4f dest)
      Description copied from interface: Matrix4fc
      Transform/multiply the vector (x, y, z, w) by this matrix and store the result in dest.
      Specified by:
      transform in interface Matrix4fc
      Parameters:
      x - the x coordinate of the vector to transform
      y - the y coordinate of the vector to transform
      z - the z coordinate of the vector to transform
      w - the w coordinate of the vector to transform
      dest - will contain the result
      Returns:
      dest
    • transformProject

      public Vector4f transformProject​(Vector4f v)
      Description copied from interface: Matrix4fc
      Transform/multiply the given vector by this matrix, perform perspective divide and store the result in that vector.
      Specified by:
      transformProject in interface Matrix4fc
      Parameters:
      v - the vector to transform and to hold the final result
      Returns:
      v
      See Also:
      Vector4f.mulProject(Matrix4fc)
    • transformProject

      public Vector4f transformProject​(Vector4fc v, Vector4f dest)
      Description copied from interface: Matrix4fc
      Transform/multiply the given vector by this matrix, perform perspective divide and store the result in dest.
      Specified by:
      transformProject in interface Matrix4fc
      Parameters:
      v - the vector to transform
      dest - will contain the result
      Returns:
      dest
      See Also:
      Vector4f.mulProject(Matrix4fc, Vector4f)
    • transformProject

      public Vector4f transformProject​(float x, float y, float z, float w, Vector4f dest)
      Description copied from interface: Matrix4fc
      Transform/multiply the vector (x, y, z, w) by this matrix, perform perspective divide and store the result in dest.
      Specified by:
      transformProject in interface Matrix4fc
      Parameters:
      x - the x coordinate of the vector to transform
      y - the y coordinate of the vector to transform
      z - the z coordinate of the vector to transform
      w - the w coordinate of the vector to transform
      dest - will contain the result
      Returns:
      dest
    • transformProject

      public Vector3f transformProject​(Vector4fc v, Vector3f dest)
    • transformProject

      public Vector3f transformProject​(float x, float y, float z, float w, Vector3f dest)
      Description copied from interface: Matrix4fc
      Transform/multiply the vector (x, y, z, w) by this matrix, perform perspective divide and store (x, y, z) of the result in dest.
      Specified by:
      transformProject in interface Matrix4fc
      Parameters:
      x - the x coordinate of the vector to transform
      y - the y coordinate of the vector to transform
      z - the z coordinate of the vector to transform
      w - the w coordinate of the vector to transform
      dest - will contain the (x, y, z) components of the result
      Returns:
      dest
    • transformProject

      public Vector3f transformProject​(Vector3f v)
      Description copied from interface: Matrix4fc
      Transform/multiply the given vector by this matrix, perform perspective divide and store the result in that vector.

      This method uses w=1.0 as the fourth vector component.

      Specified by:
      transformProject in interface Matrix4fc
      Parameters:
      v - the vector to transform and to hold the final result
      Returns:
      v
      See Also:
      Vector3f.mulProject(Matrix4fc)
    • transformProject

      public Vector3f transformProject​(Vector3fc v, Vector3f dest)
      Description copied from interface: Matrix4fc
      Transform/multiply the given vector by this matrix, perform perspective divide and store the result in dest.

      This method uses w=1.0 as the fourth vector component.

      Specified by:
      transformProject in interface Matrix4fc
      Parameters:
      v - the vector to transform
      dest - will contain the result
      Returns:
      dest
      See Also:
      Vector3f.mulProject(Matrix4fc, Vector3f)
    • transformProject

      public Vector3f transformProject​(float x, float y, float z, Vector3f dest)
      Description copied from interface: Matrix4fc
      Transform/multiply the vector (x, y, z) by this matrix, perform perspective divide and store the result in dest.

      This method uses w=1.0 as the fourth vector component.

      Specified by:
      transformProject in interface Matrix4fc
      Parameters:
      x - the x coordinate of the vector to transform
      y - the y coordinate of the vector to transform
      z - the z coordinate of the vector to transform
      dest - will contain the result
      Returns:
      dest
    • transformPosition

      public Vector3f transformPosition​(Vector3f v)
      Description copied from interface: Matrix4fc
      Transform/multiply the given 3D-vector, as if it was a 4D-vector with w=1, by this matrix and store the result in that vector.

      The given 3D-vector is treated as a 4D-vector with its w-component being 1.0, so it will represent a position/location in 3D-space rather than a direction. This method is therefore not suited for perspective projection transformations as it will not save the w component of the transformed vector. For perspective projection use Matrix4fc.transform(Vector4f) or Matrix4fc.transformProject(Vector3f) when perspective divide should be applied, too.

      In order to store the result in another vector, use Matrix4fc.transformPosition(Vector3fc, Vector3f).

      Specified by:
      transformPosition in interface Matrix4fc
      Parameters:
      v - the vector to transform and to hold the final result
      Returns:
      v
      See Also:
      Matrix4fc.transformPosition(Vector3fc, Vector3f), Matrix4fc.transform(Vector4f), Matrix4fc.transformProject(Vector3f)
    • transformPosition

      public Vector3f transformPosition​(Vector3fc v, Vector3f dest)
      Description copied from interface: Matrix4fc
      Transform/multiply the given 3D-vector, as if it was a 4D-vector with w=1, by this matrix and store the result in dest.

      The given 3D-vector is treated as a 4D-vector with its w-component being 1.0, so it will represent a position/location in 3D-space rather than a direction. This method is therefore not suited for perspective projection transformations as it will not save the w component of the transformed vector. For perspective projection use Matrix4fc.transform(Vector4fc, Vector4f) or Matrix4fc.transformProject(Vector3fc, Vector3f) when perspective divide should be applied, too.

      In order to store the result in the same vector, use Matrix4fc.transformPosition(Vector3f).

      Specified by:
      transformPosition in interface Matrix4fc
      Parameters:
      v - the vector to transform
      dest - will hold the result
      Returns:
      dest
      See Also:
      Matrix4fc.transformPosition(Vector3f), Matrix4fc.transform(Vector4fc, Vector4f), Matrix4fc.transformProject(Vector3fc, Vector3f)
    • transformPosition

      public Vector3f transformPosition​(float x, float y, float z, Vector3f dest)
      Description copied from interface: Matrix4fc
      Transform/multiply the 3D-vector (x, y, z), as if it was a 4D-vector with w=1, by this matrix and store the result in dest.

      The given 3D-vector is treated as a 4D-vector with its w-component being 1.0, so it will represent a position/location in 3D-space rather than a direction. This method is therefore not suited for perspective projection transformations as it will not save the w component of the transformed vector. For perspective projection use Matrix4fc.transform(float, float, float, float, Vector4f) or Matrix4fc.transformProject(float, float, float, Vector3f) when perspective divide should be applied, too.

      Specified by:
      transformPosition in interface Matrix4fc
      Parameters:
      x - the x coordinate of the position
      y - the y coordinate of the position
      z - the z coordinate of the position
      dest - will hold the result
      Returns:
      dest
      See Also:
      Matrix4fc.transform(float, float, float, float, Vector4f), Matrix4fc.transformProject(float, float, float, Vector3f)
    • transformDirection

      public Vector3f transformDirection​(Vector3f v)
      Description copied from interface: Matrix4fc
      Transform/multiply the given 3D-vector, as if it was a 4D-vector with w=0, by this matrix and store the result in that vector.

      The given 3D-vector is treated as a 4D-vector with its w-component being 0.0, so it will represent a direction in 3D-space rather than a position. This method will therefore not take the translation part of the matrix into account.

      In order to store the result in another vector, use Matrix4fc.transformDirection(Vector3fc, Vector3f).

      Specified by:
      transformDirection in interface Matrix4fc
      Parameters:
      v - the vector to transform and to hold the final result
      Returns:
      v
      See Also:
      Matrix4fc.transformDirection(Vector3fc, Vector3f)
    • transformDirection

      public Vector3f transformDirection​(Vector3fc v, Vector3f dest)
      Description copied from interface: Matrix4fc
      Transform/multiply the given 3D-vector, as if it was a 4D-vector with w=0, by this matrix and store the result in dest.

      The given 3D-vector is treated as a 4D-vector with its w-component being 0.0, so it will represent a direction in 3D-space rather than a position. This method will therefore not take the translation part of the matrix into account.

      In order to store the result in the same vector, use Matrix4fc.transformDirection(Vector3f).

      Specified by:
      transformDirection in interface Matrix4fc
      Parameters:
      v - the vector to transform and to hold the final result
      dest - will hold the result
      Returns:
      dest
      See Also:
      Matrix4fc.transformDirection(Vector3f)
    • transformDirection

      public Vector3f transformDirection​(float x, float y, float z, Vector3f dest)
      Description copied from interface: Matrix4fc
      Transform/multiply the given 3D-vector (x, y, z), as if it was a 4D-vector with w=0, by this matrix and store the result in dest.

      The given 3D-vector is treated as a 4D-vector with its w-component being 0.0, so it will represent a direction in 3D-space rather than a position. This method will therefore not take the translation part of the matrix into account.

      Specified by:
      transformDirection in interface Matrix4fc
      Parameters:
      x - the x coordinate of the direction to transform
      y - the y coordinate of the direction to transform
      z - the z coordinate of the direction to transform
      dest - will hold the result
      Returns:
      dest
    • transformAffine

      public Vector4f transformAffine​(Vector4f v)
      Description copied from interface: Matrix4fc
      Transform/multiply the given 4D-vector by assuming that this matrix represents an affine transformation (i.e. its last row is equal to (0, 0, 0, 1)).

      In order to store the result in another vector, use Matrix4fc.transformAffine(Vector4fc, Vector4f).

      Specified by:
      transformAffine in interface Matrix4fc
      Parameters:
      v - the vector to transform and to hold the final result
      Returns:
      v
      See Also:
      Matrix4fc.transformAffine(Vector4fc, Vector4f)
    • transformAffine

      public Vector4f transformAffine​(Vector4fc v, Vector4f dest)
      Description copied from interface: Matrix4fc
      Transform/multiply the given 4D-vector by assuming that this matrix represents an affine transformation (i.e. its last row is equal to (0, 0, 0, 1)) and store the result in dest.

      In order to store the result in the same vector, use Matrix4fc.transformAffine(Vector4f).

      Specified by:
      transformAffine in interface Matrix4fc
      Parameters:
      v - the vector to transform and to hold the final result
      dest - will hold the result
      Returns:
      dest
      See Also:
      Matrix4fc.transformAffine(Vector4f)
    • transformAffine

      public Vector4f transformAffine​(float x, float y, float z, float w, Vector4f dest)
      Description copied from interface: Matrix4fc
      Transform/multiply the 4D-vector (x, y, z, w) by assuming that this matrix represents an affine transformation (i.e. its last row is equal to (0, 0, 0, 1)) and store the result in dest.
      Specified by:
      transformAffine in interface Matrix4fc
      Parameters:
      x - the x coordinate of the direction to transform
      y - the y coordinate of the direction to transform
      z - the z coordinate of the direction to transform
      w - the w coordinate of the direction to transform
      dest - will hold the result
      Returns:
      dest
    • scale

      public Matrix4f scale​(Vector3fc xyz, Matrix4f dest)
      Description copied from interface: Matrix4fc
      Apply scaling to this matrix by scaling the base axes by the given xyz.x, xyz.y and xyz.z factors, respectively and store the result in dest.

      If M is this matrix and S the scaling matrix, then the new matrix will be M * S. So when transforming a vector v with the new matrix by using M * S * v , the scaling will be applied first!

      Specified by:
      scale in interface Matrix4fc
      Parameters:
      xyz - the factors of the x, y and z component, respectively
      dest - will hold the result
      Returns:
      dest
    • scale

      public Matrix4f scale​(Vector3fc xyz)
      Apply scaling to this matrix by scaling the base axes by the given xyz.x, xyz.y and xyz.z factors, respectively.

      If M is this matrix and S the scaling matrix, then the new matrix will be M * S. So when transforming a vector v with the new matrix by using M * S * v, the scaling will be applied first!

      Parameters:
      xyz - the factors of the x, y and z component, respectively
      Returns:
      a matrix holding the result
    • scale

      public Matrix4f scale​(float xyz, Matrix4f dest)
      Description copied from interface: Matrix4fc
      Apply scaling to this matrix by uniformly scaling all base axes by the given xyz factor and store the result in dest.

      If M is this matrix and S the scaling matrix, then the new matrix will be M * S. So when transforming a vector v with the new matrix by using M * S * v, the scaling will be applied first!

      Individual scaling of all three axes can be applied using Matrix4fc.scale(float, float, float, Matrix4f).

      Specified by:
      scale in interface Matrix4fc
      Parameters:
      xyz - the factor for all components
      dest - will hold the result
      Returns:
      dest
      See Also:
      Matrix4fc.scale(float, float, float, Matrix4f)
    • scale

      public Matrix4f scale​(float xyz)
      Apply scaling to this matrix by uniformly scaling all base axes by the given xyz factor.

      If M is this matrix and S the scaling matrix, then the new matrix will be M * S. So when transforming a vector v with the new matrix by using M * S * v, the scaling will be applied first!

      Individual scaling of all three axes can be applied using scale(float, float, float).

      Parameters:
      xyz - the factor for all components
      Returns:
      this
      See Also:
      scale(float, float, float)
    • scaleXY

      public Matrix4f scaleXY​(float x, float y, Matrix4f dest)
      Description copied from interface: Matrix4fc
      Apply scaling to this matrix by by scaling the X axis by x and the Y axis by y and store the result in dest.

      If M is this matrix and S the scaling matrix, then the new matrix will be M * S. So when transforming a vector v with the new matrix by using M * S * v, the scaling will be applied first!

      Specified by:
      scaleXY in interface Matrix4fc
      Parameters:
      x - the factor of the x component
      y - the factor of the y component
      dest - will hold the result
      Returns:
      dest
    • scaleXY

      public Matrix4f scaleXY​(float x, float y)
      Apply scaling to this matrix by scaling the X axis by x and the Y axis by y.

      If M is this matrix and S the scaling matrix, then the new matrix will be M * S. So when transforming a vector v with the new matrix by using M * S * v, the scaling will be applied first!

      Parameters:
      x - the factor of the x component
      y - the factor of the y component
      Returns:
      this
    • scale

      public Matrix4f scale​(float x, float y, float z, Matrix4f dest)
      Description copied from interface: Matrix4fc
      Apply scaling to this matrix by scaling the base axes by the given x, y and z factors and store the result in dest.

      If M is this matrix and S the scaling matrix, then the new matrix will be M * S. So when transforming a vector v with the new matrix by using M * S * v , the scaling will be applied first!

      Specified by:
      scale in interface Matrix4fc
      Parameters:
      x - the factor of the x component
      y - the factor of the y component
      z - the factor of the z component
      dest - will hold the result
      Returns:
      dest
    • scale

      public Matrix4f scale​(float x, float y, float z)
      Apply scaling to this matrix by scaling the base axes by the given sx, sy and sz factors.

      If M is this matrix and S the scaling matrix, then the new matrix will be M * S. So when transforming a vector v with the new matrix by using M * S * v, the scaling will be applied first!

      Parameters:
      x - the factor of the x component
      y - the factor of the y component
      z - the factor of the z component
      Returns:
      a matrix holding the result
    • scaleAround

      public Matrix4f scaleAround​(float sx, float sy, float sz, float ox, float oy, float oz, Matrix4f dest)
      Description copied from interface: Matrix4fc
      Apply scaling to this matrix by scaling the base axes by the given sx, sy and sz factors while using (ox, oy, oz) as the scaling origin, and store the result in dest.

      If M is this matrix and S the scaling matrix, then the new matrix will be M * S. So when transforming a vector v with the new matrix by using M * S * v , the scaling will be applied first!

      This method is equivalent to calling: translate(ox, oy, oz, dest).scale(sx, sy, sz).translate(-ox, -oy, -oz)

      Specified by:
      scaleAround in interface Matrix4fc
      Parameters:
      sx - the scaling factor of the x component
      sy - the scaling factor of the y component
      sz - the scaling factor of the z component
      ox - the x coordinate of the scaling origin
      oy - the y coordinate of the scaling origin
      oz - the z coordinate of the scaling origin
      dest - will hold the result
      Returns:
      dest
    • scaleAround

      public Matrix4f scaleAround​(float sx, float sy, float sz, float ox, float oy, float oz)
      Apply scaling to this matrix by scaling the base axes by the given sx, sy and sz factors while using (ox, oy, oz) as the scaling origin.

      If M is this matrix and S the scaling matrix, then the new matrix will be M * S. So when transforming a vector v with the new matrix by using M * S * v, the scaling will be applied first!

      This method is equivalent to calling: translate(ox, oy, oz).scale(sx, sy, sz).translate(-ox, -oy, -oz)

      Parameters:
      sx - the scaling factor of the x component
      sy - the scaling factor of the y component
      sz - the scaling factor of the z component
      ox - the x coordinate of the scaling origin
      oy - the y coordinate of the scaling origin
      oz - the z coordinate of the scaling origin
      Returns:
      a matrix holding the result
    • scaleAround

      public Matrix4f scaleAround​(float factor, float ox, float oy, float oz)
      Apply scaling to this matrix by scaling all three base axes by the given factor while using (ox, oy, oz) as the scaling origin.

      If M is this matrix and S the scaling matrix, then the new matrix will be M * S. So when transforming a vector v with the new matrix by using M * S * v, the scaling will be applied first!

      This method is equivalent to calling: translate(ox, oy, oz).scale(factor).translate(-ox, -oy, -oz)

      Parameters:
      factor - the scaling factor for all three axes
      ox - the x coordinate of the scaling origin
      oy - the y coordinate of the scaling origin
      oz - the z coordinate of the scaling origin
      Returns:
      a matrix holding the result
    • scaleAround

      public Matrix4f scaleAround​(float factor, float ox, float oy, float oz, Matrix4f dest)
      Description copied from interface: Matrix4fc
      Apply scaling to this matrix by scaling all three base axes by the given factor while using (ox, oy, oz) as the scaling origin, and store the result in dest.

      If M is this matrix and S the scaling matrix, then the new matrix will be M * S. So when transforming a vector v with the new matrix by using M * S * v, the scaling will be applied first!

      This method is equivalent to calling: translate(ox, oy, oz, dest).scale(factor).translate(-ox, -oy, -oz)

      Specified by:
      scaleAround in interface Matrix4fc
      Parameters:
      factor - the scaling factor for all three axes
      ox - the x coordinate of the scaling origin
      oy - the y coordinate of the scaling origin
      oz - the z coordinate of the scaling origin
      dest - will hold the result
      Returns:
      this
    • scaleLocal

      public Matrix4f scaleLocal​(float x, float y, float z, Matrix4f dest)
      Description copied from interface: Matrix4fc
      Pre-multiply scaling to this matrix by scaling the base axes by the given x, y and z factors and store the result in dest.

      If M is this matrix and S the scaling matrix, then the new matrix will be S * M. So when transforming a vector v with the new matrix by using S * M * v , the scaling will be applied last!

      Specified by:
      scaleLocal in interface Matrix4fc
      Parameters:
      x - the factor of the x component
      y - the factor of the y component
      z - the factor of the z component
      dest - will hold the result
      Returns:
      dest
    • scaleLocal

      public Matrix4f scaleLocal​(float xyz, Matrix4f dest)
      Description copied from interface: Matrix4fc
      Pre-multiply scaling to this matrix by scaling all base axes by the given xyz factor, and store the result in dest.

      If M is this matrix and S the scaling matrix, then the new matrix will be S * M. So when transforming a vector v with the new matrix by using S * M * v , the scaling will be applied last!

      Specified by:
      scaleLocal in interface Matrix4fc
      Parameters:
      xyz - the factor to scale all three base axes by
      dest - will hold the result
      Returns:
      dest
    • scaleLocal

      public Matrix4f scaleLocal​(float xyz)
      Pre-multiply scaling to this matrix by scaling the base axes by the given xyz factor.

      If M is this matrix and S the scaling matrix, then the new matrix will be S * M. So when transforming a vector v with the new matrix by using S * M * v, the scaling will be applied last!

      Parameters:
      xyz - the factor of the x, y and z component
      Returns:
      a matrix holding the result
    • scaleLocal

      public Matrix4f scaleLocal​(float x, float y, float z)
      Pre-multiply scaling to this matrix by scaling the base axes by the given x, y and z factors.

      If M is this matrix and S the scaling matrix, then the new matrix will be S * M. So when transforming a vector v with the new matrix by using S * M * v, the scaling will be applied last!

      Parameters:
      x - the factor of the x component
      y - the factor of the y component
      z - the factor of the z component
      Returns:
      a matrix holding the result
    • scaleAroundLocal

      public Matrix4f scaleAroundLocal​(float sx, float sy, float sz, float ox, float oy, float oz, Matrix4f dest)
      Description copied from interface: Matrix4fc
      Pre-multiply scaling to this matrix by scaling the base axes by the given sx, sy and sz factors while using the given (ox, oy, oz) as the scaling origin, and store the result in dest.

      If M is this matrix and S the scaling matrix, then the new matrix will be S * M. So when transforming a vector v with the new matrix by using S * M * v , the scaling will be applied last!

      This method is equivalent to calling: new Matrix4f().translate(ox, oy, oz).scale(sx, sy, sz).translate(-ox, -oy, -oz).mul(this, dest)

      Specified by:
      scaleAroundLocal in interface Matrix4fc
      Parameters:
      sx - the scaling factor of the x component
      sy - the scaling factor of the y component
      sz - the scaling factor of the z component
      ox - the x coordinate of the scaling origin
      oy - the y coordinate of the scaling origin
      oz - the z coordinate of the scaling origin
      dest - will hold the result
      Returns:
      dest
    • scaleAroundLocal

      public Matrix4f scaleAroundLocal​(float sx, float sy, float sz, float ox, float oy, float oz)
      Pre-multiply scaling to this matrix by scaling the base axes by the given sx, sy and sz factors while using (ox, oy, oz) as the scaling origin.

      If M is this matrix and S the scaling matrix, then the new matrix will be S * M. So when transforming a vector v with the new matrix by using S * M * v, the scaling will be applied last!

      This method is equivalent to calling: new Matrix4f().translate(ox, oy, oz).scale(sx, sy, sz).translate(-ox, -oy, -oz).mul(this, this)

      Parameters:
      sx - the scaling factor of the x component
      sy - the scaling factor of the y component
      sz - the scaling factor of the z component
      ox - the x coordinate of the scaling origin
      oy - the y coordinate of the scaling origin
      oz - the z coordinate of the scaling origin
      Returns:
      a matrix holding the result
    • scaleAroundLocal

      public Matrix4f scaleAroundLocal​(float factor, float ox, float oy, float oz)
      Pre-multiply scaling to this matrix by scaling all three base axes by the given factor while using (ox, oy, oz) as the scaling origin.

      If M is this matrix and S the scaling matrix, then the new matrix will be S * M. So when transforming a vector v with the new matrix by using S * M * v, the scaling will be applied last!

      This method is equivalent to calling: new Matrix4f().translate(ox, oy, oz).scale(factor).translate(-ox, -oy, -oz).mul(this, this)

      Parameters:
      factor - the scaling factor for all three axes
      ox - the x coordinate of the scaling origin
      oy - the y coordinate of the scaling origin
      oz - the z coordinate of the scaling origin
      Returns:
      a matrix holding the result
    • scaleAroundLocal

      public Matrix4f scaleAroundLocal​(float factor, float ox, float oy, float oz, Matrix4f dest)
      Description copied from interface: Matrix4fc
      Pre-multiply scaling to this matrix by scaling all three base axes by the given factor while using (ox, oy, oz) as the scaling origin, and store the result in dest.

      If M is this matrix and S the scaling matrix, then the new matrix will be S * M. So when transforming a vector v with the new matrix by using S * M * v, the scaling will be applied last!

      This method is equivalent to calling: new Matrix4f().translate(ox, oy, oz).scale(factor).translate(-ox, -oy, -oz).mul(this, dest)

      Specified by:
      scaleAroundLocal in interface Matrix4fc
      Parameters:
      factor - the scaling factor for all three axes
      ox - the x coordinate of the scaling origin
      oy - the y coordinate of the scaling origin
      oz - the z coordinate of the scaling origin
      dest - will hold the result
      Returns:
      this
    • rotateX

      public Matrix4f rotateX​(float ang, Matrix4f dest)
      Description copied from interface: Matrix4fc
      Apply rotation about the X axis to this matrix by rotating the given amount of radians and store the result in dest.

      When used with a right-handed coordinate system, the produced rotation will rotate a vector counter-clockwise around the rotation axis, when viewing along the negative axis direction towards the origin. When used with a left-handed coordinate system, the rotation is clockwise.

      If M is this matrix and R the rotation matrix, then the new matrix will be M * R. So when transforming a vector v with the new matrix by using M * R * v, the rotation will be applied first!

      Reference: http://en.wikipedia.org

      Specified by:
      rotateX in interface Matrix4fc
      Parameters:
      ang - the angle in radians
      dest - will hold the result
      Returns:
      dest
    • rotateX

      public Matrix4f rotateX​(float ang)
      Apply rotation about the X axis to this matrix by rotating the given amount of radians.

      When used with a right-handed coordinate system, the produced rotation will rotate a vector counter-clockwise around the rotation axis, when viewing along the negative axis direction towards the origin. When used with a left-handed coordinate system, the rotation is clockwise.

      If M is this matrix and R the rotation matrix, then the new matrix will be M * R. So when transforming a vector v with the new matrix by using M * R * v, the rotation will be applied first!

      Reference: http://en.wikipedia.org

      Parameters:
      ang - the angle in radians
      Returns:
      a matrix holding the result
    • rotateY

      public Matrix4f rotateY​(float ang, Matrix4f dest)
      Description copied from interface: Matrix4fc
      Apply rotation about the Y axis to this matrix by rotating the given amount of radians and store the result in dest.

      When used with a right-handed coordinate system, the produced rotation will rotate a vector counter-clockwise around the rotation axis, when viewing along the negative axis direction towards the origin. When used with a left-handed coordinate system, the rotation is clockwise.

      If M is this matrix and R the rotation matrix, then the new matrix will be M * R. So when transforming a vector v with the new matrix by using M * R * v, the rotation will be applied first!

      Reference: http://en.wikipedia.org

      Specified by:
      rotateY in interface Matrix4fc
      Parameters:
      ang - the angle in radians
      dest - will hold the result
      Returns:
      dest
    • rotateY

      public Matrix4f rotateY​(float ang)
      Apply rotation about the Y axis to this matrix by rotating the given amount of radians.

      When used with a right-handed coordinate system, the produced rotation will rotate a vector counter-clockwise around the rotation axis, when viewing along the negative axis direction towards the origin. When used with a left-handed coordinate system, the rotation is clockwise.

      If M is this matrix and R the rotation matrix, then the new matrix will be M * R. So when transforming a vector v with the new matrix by using M * R * v, the rotation will be applied first!

      Reference: http://en.wikipedia.org

      Parameters:
      ang - the angle in radians
      Returns:
      a matrix holding the result
    • rotateZ

      public Matrix4f rotateZ​(float ang, Matrix4f dest)
      Description copied from interface: Matrix4fc
      Apply rotation about the Z axis to this matrix by rotating the given amount of radians and store the result in dest.

      When used with a right-handed coordinate system, the produced rotation will rotate a vector counter-clockwise around the rotation axis, when viewing along the negative axis direction towards the origin. When used with a left-handed coordinate system, the rotation is clockwise.

      If M is this matrix and R the rotation matrix, then the new matrix will be M * R. So when transforming a vector v with the new matrix by using M * R * v, the rotation will be applied first!

      Reference: http://en.wikipedia.org

      Specified by:
      rotateZ in interface Matrix4fc
      Parameters:
      ang - the angle in radians
      dest - will hold the result
      Returns:
      dest
    • rotateZ

      public Matrix4f rotateZ​(float ang)
      Apply rotation about the Z axis to this matrix by rotating the given amount of radians.

      When used with a right-handed coordinate system, the produced rotation will rotate a vector counter-clockwise around the rotation axis, when viewing along the negative axis direction towards the origin. When used with a left-handed coordinate system, the rotation is clockwise.

      If M is this matrix and R the rotation matrix, then the new matrix will be M * R. So when transforming a vector v with the new matrix by using M * R * v, the rotation will be applied first!

      Reference: http://en.wikipedia.org

      Parameters:
      ang - the angle in radians
      Returns:
      a matrix holding the result
    • rotateTowardsXY

      public Matrix4f rotateTowardsXY​(float dirX, float dirY)
      Apply rotation about the Z axis to align the local +X towards (dirX, dirY).

      If M is this matrix and R the rotation matrix, then the new matrix will be M * R. So when transforming a vector v with the new matrix by using M * R * v, the rotation will be applied first!

      The vector (dirX, dirY) must be a unit vector.

      Parameters:
      dirX - the x component of the normalized direction
      dirY - the y component of the normalized direction
      Returns:
      a matrix holding the result
    • rotateTowardsXY

      public Matrix4f rotateTowardsXY​(float dirX, float dirY, Matrix4f dest)
      Description copied from interface: Matrix4fc
      Apply rotation about the Z axis to align the local +X towards (dirX, dirY) and store the result in dest.

      If M is this matrix and R the rotation matrix, then the new matrix will be M * R. So when transforming a vector v with the new matrix by using M * R * v, the rotation will be applied first!

      The vector (dirX, dirY) must be a unit vector.

      Specified by:
      rotateTowardsXY in interface Matrix4fc
      Parameters:
      dirX - the x component of the normalized direction
      dirY - the y component of the normalized direction
      dest - will hold the result
      Returns:
      this
    • rotateXYZ

      public Matrix4f rotateXYZ​(Vector3f angles)
      Apply rotation of angles.x radians about the X axis, followed by a rotation of angles.y radians about the Y axis and followed by a rotation of angles.z radians about the Z axis.

      When used with a right-handed coordinate system, the produced rotation will rotate a vector counter-clockwise around the rotation axis, when viewing along the negative axis direction towards the origin. When used with a left-handed coordinate system, the rotation is clockwise.

      If M is this matrix and R the rotation matrix, then the new matrix will be M * R. So when transforming a vector v with the new matrix by using M * R * v, the rotation will be applied first!

      This method is equivalent to calling: rotateX(angles.x).rotateY(angles.y).rotateZ(angles.z)

      Parameters:
      angles - the Euler angles
      Returns:
      this
    • rotateXYZ

      public Matrix4f rotateXYZ​(float angleX, float angleY, float angleZ)
      Apply rotation of angleX radians about the X axis, followed by a rotation of angleY radians about the Y axis and followed by a rotation of angleZ radians about the Z axis.

      When used with a right-handed coordinate system, the produced rotation will rotate a vector counter-clockwise around the rotation axis, when viewing along the negative axis direction towards the origin. When used with a left-handed coordinate system, the rotation is clockwise.

      If M is this matrix and R the rotation matrix, then the new matrix will be M * R. So when transforming a vector v with the new matrix by using M * R * v, the rotation will be applied first!

      This method is equivalent to calling: rotateX(angleX).rotateY(angleY).rotateZ(angleZ)

      Parameters:
      angleX - the angle to rotate about X
      angleY - the angle to rotate about Y
      angleZ - the angle to rotate about Z
      Returns:
      a matrix holding the result
    • rotateXYZ

      public Matrix4f rotateXYZ​(float angleX, float angleY, float angleZ, Matrix4f dest)
      Description copied from interface: Matrix4fc
      Apply rotation of angleX radians about the X axis, followed by a rotation of angleY radians about the Y axis and followed by a rotation of angleZ radians about the Z axis and store the result in dest.

      When used with a right-handed coordinate system, the produced rotation will rotate a vector counter-clockwise around the rotation axis, when viewing along the negative axis direction towards the origin. When used with a left-handed coordinate system, the rotation is clockwise.

      If M is this matrix and R the rotation matrix, then the new matrix will be M * R. So when transforming a vector v with the new matrix by using M * R * v, the rotation will be applied first!

      This method is equivalent to calling: rotateX(angleX, dest).rotateY(angleY).rotateZ(angleZ)

      Specified by:
      rotateXYZ in interface Matrix4fc
      Parameters:
      angleX - the angle to rotate about X
      angleY - the angle to rotate about Y
      angleZ - the angle to rotate about Z
      dest - will hold the result
      Returns:
      dest
    • rotateAffineXYZ

      public Matrix4f rotateAffineXYZ​(float angleX, float angleY, float angleZ)
      Apply rotation of angleX radians about the X axis, followed by a rotation of angleY radians about the Y axis and followed by a rotation of angleZ radians about the Z axis.

      When used with a right-handed coordinate system, the produced rotation will rotate a vector counter-clockwise around the rotation axis, when viewing along the negative axis direction towards the origin. When used with a left-handed coordinate system, the rotation is clockwise.

      This method assumes that this matrix represents an affine transformation (i.e. its last row is equal to (0, 0, 0, 1)) and can be used to speed up matrix multiplication if the matrix only represents affine transformations, such as translation, rotation, scaling and shearing (in any combination).

      If M is this matrix and R the rotation matrix, then the new matrix will be M * R. So when transforming a vector v with the new matrix by using M * R * v, the rotation will be applied first!

      This method is equivalent to calling: rotateX(angleX).rotateY(angleY).rotateZ(angleZ)

      Parameters:
      angleX - the angle to rotate about X
      angleY - the angle to rotate about Y
      angleZ - the angle to rotate about Z
      Returns:
      a matrix holding the result
    • rotateAffineXYZ

      public Matrix4f rotateAffineXYZ​(float angleX, float angleY, float angleZ, Matrix4f dest)
      Description copied from interface: Matrix4fc
      Apply rotation of angleX radians about the X axis, followed by a rotation of angleY radians about the Y axis and followed by a rotation of angleZ radians about the Z axis and store the result in dest.

      When used with a right-handed coordinate system, the produced rotation will rotate a vector counter-clockwise around the rotation axis, when viewing along the negative axis direction towards the origin. When used with a left-handed coordinate system, the rotation is clockwise.

      This method assumes that this matrix represents an affine transformation (i.e. its last row is equal to (0, 0, 0, 1)) and can be used to speed up matrix multiplication if the matrix only represents affine transformations, such as translation, rotation, scaling and shearing (in any combination).

      If M is this matrix and R the rotation matrix, then the new matrix will be M * R. So when transforming a vector v with the new matrix by using M * R * v, the rotation will be applied first!

      Specified by:
      rotateAffineXYZ in interface Matrix4fc
      Parameters:
      angleX - the angle to rotate about X
      angleY - the angle to rotate about Y
      angleZ - the angle to rotate about Z
      dest - will hold the result
      Returns:
      dest
    • rotateZYX

      public Matrix4f rotateZYX​(Vector3f angles)
      Apply rotation of angles.z radians about the Z axis, followed by a rotation of angles.y radians about the Y axis and followed by a rotation of angles.x radians about the X axis.

      When used with a right-handed coordinate system, the produced rotation will rotate a vector counter-clockwise around the rotation axis, when viewing along the negative axis direction towards the origin. When used with a left-handed coordinate system, the rotation is clockwise.

      If M is this matrix and R the rotation matrix, then the new matrix will be M * R. So when transforming a vector v with the new matrix by using M * R * v, the rotation will be applied first!

      This method is equivalent to calling: rotateZ(angles.z).rotateY(angles.y).rotateX(angles.x)

      Parameters:
      angles - the Euler angles
      Returns:
      this
    • rotateZYX

      public Matrix4f rotateZYX​(float angleZ, float angleY, float angleX)
      Apply rotation of angleZ radians about the Z axis, followed by a rotation of angleY radians about the Y axis and followed by a rotation of angleX radians about the X axis.

      When used with a right-handed coordinate system, the produced rotation will rotate a vector counter-clockwise around the rotation axis, when viewing along the negative axis direction towards the origin. When used with a left-handed coordinate system, the rotation is clockwise.

      If M is this matrix and R the rotation matrix, then the new matrix will be M * R. So when transforming a vector v with the new matrix by using M * R * v, the rotation will be applied first!

      This method is equivalent to calling: rotateZ(angleZ).rotateY(angleY).rotateX(angleX)

      Parameters:
      angleZ - the angle to rotate about Z
      angleY - the angle to rotate about Y
      angleX - the angle to rotate about X
      Returns:
      a matrix holding the result
    • rotateZYX

      public Matrix4f rotateZYX​(float angleZ, float angleY, float angleX, Matrix4f dest)
      Description copied from interface: Matrix4fc
      Apply rotation of angleZ radians about the Z axis, followed by a rotation of angleY radians about the Y axis and followed by a rotation of angleX radians about the X axis and store the result in dest.

      When used with a right-handed coordinate system, the produced rotation will rotate a vector counter-clockwise around the rotation axis, when viewing along the negative axis direction towards the origin. When used with a left-handed coordinate system, the rotation is clockwise.

      If M is this matrix and R the rotation matrix, then the new matrix will be M * R. So when transforming a vector v with the new matrix by using M * R * v, the rotation will be applied first!

      This method is equivalent to calling: rotateZ(angleZ, dest).rotateY(angleY).rotateX(angleX)

      Specified by:
      rotateZYX in interface Matrix4fc
      Parameters:
      angleZ - the angle to rotate about Z
      angleY - the angle to rotate about Y
      angleX - the angle to rotate about X
      dest - will hold the result
      Returns:
      dest
    • rotateAffineZYX

      public Matrix4f rotateAffineZYX​(float angleZ, float angleY, float angleX)
      Apply rotation of angleZ radians about the Z axis, followed by a rotation of angleY radians about the Y axis and followed by a rotation of angleX radians about the X axis.

      When used with a right-handed coordinate system, the produced rotation will rotate a vector counter-clockwise around the rotation axis, when viewing along the negative axis direction towards the origin. When used with a left-handed coordinate system, the rotation is clockwise.

      This method assumes that this matrix represents an affine transformation (i.e. its last row is equal to (0, 0, 0, 1)) and can be used to speed up matrix multiplication if the matrix only represents affine transformations, such as translation, rotation, scaling and shearing (in any combination).

      If M is this matrix and R the rotation matrix, then the new matrix will be M * R. So when transforming a vector v with the new matrix by using M * R * v, the rotation will be applied first!

      Parameters:
      angleZ - the angle to rotate about Z
      angleY - the angle to rotate about Y
      angleX - the angle to rotate about X
      Returns:
      a matrix holding the result
    • rotateAffineZYX

      public Matrix4f rotateAffineZYX​(float angleZ, float angleY, float angleX, Matrix4f dest)
      Description copied from interface: Matrix4fc
      Apply rotation of angleZ radians about the Z axis, followed by a rotation of angleY radians about the Y axis and followed by a rotation of angleX radians about the X axis and store the result in dest.

      When used with a right-handed coordinate system, the produced rotation will rotate a vector counter-clockwise around the rotation axis, when viewing along the negative axis direction towards the origin. When used with a left-handed coordinate system, the rotation is clockwise.

      This method assumes that this matrix represents an affine transformation (i.e. its last row is equal to (0, 0, 0, 1)) and can be used to speed up matrix multiplication if the matrix only represents affine transformations, such as translation, rotation, scaling and shearing (in any combination).

      If M is this matrix and R the rotation matrix, then the new matrix will be M * R. So when transforming a vector v with the new matrix by using M * R * v, the rotation will be applied first!

      Specified by:
      rotateAffineZYX in interface Matrix4fc
      Parameters:
      angleZ - the angle to rotate about Z
      angleY - the angle to rotate about Y
      angleX - the angle to rotate about X
      dest - will hold the result
      Returns:
      dest
    • rotateYXZ

      public Matrix4f rotateYXZ​(Vector3f angles)
      Apply rotation of angles.y radians about the Y axis, followed by a rotation of angles.x radians about the X axis and followed by a rotation of angles.z radians about the Z axis.

      When used with a right-handed coordinate system, the produced rotation will rotate a vector counter-clockwise around the rotation axis, when viewing along the negative axis direction towards the origin. When used with a left-handed coordinate system, the rotation is clockwise.

      If M is this matrix and R the rotation matrix, then the new matrix will be M * R. So when transforming a vector v with the new matrix by using M * R * v, the rotation will be applied first!

      This method is equivalent to calling: rotateY(angles.y).rotateX(angles.x).rotateZ(angles.z)

      Parameters:
      angles - the Euler angles
      Returns:
      this
    • rotateYXZ

      public Matrix4f rotateYXZ​(float angleY, float angleX, float angleZ)
      Apply rotation of angleY radians about the Y axis, followed by a rotation of angleX radians about the X axis and followed by a rotation of angleZ radians about the Z axis.

      When used with a right-handed coordinate system, the produced rotation will rotate a vector counter-clockwise around the rotation axis, when viewing along the negative axis direction towards the origin. When used with a left-handed coordinate system, the rotation is clockwise.

      If M is this matrix and R the rotation matrix, then the new matrix will be M * R. So when transforming a vector v with the new matrix by using M * R * v, the rotation will be applied first!

      This method is equivalent to calling: rotateY(angleY).rotateX(angleX).rotateZ(angleZ)

      Parameters:
      angleY - the angle to rotate about Y
      angleX - the angle to rotate about X
      angleZ - the angle to rotate about Z
      Returns:
      a matrix holding the result
    • rotateYXZ

      public Matrix4f rotateYXZ​(float angleY, float angleX, float angleZ, Matrix4f dest)
      Description copied from interface: Matrix4fc
      Apply rotation of angleY radians about the Y axis, followed by a rotation of angleX radians about the X axis and followed by a rotation of angleZ radians about the Z axis and store the result in dest.

      When used with a right-handed coordinate system, the produced rotation will rotate a vector counter-clockwise around the rotation axis, when viewing along the negative axis direction towards the origin. When used with a left-handed coordinate system, the rotation is clockwise.

      If M is this matrix and R the rotation matrix, then the new matrix will be M * R. So when transforming a vector v with the new matrix by using M * R * v, the rotation will be applied first!

      This method is equivalent to calling: rotateY(angleY, dest).rotateX(angleX).rotateZ(angleZ)

      Specified by:
      rotateYXZ in interface Matrix4fc
      Parameters:
      angleY - the angle to rotate about Y
      angleX - the angle to rotate about X
      angleZ - the angle to rotate about Z
      dest - will hold the result
      Returns:
      dest
    • rotateAffineYXZ

      public Matrix4f rotateAffineYXZ​(float angleY, float angleX, float angleZ)
      Apply rotation of angleY radians about the Y axis, followed by a rotation of angleX radians about the X axis and followed by a rotation of angleZ radians about the Z axis.

      When used with a right-handed coordinate system, the produced rotation will rotate a vector counter-clockwise around the rotation axis, when viewing along the negative axis direction towards the origin. When used with a left-handed coordinate system, the rotation is clockwise.

      This method assumes that this matrix represents an affine transformation (i.e. its last row is equal to (0, 0, 0, 1)) and can be used to speed up matrix multiplication if the matrix only represents affine transformations, such as translation, rotation, scaling and shearing (in any combination).

      If M is this matrix and R the rotation matrix, then the new matrix will be M * R. So when transforming a vector v with the new matrix by using M * R * v, the rotation will be applied first!

      Parameters:
      angleY - the angle to rotate about Y
      angleX - the angle to rotate about X
      angleZ - the angle to rotate about Z
      Returns:
      a matrix holding the result
    • rotateAffineYXZ

      public Matrix4f rotateAffineYXZ​(float angleY, float angleX, float angleZ, Matrix4f dest)
      Description copied from interface: Matrix4fc
      Apply rotation of angleY radians about the Y axis, followed by a rotation of angleX radians about the X axis and followed by a rotation of angleZ radians about the Z axis and store the result in dest.

      When used with a right-handed coordinate system, the produced rotation will rotate a vector counter-clockwise around the rotation axis, when viewing along the negative axis direction towards the origin. When used with a left-handed coordinate system, the rotation is clockwise.

      This method assumes that this matrix represents an affine transformation (i.e. its last row is equal to (0, 0, 0, 1)) and can be used to speed up matrix multiplication if the matrix only represents affine transformations, such as translation, rotation, scaling and shearing (in any combination).

      If M is this matrix and R the rotation matrix, then the new matrix will be M * R. So when transforming a vector v with the new matrix by using M * R * v, the rotation will be applied first!

      Specified by:
      rotateAffineYXZ in interface Matrix4fc
      Parameters:
      angleY - the angle to rotate about Y
      angleX - the angle to rotate about X
      angleZ - the angle to rotate about Z
      dest - will hold the result
      Returns:
      dest
    • rotate

      public Matrix4f rotate​(float ang, float x, float y, float z, Matrix4f dest)
      Apply rotation to this matrix by rotating the given amount of radians about the specified (x, y, z) axis and store the result in dest.

      The axis described by the three components needs to be a unit vector.

      When used with a right-handed coordinate system, the produced rotation will rotate a vector counter-clockwise around the rotation axis, when viewing along the negative axis direction towards the origin. When used with a left-handed coordinate system, the rotation is clockwise.

      If M is this matrix and R the rotation matrix, then the new matrix will be M * R. So when transforming a vector v with the new matrix by using M * R * v, the rotation will be applied first!

      In order to set the matrix to a rotation matrix without post-multiplying the rotation transformation, use rotation().

      Reference: http://en.wikipedia.org

      Specified by:
      rotate in interface Matrix4fc
      Parameters:
      ang - the angle in radians
      x - the x component of the axis
      y - the y component of the axis
      z - the z component of the axis
      dest - will hold the result
      Returns:
      dest
      See Also:
      rotation(float, float, float, float)
    • rotate

      public Matrix4f rotate​(float ang, float x, float y, float z)
      Apply rotation to this matrix by rotating the given amount of radians about the specified (x, y, z) axis.

      The axis described by the three components needs to be a unit vector.

      When used with a right-handed coordinate system, the produced rotation will rotate a vector counter-clockwise around the rotation axis, when viewing along the negative axis direction towards the origin. When used with a left-handed coordinate system, the rotation is clockwise.

      If M is this matrix and R the rotation matrix, then the new matrix will be M * R. So when transforming a vector v with the new matrix by using M * R * v, the rotation will be applied first!

      In order to set the matrix to a rotation matrix without post-multiplying the rotation transformation, use rotation().

      Reference: http://en.wikipedia.org

      Parameters:
      ang - the angle in radians
      x - the x component of the axis
      y - the y component of the axis
      z - the z component of the axis
      Returns:
      a matrix holding the result
      See Also:
      rotation(float, float, float, float)
    • rotateTranslation

      public Matrix4f rotateTranslation​(float ang, float x, float y, float z, Matrix4f dest)
      Apply rotation to this matrix, which is assumed to only contain a translation, by rotating the given amount of radians about the specified (x, y, z) axis and store the result in dest.

      This method assumes this to only contain a translation.

      The axis described by the three components needs to be a unit vector.

      When used with a right-handed coordinate system, the produced rotation will rotate a vector counter-clockwise around the rotation axis, when viewing along the negative axis direction towards the origin. When used with a left-handed coordinate system, the rotation is clockwise.

      If M is this matrix and R the rotation matrix, then the new matrix will be M * R. So when transforming a vector v with the new matrix by using M * R * v, the rotation will be applied first!

      In order to set the matrix to a rotation matrix without post-multiplying the rotation transformation, use rotation().

      Reference: http://en.wikipedia.org

      Specified by:
      rotateTranslation in interface Matrix4fc
      Parameters:
      ang - the angle in radians
      x - the x component of the axis
      y - the y component of the axis
      z - the z component of the axis
      dest - will hold the result
      Returns:
      dest
      See Also:
      rotation(float, float, float, float)
    • rotateAffine

      public Matrix4f rotateAffine​(float ang, float x, float y, float z, Matrix4f dest)
      Apply rotation to this affine matrix by rotating the given amount of radians about the specified (x, y, z) axis and store the result in dest.

      This method assumes this to be affine.

      The axis described by the three components needs to be a unit vector.

      When used with a right-handed coordinate system, the produced rotation will rotate a vector counter-clockwise around the rotation axis, when viewing along the negative axis direction towards the origin. When used with a left-handed coordinate system, the rotation is clockwise.

      If M is this matrix and R the rotation matrix, then the new matrix will be M * R. So when transforming a vector v with the new matrix by using M * R * v, the rotation will be applied first!

      In order to set the matrix to a rotation matrix without post-multiplying the rotation transformation, use rotation().

      Reference: http://en.wikipedia.org

      Specified by:
      rotateAffine in interface Matrix4fc
      Parameters:
      ang - the angle in radians
      x - the x component of the axis
      y - the y component of the axis
      z - the z component of the axis
      dest - will hold the result
      Returns:
      dest
      See Also:
      rotation(float, float, float, float)
    • rotateAffine

      public Matrix4f rotateAffine​(float ang, float x, float y, float z)
      Apply rotation to this affine matrix by rotating the given amount of radians about the specified (x, y, z) axis.

      This method assumes this to be affine.

      The axis described by the three components needs to be a unit vector.

      When used with a right-handed coordinate system, the produced rotation will rotate a vector counter-clockwise around the rotation axis, when viewing along the negative axis direction towards the origin. When used with a left-handed coordinate system, the rotation is clockwise.

      If M is this matrix and R the rotation matrix, then the new matrix will be M * R. So when transforming a vector v with the new matrix by using M * R * v, the rotation will be applied first!

      In order to set the matrix to a rotation matrix without post-multiplying the rotation transformation, use rotation().

      Reference: http://en.wikipedia.org

      Parameters:
      ang - the angle in radians
      x - the x component of the axis
      y - the y component of the axis
      z - the z component of the axis
      Returns:
      a matrix holding the result
      See Also:
      rotation(float, float, float, float)
    • rotateLocal

      public Matrix4f rotateLocal​(float ang, float x, float y, float z, Matrix4f dest)
      Pre-multiply a rotation to this matrix by rotating the given amount of radians about the specified (x, y, z) axis and store the result in dest.

      The axis described by the three components needs to be a unit vector.

      When used with a right-handed coordinate system, the produced rotation will rotate a vector counter-clockwise around the rotation axis, when viewing along the negative axis direction towards the origin. When used with a left-handed coordinate system, the rotation is clockwise.

      If M is this matrix and R the rotation matrix, then the new matrix will be R * M. So when transforming a vector v with the new matrix by using R * M * v, the rotation will be applied last!

      In order to set the matrix to a rotation matrix without pre-multiplying the rotation transformation, use rotation().

      Reference: http://en.wikipedia.org

      Specified by:
      rotateLocal in interface Matrix4fc
      Parameters:
      ang - the angle in radians
      x - the x component of the axis
      y - the y component of the axis
      z - the z component of the axis
      dest - will hold the result
      Returns:
      dest
      See Also:
      rotation(float, float, float, float)
    • rotateLocal

      public Matrix4f rotateLocal​(float ang, float x, float y, float z)
      Pre-multiply a rotation to this matrix by rotating the given amount of radians about the specified (x, y, z) axis.

      The axis described by the three components needs to be a unit vector.

      When used with a right-handed coordinate system, the produced rotation will rotate a vector counter-clockwise around the rotation axis, when viewing along the negative axis direction towards the origin. When used with a left-handed coordinate system, the rotation is clockwise.

      If M is this matrix and R the rotation matrix, then the new matrix will be R * M. So when transforming a vector v with the new matrix by using R * M * v, the rotation will be applied last!

      In order to set the matrix to a rotation matrix without pre-multiplying the rotation transformation, use rotation().

      Reference: http://en.wikipedia.org

      Parameters:
      ang - the angle in radians
      x - the x component of the axis
      y - the y component of the axis
      z - the z component of the axis
      Returns:
      a matrix holding the result
      See Also:
      rotation(float, float, float, float)
    • rotateLocalX

      public Matrix4f rotateLocalX​(float ang, Matrix4f dest)
      Pre-multiply a rotation around the X axis to this matrix by rotating the given amount of radians about the X axis and store the result in dest.

      When used with a right-handed coordinate system, the produced rotation will rotate a vector counter-clockwise around the rotation axis, when viewing along the negative axis direction towards the origin. When used with a left-handed coordinate system, the rotation is clockwise.

      If M is this matrix and R the rotation matrix, then the new matrix will be R * M. So when transforming a vector v with the new matrix by using R * M * v, the rotation will be applied last!

      In order to set the matrix to a rotation matrix without pre-multiplying the rotation transformation, use rotationX().

      Reference: http://en.wikipedia.org

      Specified by:
      rotateLocalX in interface Matrix4fc
      Parameters:
      ang - the angle in radians to rotate about the X axis
      dest - will hold the result
      Returns:
      dest
      See Also:
      rotationX(float)
    • rotateLocalX

      public Matrix4f rotateLocalX​(float ang)
      Pre-multiply a rotation to this matrix by rotating the given amount of radians about the X axis.

      When used with a right-handed coordinate system, the produced rotation will rotate a vector counter-clockwise around the rotation axis, when viewing along the negative axis direction towards the origin. When used with a left-handed coordinate system, the rotation is clockwise.

      If M is this matrix and R the rotation matrix, then the new matrix will be R * M. So when transforming a vector v with the new matrix by using R * M * v, the rotation will be applied last!

      In order to set the matrix to a rotation matrix without pre-multiplying the rotation transformation, use rotationX().

      Reference: http://en.wikipedia.org

      Parameters:
      ang - the angle in radians to rotate about the X axis
      Returns:
      a matrix holding the result
      See Also:
      rotationX(float)
    • rotateLocalY

      public Matrix4f rotateLocalY​(float ang, Matrix4f dest)
      Pre-multiply a rotation around the Y axis to this matrix by rotating the given amount of radians about the Y axis and store the result in dest.

      When used with a right-handed coordinate system, the produced rotation will rotate a vector counter-clockwise around the rotation axis, when viewing along the negative axis direction towards the origin. When used with a left-handed coordinate system, the rotation is clockwise.

      If M is this matrix and R the rotation matrix, then the new matrix will be R * M. So when transforming a vector v with the new matrix by using R * M * v, the rotation will be applied last!

      In order to set the matrix to a rotation matrix without pre-multiplying the rotation transformation, use rotationY().

      Reference: http://en.wikipedia.org

      Specified by:
      rotateLocalY in interface Matrix4fc
      Parameters:
      ang - the angle in radians to rotate about the Y axis
      dest - will hold the result
      Returns:
      dest
      See Also:
      rotationY(float)
    • rotateLocalY

      public Matrix4f rotateLocalY​(float ang)
      Pre-multiply a rotation to this matrix by rotating the given amount of radians about the Y axis.

      When used with a right-handed coordinate system, the produced rotation will rotate a vector counter-clockwise around the rotation axis, when viewing along the negative axis direction towards the origin. When used with a left-handed coordinate system, the rotation is clockwise.

      If M is this matrix and R the rotation matrix, then the new matrix will be R * M. So when transforming a vector v with the new matrix by using R * M * v, the rotation will be applied last!

      In order to set the matrix to a rotation matrix without pre-multiplying the rotation transformation, use rotationY().

      Reference: http://en.wikipedia.org

      Parameters:
      ang - the angle in radians to rotate about the Y axis
      Returns:
      a matrix holding the result
      See Also:
      rotationY(float)
    • rotateLocalZ

      public Matrix4f rotateLocalZ​(float ang, Matrix4f dest)
      Pre-multiply a rotation around the Z axis to this matrix by rotating the given amount of radians about the Z axis and store the result in dest.

      When used with a right-handed coordinate system, the produced rotation will rotate a vector counter-clockwise around the rotation axis, when viewing along the negative axis direction towards the origin. When used with a left-handed coordinate system, the rotation is clockwise.

      If M is this matrix and R the rotation matrix, then the new matrix will be R * M. So when transforming a vector v with the new matrix by using R * M * v, the rotation will be applied last!

      In order to set the matrix to a rotation matrix without pre-multiplying the rotation transformation, use rotationZ().

      Reference: http://en.wikipedia.org

      Specified by:
      rotateLocalZ in interface Matrix4fc
      Parameters:
      ang - the angle in radians to rotate about the Z axis
      dest - will hold the result
      Returns:
      dest
      See Also:
      rotationZ(float)
    • rotateLocalZ

      public Matrix4f rotateLocalZ​(float ang)
      Pre-multiply a rotation to this matrix by rotating the given amount of radians about the Z axis.

      When used with a right-handed coordinate system, the produced rotation will rotate a vector counter-clockwise around the rotation axis, when viewing along the negative axis direction towards the origin. When used with a left-handed coordinate system, the rotation is clockwise.

      If M is this matrix and R the rotation matrix, then the new matrix will be R * M. So when transforming a vector v with the new matrix by using R * M * v, the rotation will be applied last!

      In order to set the matrix to a rotation matrix without pre-multiplying the rotation transformation, use rotationY().

      Reference: http://en.wikipedia.org

      Parameters:
      ang - the angle in radians to rotate about the Z axis
      Returns:
      a matrix holding the result
      See Also:
      rotationY(float)
    • translate

      public Matrix4f translate​(Vector3fc offset)
      Apply a translation to this matrix by translating by the given number of units in x, y and z.

      If M is this matrix and T the translation matrix, then the new matrix will be M * T. So when transforming a vector v with the new matrix by using M * T * v, the translation will be applied first!

      In order to set the matrix to a translation transformation without post-multiplying it, use translation(Vector3fc).

      Parameters:
      offset - the number of units in x, y and z by which to translate
      Returns:
      this
      See Also:
      translation(Vector3fc)
    • translate

      public Matrix4f translate​(Vector3fc offset, Matrix4f dest)
      Apply a translation to this matrix by translating by the given number of units in x, y and z and store the result in dest.

      If M is this matrix and T the translation matrix, then the new matrix will be M * T. So when transforming a vector v with the new matrix by using M * T * v, the translation will be applied first!

      In order to set the matrix to a translation transformation without post-multiplying it, use translation(Vector3fc).

      Specified by:
      translate in interface Matrix4fc
      Parameters:
      offset - the number of units in x, y and z by which to translate
      dest - will hold the result
      Returns:
      dest
      See Also:
      translation(Vector3fc)
    • translate

      public Matrix4f translate​(float x, float y, float z, Matrix4f dest)
      Apply a translation to this matrix by translating by the given number of units in x, y and z and store the result in dest.

      If M is this matrix and T the translation matrix, then the new matrix will be M * T. So when transforming a vector v with the new matrix by using M * T * v, the translation will be applied first!

      In order to set the matrix to a translation transformation without post-multiplying it, use translation(float, float, float).

      Specified by:
      translate in interface Matrix4fc
      Parameters:
      x - the offset to translate in x
      y - the offset to translate in y
      z - the offset to translate in z
      dest - will hold the result
      Returns:
      dest
      See Also:
      translation(float, float, float)
    • translate

      public Matrix4f translate​(float x, float y, float z)
      Apply a translation to this matrix by translating by the given number of units in x, y and z.

      If M is this matrix and T the translation matrix, then the new matrix will be M * T. So when transforming a vector v with the new matrix by using M * T * v, the translation will be applied first!

      In order to set the matrix to a translation transformation without post-multiplying it, use translation(float, float, float).

      Parameters:
      x - the offset to translate in x
      y - the offset to translate in y
      z - the offset to translate in z
      Returns:
      this
      See Also:
      translation(float, float, float)
    • translateLocal

      public Matrix4f translateLocal​(Vector3fc offset)
      Pre-multiply a translation to this matrix by translating by the given number of units in x, y and z.

      If M is this matrix and T the translation matrix, then the new matrix will be T * M. So when transforming a vector v with the new matrix by using T * M * v, the translation will be applied last!

      In order to set the matrix to a translation transformation without pre-multiplying it, use translation(Vector3fc).

      Parameters:
      offset - the number of units in x, y and z by which to translate
      Returns:
      this
      See Also:
      translation(Vector3fc)
    • translateLocal

      public Matrix4f translateLocal​(Vector3fc offset, Matrix4f dest)
      Pre-multiply a translation to this matrix by translating by the given number of units in x, y and z and store the result in dest.

      If M is this matrix and T the translation matrix, then the new matrix will be T * M. So when transforming a vector v with the new matrix by using T * M * v, the translation will be applied last!

      In order to set the matrix to a translation transformation without pre-multiplying it, use translation(Vector3fc).

      Specified by:
      translateLocal in interface Matrix4fc
      Parameters:
      offset - the number of units in x, y and z by which to translate
      dest - will hold the result
      Returns:
      dest
      See Also:
      translation(Vector3fc)
    • translateLocal

      public Matrix4f translateLocal​(float x, float y, float z, Matrix4f dest)
      Pre-multiply a translation to this matrix by translating by the given number of units in x, y and z and store the result in dest.

      If M is this matrix and T the translation matrix, then the new matrix will be T * M. So when transforming a vector v with the new matrix by using T * M * v, the translation will be applied last!

      In order to set the matrix to a translation transformation without pre-multiplying it, use translation(float, float, float).

      Specified by:
      translateLocal in interface Matrix4fc
      Parameters:
      x - the offset to translate in x
      y - the offset to translate in y
      z - the offset to translate in z
      dest - will hold the result
      Returns:
      dest
      See Also:
      translation(float, float, float)
    • translateLocal

      public Matrix4f translateLocal​(float x, float y, float z)
      Pre-multiply a translation to this matrix by translating by the given number of units in x, y and z.

      If M is this matrix and T the translation matrix, then the new matrix will be T * M. So when transforming a vector v with the new matrix by using T * M * v, the translation will be applied last!

      In order to set the matrix to a translation transformation without pre-multiplying it, use translation(float, float, float).

      Parameters:
      x - the offset to translate in x
      y - the offset to translate in y
      z - the offset to translate in z
      Returns:
      a matrix holding the result
      See Also:
      translation(float, float, float)
    • writeExternal

      public void writeExternal​(java.io.ObjectOutput out) throws java.io.IOException
      Specified by:
      writeExternal in interface java.io.Externalizable
      Throws:
      java.io.IOException
    • readExternal

      public void readExternal​(java.io.ObjectInput in) throws java.io.IOException
      Specified by:
      readExternal in interface java.io.Externalizable
      Throws:
      java.io.IOException
    • ortho

      public Matrix4f ortho​(float left, float right, float bottom, float top, float zNear, float zFar, boolean zZeroToOne, Matrix4f dest)
      Apply an orthographic projection transformation for a right-handed coordinate system using the given NDC z range to this matrix and store the result in dest.

      If M is this matrix and O the orthographic projection matrix, then the new matrix will be M * O. So when transforming a vector v with the new matrix by using M * O * v, the orthographic projection transformation will be applied first!

      In order to set the matrix to an orthographic projection without post-multiplying it, use setOrtho().

      Reference: http://www.songho.ca

      Specified by:
      ortho in interface Matrix4fc
      Parameters:
      left - the distance from the center to the left frustum edge
      right - the distance from the center to the right frustum edge
      bottom - the distance from the center to the bottom frustum edge
      top - the distance from the center to the top frustum edge
      zNear - near clipping plane distance
      zFar - far clipping plane distance
      zZeroToOne - whether to use Vulkan's and Direct3D's NDC z range of [0..+1] when true or whether to use OpenGL's NDC z range of [-1..+1] when false
      dest - will hold the result
      Returns:
      dest
      See Also:
      setOrtho(float, float, float, float, float, float, boolean)
    • ortho

      public Matrix4f ortho​(float left, float right, float bottom, float top, float zNear, float zFar, Matrix4f dest)
      Apply an orthographic projection transformation for a right-handed coordinate system using OpenGL's NDC z range of [-1..+1] to this matrix and store the result in dest.

      If M is this matrix and O the orthographic projection matrix, then the new matrix will be M * O. So when transforming a vector v with the new matrix by using M * O * v, the orthographic projection transformation will be applied first!

      In order to set the matrix to an orthographic projection without post-multiplying it, use setOrtho().

      Reference: http://www.songho.ca

      Specified by:
      ortho in interface Matrix4fc
      Parameters:
      left - the distance from the center to the left frustum edge
      right - the distance from the center to the right frustum edge
      bottom - the distance from the center to the bottom frustum edge
      top - the distance from the center to the top frustum edge
      zNear - near clipping plane distance
      zFar - far clipping plane distance
      dest - will hold the result
      Returns:
      dest
      See Also:
      setOrtho(float, float, float, float, float, float)
    • ortho

      public Matrix4f ortho​(float left, float right, float bottom, float top, float zNear, float zFar, boolean zZeroToOne)
      Apply an orthographic projection transformation for a right-handed coordinate system using the given NDC z range to this matrix.

      If M is this matrix and O the orthographic projection matrix, then the new matrix will be M * O. So when transforming a vector v with the new matrix by using M * O * v, the orthographic projection transformation will be applied first!

      In order to set the matrix to an orthographic projection without post-multiplying it, use setOrtho().

      Reference: http://www.songho.ca

      Parameters:
      left - the distance from the center to the left frustum edge
      right - the distance from the center to the right frustum edge
      bottom - the distance from the center to the bottom frustum edge
      top - the distance from the center to the top frustum edge
      zNear - near clipping plane distance
      zFar - far clipping plane distance
      zZeroToOne - whether to use Vulkan's and Direct3D's NDC z range of [0..+1] when true or whether to use OpenGL's NDC z range of [-1..+1] when false
      Returns:
      a matrix holding the result
      See Also:
      setOrtho(float, float, float, float, float, float, boolean)
    • ortho

      public Matrix4f ortho​(float left, float right, float bottom, float top, float zNear, float zFar)
      Apply an orthographic projection transformation for a right-handed coordinate system using OpenGL's NDC z range of [-1..+1] to this matrix.

      If M is this matrix and O the orthographic projection matrix, then the new matrix will be M * O. So when transforming a vector v with the new matrix by using M * O * v, the orthographic projection transformation will be applied first!

      In order to set the matrix to an orthographic projection without post-multiplying it, use setOrtho().

      Reference: http://www.songho.ca

      Parameters:
      left - the distance from the center to the left frustum edge
      right - the distance from the center to the right frustum edge
      bottom - the distance from the center to the bottom frustum edge
      top - the distance from the center to the top frustum edge
      zNear - near clipping plane distance
      zFar - far clipping plane distance
      Returns:
      this
      See Also:
      setOrtho(float, float, float, float, float, float)
    • orthoLH

      public Matrix4f orthoLH​(float left, float right, float bottom, float top, float zNear, float zFar, boolean zZeroToOne, Matrix4f dest)
      Apply an orthographic projection transformation for a left-handed coordiante system using the given NDC z range to this matrix and store the result in dest.

      If M is this matrix and O the orthographic projection matrix, then the new matrix will be M * O. So when transforming a vector v with the new matrix by using M * O * v, the orthographic projection transformation will be applied first!

      In order to set the matrix to an orthographic projection without post-multiplying it, use setOrthoLH().

      Reference: http://www.songho.ca

      Specified by:
      orthoLH in interface Matrix4fc
      Parameters:
      left - the distance from the center to the left frustum edge
      right - the distance from the center to the right frustum edge
      bottom - the distance from the center to the bottom frustum edge
      top - the distance from the center to the top frustum edge
      zNear - near clipping plane distance
      zFar - far clipping plane distance
      zZeroToOne - whether to use Vulkan's and Direct3D's NDC z range of [0..+1] when true or whether to use OpenGL's NDC z range of [-1..+1] when false
      dest - will hold the result
      Returns:
      dest
      See Also:
      setOrthoLH(float, float, float, float, float, float, boolean)
    • orthoLH

      public Matrix4f orthoLH​(float left, float right, float bottom, float top, float zNear, float zFar, Matrix4f dest)
      Apply an orthographic projection transformation for a left-handed coordiante system using OpenGL's NDC z range of [-1..+1] to this matrix and store the result in dest.

      If M is this matrix and O the orthographic projection matrix, then the new matrix will be M * O. So when transforming a vector v with the new matrix by using M * O * v, the orthographic projection transformation will be applied first!

      In order to set the matrix to an orthographic projection without post-multiplying it, use setOrthoLH().

      Reference: http://www.songho.ca

      Specified by:
      orthoLH in interface Matrix4fc
      Parameters:
      left - the distance from the center to the left frustum edge
      right - the distance from the center to the right frustum edge
      bottom - the distance from the center to the bottom frustum edge
      top - the distance from the center to the top frustum edge
      zNear - near clipping plane distance
      zFar - far clipping plane distance
      dest - will hold the result
      Returns:
      dest
      See Also:
      setOrthoLH(float, float, float, float, float, float)
    • orthoLH

      public Matrix4f orthoLH​(float left, float right, float bottom, float top, float zNear, float zFar, boolean zZeroToOne)
      Apply an orthographic projection transformation for a left-handed coordiante system using the given NDC z range to this matrix.

      If M is this matrix and O the orthographic projection matrix, then the new matrix will be M * O. So when transforming a vector v with the new matrix by using M * O * v, the orthographic projection transformation will be applied first!

      In order to set the matrix to an orthographic projection without post-multiplying it, use setOrthoLH().

      Reference: http://www.songho.ca

      Parameters:
      left - the distance from the center to the left frustum edge
      right - the distance from the center to the right frustum edge
      bottom - the distance from the center to the bottom frustum edge
      top - the distance from the center to the top frustum edge
      zNear - near clipping plane distance
      zFar - far clipping plane distance
      zZeroToOne - whether to use Vulkan's and Direct3D's NDC z range of [0..+1] when true or whether to use OpenGL's NDC z range of [-1..+1] when false
      Returns:
      a matrix holding the result
      See Also:
      setOrthoLH(float, float, float, float, float, float, boolean)
    • orthoLH

      public Matrix4f orthoLH​(float left, float right, float bottom, float top, float zNear, float zFar)
      Apply an orthographic projection transformation for a left-handed coordiante system using OpenGL's NDC z range of [-1..+1] to this matrix.

      If M is this matrix and O the orthographic projection matrix, then the new matrix will be M * O. So when transforming a vector v with the new matrix by using M * O * v, the orthographic projection transformation will be applied first!

      In order to set the matrix to an orthographic projection without post-multiplying it, use setOrthoLH().

      Reference: http://www.songho.ca

      Parameters:
      left - the distance from the center to the left frustum edge
      right - the distance from the center to the right frustum edge
      bottom - the distance from the center to the bottom frustum edge
      top - the distance from the center to the top frustum edge
      zNear - near clipping plane distance
      zFar - far clipping plane distance
      Returns:
      this
      See Also:
      setOrthoLH(float, float, float, float, float, float)
    • setOrtho

      public Matrix4f setOrtho​(float left, float right, float bottom, float top, float zNear, float zFar, boolean zZeroToOne)
      Set this matrix to be an orthographic projection transformation for a right-handed coordinate system using the given NDC z range.

      In order to apply the orthographic projection to an already existing transformation, use ortho().

      Reference: http://www.songho.ca

      Parameters:
      left - the distance from the center to the left frustum edge
      right - the distance from the center to the right frustum edge
      bottom - the distance from the center to the bottom frustum edge
      top - the distance from the center to the top frustum edge
      zNear - near clipping plane distance
      zFar - far clipping plane distance
      zZeroToOne - whether to use Vulkan's and Direct3D's NDC z range of [0..+1] when true or whether to use OpenGL's NDC z range of [-1..+1] when false
      Returns:
      this
      See Also:
      ortho(float, float, float, float, float, float, boolean)
    • setOrtho

      public Matrix4f setOrtho​(float left, float right, float bottom, float top, float zNear, float zFar)
      Set this matrix to be an orthographic projection transformation for a right-handed coordinate system using OpenGL's NDC z range of [-1..+1].

      In order to apply the orthographic projection to an already existing transformation, use ortho().

      Reference: http://www.songho.ca

      Parameters:
      left - the distance from the center to the left frustum edge
      right - the distance from the center to the right frustum edge
      bottom - the distance from the center to the bottom frustum edge
      top - the distance from the center to the top frustum edge
      zNear - near clipping plane distance
      zFar - far clipping plane distance
      Returns:
      this
      See Also:
      ortho(float, float, float, float, float, float)
    • setOrthoLH

      public Matrix4f setOrthoLH​(float left, float right, float bottom, float top, float zNear, float zFar, boolean zZeroToOne)
      Set this matrix to be an orthographic projection transformation for a left-handed coordinate system using the given NDC z range.

      In order to apply the orthographic projection to an already existing transformation, use orthoLH().

      Reference: http://www.songho.ca

      Parameters:
      left - the distance from the center to the left frustum edge
      right - the distance from the center to the right frustum edge
      bottom - the distance from the center to the bottom frustum edge
      top - the distance from the center to the top frustum edge
      zNear - near clipping plane distance
      zFar - far clipping plane distance
      zZeroToOne - whether to use Vulkan's and Direct3D's NDC z range of [0..+1] when true or whether to use OpenGL's NDC z range of [-1..+1] when false
      Returns:
      this
      See Also:
      orthoLH(float, float, float, float, float, float, boolean)
    • setOrthoLH

      public Matrix4f setOrthoLH​(float left, float right, float bottom, float top, float zNear, float zFar)
      Set this matrix to be an orthographic projection transformation for a left-handed coordinate system using OpenGL's NDC z range of [-1..+1].

      In order to apply the orthographic projection to an already existing transformation, use orthoLH().

      Reference: http://www.songho.ca

      Parameters:
      left - the distance from the center to the left frustum edge
      right - the distance from the center to the right frustum edge
      bottom - the distance from the center to the bottom frustum edge
      top - the distance from the center to the top frustum edge
      zNear - near clipping plane distance
      zFar - far clipping plane distance
      Returns:
      this
      See Also:
      orthoLH(float, float, float, float, float, float)
    • orthoSymmetric

      public Matrix4f orthoSymmetric​(float width, float height, float zNear, float zFar, boolean zZeroToOne, Matrix4f dest)
      Apply a symmetric orthographic projection transformation for a right-handed coordinate system using the given NDC z range to this matrix and store the result in dest.

      This method is equivalent to calling ortho() with left=-width/2, right=+width/2, bottom=-height/2 and top=+height/2.

      If M is this matrix and O the orthographic projection matrix, then the new matrix will be M * O. So when transforming a vector v with the new matrix by using M * O * v, the orthographic projection transformation will be applied first!

      In order to set the matrix to a symmetric orthographic projection without post-multiplying it, use setOrthoSymmetric().

      Reference: http://www.songho.ca

      Specified by:
      orthoSymmetric in interface Matrix4fc
      Parameters:
      width - the distance between the right and left frustum edges
      height - the distance between the top and bottom frustum edges
      zNear - near clipping plane distance
      zFar - far clipping plane distance
      dest - will hold the result
      zZeroToOne - whether to use Vulkan's and Direct3D's NDC z range of [0..+1] when true or whether to use OpenGL's NDC z range of [-1..+1] when false
      Returns:
      dest
      See Also:
      setOrthoSymmetric(float, float, float, float, boolean)
    • orthoSymmetric

      public Matrix4f orthoSymmetric​(float width, float height, float zNear, float zFar, Matrix4f dest)
      Apply a symmetric orthographic projection transformation for a right-handed coordinate system using OpenGL's NDC z range of [-1..+1] to this matrix and store the result in dest.

      This method is equivalent to calling ortho() with left=-width/2, right=+width/2, bottom=-height/2 and top=+height/2.

      If M is this matrix and O the orthographic projection matrix, then the new matrix will be M * O. So when transforming a vector v with the new matrix by using M * O * v, the orthographic projection transformation will be applied first!

      In order to set the matrix to a symmetric orthographic projection without post-multiplying it, use setOrthoSymmetric().

      Reference: http://www.songho.ca

      Specified by:
      orthoSymmetric in interface Matrix4fc
      Parameters:
      width - the distance between the right and left frustum edges
      height - the distance between the top and bottom frustum edges
      zNear - near clipping plane distance
      zFar - far clipping plane distance
      dest - will hold the result
      Returns:
      dest
      See Also:
      setOrthoSymmetric(float, float, float, float)
    • orthoSymmetric

      public Matrix4f orthoSymmetric​(float width, float height, float zNear, float zFar, boolean zZeroToOne)
      Apply a symmetric orthographic projection transformation for a right-handed coordinate system using the given NDC z range to this matrix.

      This method is equivalent to calling ortho() with left=-width/2, right=+width/2, bottom=-height/2 and top=+height/2.

      If M is this matrix and O the orthographic projection matrix, then the new matrix will be M * O. So when transforming a vector v with the new matrix by using M * O * v, the orthographic projection transformation will be applied first!

      In order to set the matrix to a symmetric orthographic projection without post-multiplying it, use setOrthoSymmetric().

      Reference: http://www.songho.ca

      Parameters:
      width - the distance between the right and left frustum edges
      height - the distance between the top and bottom frustum edges
      zNear - near clipping plane distance
      zFar - far clipping plane distance
      zZeroToOne - whether to use Vulkan's and Direct3D's NDC z range of [0..+1] when true or whether to use OpenGL's NDC z range of [-1..+1] when false
      Returns:
      a matrix holding the result
      See Also:
      setOrthoSymmetric(float, float, float, float, boolean)
    • orthoSymmetric

      public Matrix4f orthoSymmetric​(float width, float height, float zNear, float zFar)
      Apply a symmetric orthographic projection transformation for a right-handed coordinate system using OpenGL's NDC z range of [-1..+1] to this matrix.

      This method is equivalent to calling ortho() with left=-width/2, right=+width/2, bottom=-height/2 and top=+height/2.

      If M is this matrix and O the orthographic projection matrix, then the new matrix will be M * O. So when transforming a vector v with the new matrix by using M * O * v, the orthographic projection transformation will be applied first!

      In order to set the matrix to a symmetric orthographic projection without post-multiplying it, use setOrthoSymmetric().

      Reference: http://www.songho.ca

      Parameters:
      width - the distance between the right and left frustum edges
      height - the distance between the top and bottom frustum edges
      zNear - near clipping plane distance
      zFar - far clipping plane distance
      Returns:
      a matrix holding the result
      See Also:
      setOrthoSymmetric(float, float, float, float)
    • orthoSymmetricLH

      public Matrix4f orthoSymmetricLH​(float width, float height, float zNear, float zFar, boolean zZeroToOne, Matrix4f dest)
      Apply a symmetric orthographic projection transformation for a left-handed coordinate system using the given NDC z range to this matrix and store the result in dest.

      This method is equivalent to calling orthoLH() with left=-width/2, right=+width/2, bottom=-height/2 and top=+height/2.

      If M is this matrix and O the orthographic projection matrix, then the new matrix will be M * O. So when transforming a vector v with the new matrix by using M * O * v, the orthographic projection transformation will be applied first!

      In order to set the matrix to a symmetric orthographic projection without post-multiplying it, use setOrthoSymmetricLH().

      Reference: http://www.songho.ca

      Specified by:
      orthoSymmetricLH in interface Matrix4fc
      Parameters:
      width - the distance between the right and left frustum edges
      height - the distance between the top and bottom frustum edges
      zNear - near clipping plane distance
      zFar - far clipping plane distance
      dest - will hold the result
      zZeroToOne - whether to use Vulkan's and Direct3D's NDC z range of [0..+1] when true or whether to use OpenGL's NDC z range of [-1..+1] when false
      Returns:
      dest
      See Also:
      setOrthoSymmetricLH(float, float, float, float, boolean)
    • orthoSymmetricLH

      public Matrix4f orthoSymmetricLH​(float width, float height, float zNear, float zFar, Matrix4f dest)
      Apply a symmetric orthographic projection transformation for a left-handed coordinate system using OpenGL's NDC z range of [-1..+1] to this matrix and store the result in dest.

      This method is equivalent to calling orthoLH() with left=-width/2, right=+width/2, bottom=-height/2 and top=+height/2.

      If M is this matrix and O the orthographic projection matrix, then the new matrix will be M * O. So when transforming a vector v with the new matrix by using M * O * v, the orthographic projection transformation will be applied first!

      In order to set the matrix to a symmetric orthographic projection without post-multiplying it, use setOrthoSymmetricLH().

      Reference: http://www.songho.ca

      Specified by:
      orthoSymmetricLH in interface Matrix4fc
      Parameters:
      width - the distance between the right and left frustum edges
      height - the distance between the top and bottom frustum edges
      zNear - near clipping plane distance
      zFar - far clipping plane distance
      dest - will hold the result
      Returns:
      dest
      See Also:
      setOrthoSymmetricLH(float, float, float, float)
    • orthoSymmetricLH

      public Matrix4f orthoSymmetricLH​(float width, float height, float zNear, float zFar, boolean zZeroToOne)
      Apply a symmetric orthographic projection transformation for a left-handed coordinate system using the given NDC z range to this matrix.

      This method is equivalent to calling orthoLH() with left=-width/2, right=+width/2, bottom=-height/2 and top=+height/2.

      If M is this matrix and O the orthographic projection matrix, then the new matrix will be M * O. So when transforming a vector v with the new matrix by using M * O * v, the orthographic projection transformation will be applied first!

      In order to set the matrix to a symmetric orthographic projection without post-multiplying it, use setOrthoSymmetricLH().

      Reference: http://www.songho.ca

      Parameters:
      width - the distance between the right and left frustum edges
      height - the distance between the top and bottom frustum edges
      zNear - near clipping plane distance
      zFar - far clipping plane distance
      zZeroToOne - whether to use Vulkan's and Direct3D's NDC z range of [0..+1] when true or whether to use OpenGL's NDC z range of [-1..+1] when false
      Returns:
      a matrix holding the result
      See Also:
      setOrthoSymmetricLH(float, float, float, float, boolean)
    • orthoSymmetricLH

      public Matrix4f orthoSymmetricLH​(float width, float height, float zNear, float zFar)
      Apply a symmetric orthographic projection transformation for a left-handed coordinate system using OpenGL's NDC z range of [-1..+1] to this matrix.

      This method is equivalent to calling orthoLH() with left=-width/2, right=+width/2, bottom=-height/2 and top=+height/2.

      If M is this matrix and O the orthographic projection matrix, then the new matrix will be M * O. So when transforming a vector v with the new matrix by using M * O * v, the orthographic projection transformation will be applied first!

      In order to set the matrix to a symmetric orthographic projection without post-multiplying it, use setOrthoSymmetricLH().

      Reference: http://www.songho.ca

      Parameters:
      width - the distance between the right and left frustum edges
      height - the distance between the top and bottom frustum edges
      zNear - near clipping plane distance
      zFar - far clipping plane distance
      Returns:
      a matrix holding the result
      See Also:
      setOrthoSymmetricLH(float, float, float, float)
    • setOrthoSymmetric

      public Matrix4f setOrthoSymmetric​(float width, float height, float zNear, float zFar, boolean zZeroToOne)
      Set this matrix to be a symmetric orthographic projection transformation for a right-handed coordinate system using the given NDC z range.

      This method is equivalent to calling setOrtho() with left=-width/2, right=+width/2, bottom=-height/2 and top=+height/2.

      In order to apply the symmetric orthographic projection to an already existing transformation, use orthoSymmetric().

      Reference: http://www.songho.ca

      Parameters:
      width - the distance between the right and left frustum edges
      height - the distance between the top and bottom frustum edges
      zNear - near clipping plane distance
      zFar - far clipping plane distance
      zZeroToOne - whether to use Vulkan's and Direct3D's NDC z range of [0..+1] when true or whether to use OpenGL's NDC z range of [-1..+1] when false
      Returns:
      this
      See Also:
      orthoSymmetric(float, float, float, float, boolean)
    • setOrthoSymmetric

      public Matrix4f setOrthoSymmetric​(float width, float height, float zNear, float zFar)
      Set this matrix to be a symmetric orthographic projection transformation for a right-handed coordinate system using OpenGL's NDC z range of [-1..+1].

      This method is equivalent to calling setOrtho() with left=-width/2, right=+width/2, bottom=-height/2 and top=+height/2.

      In order to apply the symmetric orthographic projection to an already existing transformation, use orthoSymmetric().

      Reference: http://www.songho.ca

      Parameters:
      width - the distance between the right and left frustum edges
      height - the distance between the top and bottom frustum edges
      zNear - near clipping plane distance
      zFar - far clipping plane distance
      Returns:
      this
      See Also:
      orthoSymmetric(float, float, float, float)
    • setOrthoSymmetricLH

      public Matrix4f setOrthoSymmetricLH​(float width, float height, float zNear, float zFar, boolean zZeroToOne)
      Set this matrix to be a symmetric orthographic projection transformation for a left-handed coordinate system using the given NDC z range.

      This method is equivalent to calling setOrtho() with left=-width/2, right=+width/2, bottom=-height/2 and top=+height/2.

      In order to apply the symmetric orthographic projection to an already existing transformation, use orthoSymmetricLH().

      Reference: http://www.songho.ca

      Parameters:
      width - the distance between the right and left frustum edges
      height - the distance between the top and bottom frustum edges
      zNear - near clipping plane distance
      zFar - far clipping plane distance
      zZeroToOne - whether to use Vulkan's and Direct3D's NDC z range of [0..+1] when true or whether to use OpenGL's NDC z range of [-1..+1] when false
      Returns:
      this
      See Also:
      orthoSymmetricLH(float, float, float, float, boolean)
    • setOrthoSymmetricLH

      public Matrix4f setOrthoSymmetricLH​(float width, float height, float zNear, float zFar)
      Set this matrix to be a symmetric orthographic projection transformation for a left-handed coordinate system using OpenGL's NDC z range of [-1..+1].

      This method is equivalent to calling setOrthoLH() with left=-width/2, right=+width/2, bottom=-height/2 and top=+height/2.

      In order to apply the symmetric orthographic projection to an already existing transformation, use orthoSymmetricLH().

      Reference: http://www.songho.ca

      Parameters:
      width - the distance between the right and left frustum edges
      height - the distance between the top and bottom frustum edges
      zNear - near clipping plane distance
      zFar - far clipping plane distance
      Returns:
      this
      See Also:
      orthoSymmetricLH(float, float, float, float)
    • ortho2D

      public Matrix4f ortho2D​(float left, float right, float bottom, float top, Matrix4f dest)
      Apply an orthographic projection transformation for a right-handed coordinate system to this matrix and store the result in dest.

      This method is equivalent to calling ortho() with zNear=-1 and zFar=+1.

      If M is this matrix and O the orthographic projection matrix, then the new matrix will be M * O. So when transforming a vector v with the new matrix by using M * O * v, the orthographic projection transformation will be applied first!

      In order to set the matrix to an orthographic projection without post-multiplying it, use setOrtho().

      Reference: http://www.songho.ca

      Specified by:
      ortho2D in interface Matrix4fc
      Parameters:
      left - the distance from the center to the left frustum edge
      right - the distance from the center to the right frustum edge
      bottom - the distance from the center to the bottom frustum edge
      top - the distance from the center to the top frustum edge
      dest - will hold the result
      Returns:
      dest
      See Also:
      ortho(float, float, float, float, float, float, Matrix4f), setOrtho2D(float, float, float, float)
    • ortho2D

      public Matrix4f ortho2D​(float left, float right, float bottom, float top)
      Apply an orthographic projection transformation for a right-handed coordinate system to this matrix.

      This method is equivalent to calling ortho() with zNear=-1 and zFar=+1.

      If M is this matrix and O the orthographic projection matrix, then the new matrix will be M * O. So when transforming a vector v with the new matrix by using M * O * v, the orthographic projection transformation will be applied first!

      In order to set the matrix to an orthographic projection without post-multiplying it, use setOrtho2D().

      Reference: http://www.songho.ca

      Parameters:
      left - the distance from the center to the left frustum edge
      right - the distance from the center to the right frustum edge
      bottom - the distance from the center to the bottom frustum edge
      top - the distance from the center to the top frustum edge
      Returns:
      a matrix holding the result
      See Also:
      ortho(float, float, float, float, float, float), setOrtho2D(float, float, float, float)
    • ortho2DLH

      public Matrix4f ortho2DLH​(float left, float right, float bottom, float top, Matrix4f dest)
      Apply an orthographic projection transformation for a left-handed coordinate system to this matrix and store the result in dest.

      This method is equivalent to calling orthoLH() with zNear=-1 and zFar=+1.

      If M is this matrix and O the orthographic projection matrix, then the new matrix will be M * O. So when transforming a vector v with the new matrix by using M * O * v, the orthographic projection transformation will be applied first!

      In order to set the matrix to an orthographic projection without post-multiplying it, use setOrthoLH().

      Reference: http://www.songho.ca

      Specified by:
      ortho2DLH in interface Matrix4fc
      Parameters:
      left - the distance from the center to the left frustum edge
      right - the distance from the center to the right frustum edge
      bottom - the distance from the center to the bottom frustum edge
      top - the distance from the center to the top frustum edge
      dest - will hold the result
      Returns:
      dest
      See Also:
      orthoLH(float, float, float, float, float, float, Matrix4f), setOrtho2DLH(float, float, float, float)
    • ortho2DLH

      public Matrix4f ortho2DLH​(float left, float right, float bottom, float top)
      Apply an orthographic projection transformation for a left-handed coordinate system to this matrix.

      This method is equivalent to calling orthoLH() with zNear=-1 and zFar=+1.

      If M is this matrix and O the orthographic projection matrix, then the new matrix will be M * O. So when transforming a vector v with the new matrix by using M * O * v, the orthographic projection transformation will be applied first!

      In order to set the matrix to an orthographic projection without post-multiplying it, use setOrtho2DLH().

      Reference: http://www.songho.ca

      Parameters:
      left - the distance from the center to the left frustum edge
      right - the distance from the center to the right frustum edge
      bottom - the distance from the center to the bottom frustum edge
      top - the distance from the center to the top frustum edge
      Returns:
      a matrix holding the result
      See Also:
      orthoLH(float, float, float, float, float, float), setOrtho2DLH(float, float, float, float)
    • setOrtho2D

      public Matrix4f setOrtho2D​(float left, float right, float bottom, float top)
      Set this matrix to be an orthographic projection transformation for a right-handed coordinate system.

      This method is equivalent to calling setOrtho() with zNear=-1 and zFar=+1.

      In order to apply the orthographic projection to an already existing transformation, use ortho2D().

      Reference: http://www.songho.ca

      Parameters:
      left - the distance from the center to the left frustum edge
      right - the distance from the center to the right frustum edge
      bottom - the distance from the center to the bottom frustum edge
      top - the distance from the center to the top frustum edge
      Returns:
      this
      See Also:
      setOrtho(float, float, float, float, float, float), ortho2D(float, float, float, float)
    • setOrtho2DLH

      public Matrix4f setOrtho2DLH​(float left, float right, float bottom, float top)
      Set this matrix to be an orthographic projection transformation for a left-handed coordinate system.

      This method is equivalent to calling setOrthoLH() with zNear=-1 and zFar=+1.

      In order to apply the orthographic projection to an already existing transformation, use ortho2DLH().

      Reference: http://www.songho.ca

      Parameters:
      left - the distance from the center to the left frustum edge
      right - the distance from the center to the right frustum edge
      bottom - the distance from the center to the bottom frustum edge
      top - the distance from the center to the top frustum edge
      Returns:
      this
      See Also:
      setOrthoLH(float, float, float, float, float, float), ortho2DLH(float, float, float, float)
    • lookAlong

      public Matrix4f lookAlong​(Vector3fc dir, Vector3fc up)
      Apply a rotation transformation to this matrix to make -z point along dir.

      If M is this matrix and L the lookalong rotation matrix, then the new matrix will be M * L. So when transforming a vector v with the new matrix by using M * L * v, the lookalong rotation transformation will be applied first!

      This is equivalent to calling lookAt with eye = (0, 0, 0) and center = dir.

      In order to set the matrix to a lookalong transformation without post-multiplying it, use setLookAlong().

      Parameters:
      dir - the direction in space to look along
      up - the direction of 'up'
      Returns:
      a matrix holding the result
      See Also:
      lookAlong(float, float, float, float, float, float), lookAt(Vector3fc, Vector3fc, Vector3fc), setLookAlong(Vector3fc, Vector3fc)
    • lookAlong

      public Matrix4f lookAlong​(Vector3fc dir, Vector3fc up, Matrix4f dest)
      Apply a rotation transformation to this matrix to make -z point along dir and store the result in dest.

      If M is this matrix and L the lookalong rotation matrix, then the new matrix will be M * L. So when transforming a vector v with the new matrix by using M * L * v, the lookalong rotation transformation will be applied first!

      This is equivalent to calling lookAt with eye = (0, 0, 0) and center = dir.

      In order to set the matrix to a lookalong transformation without post-multiplying it, use setLookAlong().

      Specified by:
      lookAlong in interface Matrix4fc
      Parameters:
      dir - the direction in space to look along
      up - the direction of 'up'
      dest - will hold the result
      Returns:
      dest
      See Also:
      lookAlong(float, float, float, float, float, float), lookAt(Vector3fc, Vector3fc, Vector3fc), setLookAlong(Vector3fc, Vector3fc)
    • lookAlong

      public Matrix4f lookAlong​(float dirX, float dirY, float dirZ, float upX, float upY, float upZ, Matrix4f dest)
      Apply a rotation transformation to this matrix to make -z point along dir and store the result in dest.

      If M is this matrix and L the lookalong rotation matrix, then the new matrix will be M * L. So when transforming a vector v with the new matrix by using M * L * v, the lookalong rotation transformation will be applied first!

      This is equivalent to calling lookAt() with eye = (0, 0, 0) and center = dir.

      In order to set the matrix to a lookalong transformation without post-multiplying it, use setLookAlong()

      Specified by:
      lookAlong in interface Matrix4fc
      Parameters:
      dirX - the x-coordinate of the direction to look along
      dirY - the y-coordinate of the direction to look along
      dirZ - the z-coordinate of the direction to look along
      upX - the x-coordinate of the up vector
      upY - the y-coordinate of the up vector
      upZ - the z-coordinate of the up vector
      dest - will hold the result
      Returns:
      dest
      See Also:
      lookAt(float, float, float, float, float, float, float, float, float), setLookAlong(float, float, float, float, float, float)
    • lookAlong

      public Matrix4f lookAlong​(float dirX, float dirY, float dirZ, float upX, float upY, float upZ)
      Apply a rotation transformation to this matrix to make -z point along dir.

      If M is this matrix and L the lookalong rotation matrix, then the new matrix will be M * L. So when transforming a vector v with the new matrix by using M * L * v, the lookalong rotation transformation will be applied first!

      This is equivalent to calling lookAt() with eye = (0, 0, 0) and center = dir.

      In order to set the matrix to a lookalong transformation without post-multiplying it, use setLookAlong()

      Parameters:
      dirX - the x-coordinate of the direction to look along
      dirY - the y-coordinate of the direction to look along
      dirZ - the z-coordinate of the direction to look along
      upX - the x-coordinate of the up vector
      upY - the y-coordinate of the up vector
      upZ - the z-coordinate of the up vector
      Returns:
      a matrix holding the result
      See Also:
      lookAt(float, float, float, float, float, float, float, float, float), setLookAlong(float, float, float, float, float, float)
    • setLookAlong

      public Matrix4f setLookAlong​(Vector3fc dir, Vector3fc up)
      Set this matrix to a rotation transformation to make -z point along dir.

      This is equivalent to calling setLookAt() with eye = (0, 0, 0) and center = dir.

      In order to apply the lookalong transformation to any previous existing transformation, use lookAlong(Vector3fc, Vector3fc).

      Parameters:
      dir - the direction in space to look along
      up - the direction of 'up'
      Returns:
      this
      See Also:
      setLookAlong(Vector3fc, Vector3fc), lookAlong(Vector3fc, Vector3fc)
    • setLookAlong

      public Matrix4f setLookAlong​(float dirX, float dirY, float dirZ, float upX, float upY, float upZ)
      Set this matrix to a rotation transformation to make -z point along dir.

      This is equivalent to calling setLookAt() with eye = (0, 0, 0) and center = dir.

      In order to apply the lookalong transformation to any previous existing transformation, use lookAlong()

      Parameters:
      dirX - the x-coordinate of the direction to look along
      dirY - the y-coordinate of the direction to look along
      dirZ - the z-coordinate of the direction to look along
      upX - the x-coordinate of the up vector
      upY - the y-coordinate of the up vector
      upZ - the z-coordinate of the up vector
      Returns:
      this
      See Also:
      setLookAlong(float, float, float, float, float, float), lookAlong(float, float, float, float, float, float)
    • setLookAt

      public Matrix4f setLookAt​(Vector3fc eye, Vector3fc center, Vector3fc up)
      Set this matrix to be a "lookat" transformation for a right-handed coordinate system, that aligns -z with center - eye.

      In order to not make use of vectors to specify eye, center and up but use primitives, like in the GLU function, use setLookAt() instead.

      In order to apply the lookat transformation to a previous existing transformation, use lookAt().

      Parameters:
      eye - the position of the camera
      center - the point in space to look at
      up - the direction of 'up'
      Returns:
      this
      See Also:
      setLookAt(float, float, float, float, float, float, float, float, float), lookAt(Vector3fc, Vector3fc, Vector3fc)
    • setLookAt

      public Matrix4f setLookAt​(float eyeX, float eyeY, float eyeZ, float centerX, float centerY, float centerZ, float upX, float upY, float upZ)
      Set this matrix to be a "lookat" transformation for a right-handed coordinate system, that aligns -z with center - eye.

      In order to apply the lookat transformation to a previous existing transformation, use lookAt.

      Parameters:
      eyeX - the x-coordinate of the eye/camera location
      eyeY - the y-coordinate of the eye/camera location
      eyeZ - the z-coordinate of the eye/camera location
      centerX - the x-coordinate of the point to look at
      centerY - the y-coordinate of the point to look at
      centerZ - the z-coordinate of the point to look at
      upX - the x-coordinate of the up vector
      upY - the y-coordinate of the up vector
      upZ - the z-coordinate of the up vector
      Returns:
      this
      See Also:
      setLookAt(Vector3fc, Vector3fc, Vector3fc), lookAt(float, float, float, float, float, float, float, float, float)
    • lookAt

      public Matrix4f lookAt​(Vector3fc eye, Vector3fc center, Vector3fc up, Matrix4f dest)
      Apply a "lookat" transformation to this matrix for a right-handed coordinate system, that aligns -z with center - eye and store the result in dest.

      If M is this matrix and L the lookat matrix, then the new matrix will be M * L. So when transforming a vector v with the new matrix by using M * L * v, the lookat transformation will be applied first!

      In order to set the matrix to a lookat transformation without post-multiplying it, use setLookAt(Vector3fc, Vector3fc, Vector3fc).

      Specified by:
      lookAt in interface Matrix4fc
      Parameters:
      eye - the position of the camera
      center - the point in space to look at
      up - the direction of 'up'
      dest - will hold the result
      Returns:
      dest
      See Also:
      lookAt(float, float, float, float, float, float, float, float, float), setLookAlong(Vector3fc, Vector3fc)
    • lookAt

      public Matrix4f lookAt​(Vector3fc eye, Vector3fc center, Vector3fc up)
      Apply a "lookat" transformation to this matrix for a right-handed coordinate system, that aligns -z with center - eye.

      If M is this matrix and L the lookat matrix, then the new matrix will be M * L. So when transforming a vector v with the new matrix by using M * L * v, the lookat transformation will be applied first!

      In order to set the matrix to a lookat transformation without post-multiplying it, use setLookAt(Vector3fc, Vector3fc, Vector3fc).

      Parameters:
      eye - the position of the camera
      center - the point in space to look at
      up - the direction of 'up'
      Returns:
      a matrix holding the result
      See Also:
      lookAt(float, float, float, float, float, float, float, float, float), setLookAlong(Vector3fc, Vector3fc)
    • lookAt

      public Matrix4f lookAt​(float eyeX, float eyeY, float eyeZ, float centerX, float centerY, float centerZ, float upX, float upY, float upZ, Matrix4f dest)
      Apply a "lookat" transformation to this matrix for a right-handed coordinate system, that aligns -z with center - eye and store the result in dest.

      If M is this matrix and L the lookat matrix, then the new matrix will be M * L. So when transforming a vector v with the new matrix by using M * L * v, the lookat transformation will be applied first!

      In order to set the matrix to a lookat transformation without post-multiplying it, use setLookAt().

      Specified by:
      lookAt in interface Matrix4fc
      Parameters:
      eyeX - the x-coordinate of the eye/camera location
      eyeY - the y-coordinate of the eye/camera location
      eyeZ - the z-coordinate of the eye/camera location
      centerX - the x-coordinate of the point to look at
      centerY - the y-coordinate of the point to look at
      centerZ - the z-coordinate of the point to look at
      upX - the x-coordinate of the up vector
      upY - the y-coordinate of the up vector
      upZ - the z-coordinate of the up vector
      dest - will hold the result
      Returns:
      dest
      See Also:
      lookAt(Vector3fc, Vector3fc, Vector3fc), setLookAt(float, float, float, float, float, float, float, float, float)
    • lookAtPerspective

      public Matrix4f lookAtPerspective​(float eyeX, float eyeY, float eyeZ, float centerX, float centerY, float centerZ, float upX, float upY, float upZ, Matrix4f dest)
      Apply a "lookat" transformation to this matrix for a right-handed coordinate system, that aligns -z with center - eye and store the result in dest.

      This method assumes this to be a perspective transformation, obtained via frustum() or perspective() or one of their overloads.

      If M is this matrix and L the lookat matrix, then the new matrix will be M * L. So when transforming a vector v with the new matrix by using M * L * v, the lookat transformation will be applied first!

      In order to set the matrix to a lookat transformation without post-multiplying it, use setLookAt().

      Specified by:
      lookAtPerspective in interface Matrix4fc
      Parameters:
      eyeX - the x-coordinate of the eye/camera location
      eyeY - the y-coordinate of the eye/camera location
      eyeZ - the z-coordinate of the eye/camera location
      centerX - the x-coordinate of the point to look at
      centerY - the y-coordinate of the point to look at
      centerZ - the z-coordinate of the point to look at
      upX - the x-coordinate of the up vector
      upY - the y-coordinate of the up vector
      upZ - the z-coordinate of the up vector
      dest - will hold the result
      Returns:
      dest
      See Also:
      setLookAt(float, float, float, float, float, float, float, float, float)
    • lookAt

      public Matrix4f lookAt​(float eyeX, float eyeY, float eyeZ, float centerX, float centerY, float centerZ, float upX, float upY, float upZ)
      Apply a "lookat" transformation to this matrix for a right-handed coordinate system, that aligns -z with center - eye.

      If M is this matrix and L the lookat matrix, then the new matrix will be M * L. So when transforming a vector v with the new matrix by using M * L * v, the lookat transformation will be applied first!

      In order to set the matrix to a lookat transformation without post-multiplying it, use setLookAt().

      Parameters:
      eyeX - the x-coordinate of the eye/camera location
      eyeY - the y-coordinate of the eye/camera location
      eyeZ - the z-coordinate of the eye/camera location
      centerX - the x-coordinate of the point to look at
      centerY - the y-coordinate of the point to look at
      centerZ - the z-coordinate of the point to look at
      upX - the x-coordinate of the up vector
      upY - the y-coordinate of the up vector
      upZ - the z-coordinate of the up vector
      Returns:
      a matrix holding the result
      See Also:
      lookAt(Vector3fc, Vector3fc, Vector3fc), setLookAt(float, float, float, float, float, float, float, float, float)
    • setLookAtLH

      public Matrix4f setLookAtLH​(Vector3fc eye, Vector3fc center, Vector3fc up)
      Set this matrix to be a "lookat" transformation for a left-handed coordinate system, that aligns +z with center - eye.

      In order to not make use of vectors to specify eye, center and up but use primitives, like in the GLU function, use setLookAtLH() instead.

      In order to apply the lookat transformation to a previous existing transformation, use lookAt().

      Parameters:
      eye - the position of the camera
      center - the point in space to look at
      up - the direction of 'up'
      Returns:
      this
      See Also:
      setLookAtLH(float, float, float, float, float, float, float, float, float), lookAtLH(Vector3fc, Vector3fc, Vector3fc)
    • setLookAtLH

      public Matrix4f setLookAtLH​(float eyeX, float eyeY, float eyeZ, float centerX, float centerY, float centerZ, float upX, float upY, float upZ)
      Set this matrix to be a "lookat" transformation for a left-handed coordinate system, that aligns +z with center - eye.

      In order to apply the lookat transformation to a previous existing transformation, use lookAtLH.

      Parameters:
      eyeX - the x-coordinate of the eye/camera location
      eyeY - the y-coordinate of the eye/camera location
      eyeZ - the z-coordinate of the eye/camera location
      centerX - the x-coordinate of the point to look at
      centerY - the y-coordinate of the point to look at
      centerZ - the z-coordinate of the point to look at
      upX - the x-coordinate of the up vector
      upY - the y-coordinate of the up vector
      upZ - the z-coordinate of the up vector
      Returns:
      this
      See Also:
      setLookAtLH(Vector3fc, Vector3fc, Vector3fc), lookAtLH(float, float, float, float, float, float, float, float, float)
    • lookAtLH

      public Matrix4f lookAtLH​(Vector3fc eye, Vector3fc center, Vector3fc up, Matrix4f dest)
      Apply a "lookat" transformation to this matrix for a left-handed coordinate system, that aligns +z with center - eye and store the result in dest.

      If M is this matrix and L the lookat matrix, then the new matrix will be M * L. So when transforming a vector v with the new matrix by using M * L * v, the lookat transformation will be applied first!

      In order to set the matrix to a lookat transformation without post-multiplying it, use setLookAtLH(Vector3fc, Vector3fc, Vector3fc).

      Specified by:
      lookAtLH in interface Matrix4fc
      Parameters:
      eye - the position of the camera
      center - the point in space to look at
      up - the direction of 'up'
      dest - will hold the result
      Returns:
      dest
      See Also:
      lookAtLH(float, float, float, float, float, float, float, float, float)
    • lookAtLH

      public Matrix4f lookAtLH​(Vector3fc eye, Vector3fc center, Vector3fc up)
      Apply a "lookat" transformation to this matrix for a left-handed coordinate system, that aligns +z with center - eye.

      If M is this matrix and L the lookat matrix, then the new matrix will be M * L. So when transforming a vector v with the new matrix by using M * L * v, the lookat transformation will be applied first!

      In order to set the matrix to a lookat transformation without post-multiplying it, use setLookAtLH(Vector3fc, Vector3fc, Vector3fc).

      Parameters:
      eye - the position of the camera
      center - the point in space to look at
      up - the direction of 'up'
      Returns:
      a matrix holding the result
      See Also:
      lookAtLH(float, float, float, float, float, float, float, float, float)
    • lookAtLH

      public Matrix4f lookAtLH​(float eyeX, float eyeY, float eyeZ, float centerX, float centerY, float centerZ, float upX, float upY, float upZ, Matrix4f dest)
      Apply a "lookat" transformation to this matrix for a left-handed coordinate system, that aligns +z with center - eye and store the result in dest.

      If M is this matrix and L the lookat matrix, then the new matrix will be M * L. So when transforming a vector v with the new matrix by using M * L * v, the lookat transformation will be applied first!

      In order to set the matrix to a lookat transformation without post-multiplying it, use setLookAtLH().

      Specified by:
      lookAtLH in interface Matrix4fc
      Parameters:
      eyeX - the x-coordinate of the eye/camera location
      eyeY - the y-coordinate of the eye/camera location
      eyeZ - the z-coordinate of the eye/camera location
      centerX - the x-coordinate of the point to look at
      centerY - the y-coordinate of the point to look at
      centerZ - the z-coordinate of the point to look at
      upX - the x-coordinate of the up vector
      upY - the y-coordinate of the up vector
      upZ - the z-coordinate of the up vector
      dest - will hold the result
      Returns:
      dest
      See Also:
      lookAtLH(Vector3fc, Vector3fc, Vector3fc), setLookAtLH(float, float, float, float, float, float, float, float, float)
    • lookAtLH

      public Matrix4f lookAtLH​(float eyeX, float eyeY, float eyeZ, float centerX, float centerY, float centerZ, float upX, float upY, float upZ)
      Apply a "lookat" transformation to this matrix for a left-handed coordinate system, that aligns +z with center - eye.

      If M is this matrix and L the lookat matrix, then the new matrix will be M * L. So when transforming a vector v with the new matrix by using M * L * v, the lookat transformation will be applied first!

      In order to set the matrix to a lookat transformation without post-multiplying it, use setLookAtLH().

      Parameters:
      eyeX - the x-coordinate of the eye/camera location
      eyeY - the y-coordinate of the eye/camera location
      eyeZ - the z-coordinate of the eye/camera location
      centerX - the x-coordinate of the point to look at
      centerY - the y-coordinate of the point to look at
      centerZ - the z-coordinate of the point to look at
      upX - the x-coordinate of the up vector
      upY - the y-coordinate of the up vector
      upZ - the z-coordinate of the up vector
      Returns:
      a matrix holding the result
      See Also:
      lookAtLH(Vector3fc, Vector3fc, Vector3fc), setLookAtLH(float, float, float, float, float, float, float, float, float)
    • lookAtPerspectiveLH

      public Matrix4f lookAtPerspectiveLH​(float eyeX, float eyeY, float eyeZ, float centerX, float centerY, float centerZ, float upX, float upY, float upZ, Matrix4f dest)
      Apply a "lookat" transformation to this matrix for a left-handed coordinate system, that aligns +z with center - eye and store the result in dest.

      This method assumes this to be a perspective transformation, obtained via frustumLH() or perspectiveLH() or one of their overloads.

      If M is this matrix and L the lookat matrix, then the new matrix will be M * L. So when transforming a vector v with the new matrix by using M * L * v, the lookat transformation will be applied first!

      In order to set the matrix to a lookat transformation without post-multiplying it, use setLookAtLH().

      Specified by:
      lookAtPerspectiveLH in interface Matrix4fc
      Parameters:
      eyeX - the x-coordinate of the eye/camera location
      eyeY - the y-coordinate of the eye/camera location
      eyeZ - the z-coordinate of the eye/camera location
      centerX - the x-coordinate of the point to look at
      centerY - the y-coordinate of the point to look at
      centerZ - the z-coordinate of the point to look at
      upX - the x-coordinate of the up vector
      upY - the y-coordinate of the up vector
      upZ - the z-coordinate of the up vector
      dest - will hold the result
      Returns:
      dest
      See Also:
      setLookAtLH(float, float, float, float, float, float, float, float, float)
    • perspective

      public Matrix4f perspective​(float fovy, float aspect, float zNear, float zFar, boolean zZeroToOne, Matrix4f dest)
      Apply a symmetric perspective projection frustum transformation for a right-handed coordinate system using the given NDC z range to this matrix and store the result in dest.

      If M is this matrix and P the perspective projection matrix, then the new matrix will be M * P. So when transforming a vector v with the new matrix by using M * P * v, the perspective projection will be applied first!

      In order to set the matrix to a perspective frustum transformation without post-multiplying, use setPerspective.

      Specified by:
      perspective in interface Matrix4fc
      Parameters:
      fovy - the vertical field of view in radians (must be greater than zero and less than PI)
      aspect - the aspect ratio (i.e. width / height; must be greater than zero)
      zNear - near clipping plane distance. If the special value Float.POSITIVE_INFINITY is used, the near clipping plane will be at positive infinity. In that case, zFar may not also be Float.POSITIVE_INFINITY.
      zFar - far clipping plane distance. If the special value Float.POSITIVE_INFINITY is used, the far clipping plane will be at positive infinity. In that case, zNear may not also be Float.POSITIVE_INFINITY.
      dest - will hold the result
      zZeroToOne - whether to use Vulkan's and Direct3D's NDC z range of [0..+1] when true or whether to use OpenGL's NDC z range of [-1..+1] when false
      Returns:
      dest
      See Also:
      setPerspective(float, float, float, float, boolean)
    • perspective

      public Matrix4f perspective​(float fovy, float aspect, float zNear, float zFar, Matrix4f dest)
      Apply a symmetric perspective projection frustum transformation for a right-handed coordinate system using OpenGL's NDC z range of [-1..+1] to this matrix and store the result in dest.

      If M is this matrix and P the perspective projection matrix, then the new matrix will be M * P. So when transforming a vector v with the new matrix by using M * P * v, the perspective projection will be applied first!

      In order to set the matrix to a perspective frustum transformation without post-multiplying, use setPerspective.

      Specified by:
      perspective in interface Matrix4fc
      Parameters:
      fovy - the vertical field of view in radians (must be greater than zero and less than PI)
      aspect - the aspect ratio (i.e. width / height; must be greater than zero)
      zNear - near clipping plane distance. If the special value Float.POSITIVE_INFINITY is used, the near clipping plane will be at positive infinity. In that case, zFar may not also be Float.POSITIVE_INFINITY.
      zFar - far clipping plane distance. If the special value Float.POSITIVE_INFINITY is used, the far clipping plane will be at positive infinity. In that case, zNear may not also be Float.POSITIVE_INFINITY.
      dest - will hold the result
      Returns:
      dest
      See Also:
      setPerspective(float, float, float, float)
    • perspective

      public Matrix4f perspective​(float fovy, float aspect, float zNear, float zFar, boolean zZeroToOne)
      Apply a symmetric perspective projection frustum transformation using for a right-handed coordinate system the given NDC z range to this matrix.

      If M is this matrix and P the perspective projection matrix, then the new matrix will be M * P. So when transforming a vector v with the new matrix by using M * P * v, the perspective projection will be applied first!

      In order to set the matrix to a perspective frustum transformation without post-multiplying, use setPerspective.

      Parameters:
      fovy - the vertical field of view in radians (must be greater than zero and less than PI)
      aspect - the aspect ratio (i.e. width / height; must be greater than zero)
      zNear - near clipping plane distance. If the special value Float.POSITIVE_INFINITY is used, the near clipping plane will be at positive infinity. In that case, zFar may not also be Float.POSITIVE_INFINITY.
      zFar - far clipping plane distance. If the special value Float.POSITIVE_INFINITY is used, the far clipping plane will be at positive infinity. In that case, zNear may not also be Float.POSITIVE_INFINITY.
      zZeroToOne - whether to use Vulkan's and Direct3D's NDC z range of [0..+1] when true or whether to use OpenGL's NDC z range of [-1..+1] when false
      Returns:
      a matrix holding the result
      See Also:
      setPerspective(float, float, float, float, boolean)
    • perspective

      public Matrix4f perspective​(float fovy, float aspect, float zNear, float zFar)
      Apply a symmetric perspective projection frustum transformation for a right-handed coordinate system using OpenGL's NDC z range of [-1..+1] to this matrix.

      If M is this matrix and P the perspective projection matrix, then the new matrix will be M * P. So when transforming a vector v with the new matrix by using M * P * v, the perspective projection will be applied first!

      In order to set the matrix to a perspective frustum transformation without post-multiplying, use setPerspective.

      Parameters:
      fovy - the vertical field of view in radians (must be greater than zero and less than PI)
      aspect - the aspect ratio (i.e. width / height; must be greater than zero)
      zNear - near clipping plane distance. If the special value Float.POSITIVE_INFINITY is used, the near clipping plane will be at positive infinity. In that case, zFar may not also be Float.POSITIVE_INFINITY.
      zFar - far clipping plane distance. If the special value Float.POSITIVE_INFINITY is used, the far clipping plane will be at positive infinity. In that case, zNear may not also be Float.POSITIVE_INFINITY.
      Returns:
      a matrix holding the result
      See Also:
      setPerspective(float, float, float, float)
    • perspectiveRect

      public Matrix4f perspectiveRect​(float width, float height, float zNear, float zFar, boolean zZeroToOne, Matrix4f dest)
      Apply a symmetric perspective projection frustum transformation for a right-handed coordinate system using the given NDC z range to this matrix and store the result in dest.

      If M is this matrix and P the perspective projection matrix, then the new matrix will be M * P. So when transforming a vector v with the new matrix by using M * P * v, the perspective projection will be applied first!

      In order to set the matrix to a perspective frustum transformation without post-multiplying, use setPerspectiveRect.

      Specified by:
      perspectiveRect in interface Matrix4fc
      Parameters:
      width - the width of the near frustum plane
      height - the height of the near frustum plane
      zNear - near clipping plane distance. If the special value Float.POSITIVE_INFINITY is used, the near clipping plane will be at positive infinity. In that case, zFar may not also be Float.POSITIVE_INFINITY.
      zFar - far clipping plane distance. If the special value Float.POSITIVE_INFINITY is used, the far clipping plane will be at positive infinity. In that case, zNear may not also be Float.POSITIVE_INFINITY.
      dest - will hold the result
      zZeroToOne - whether to use Vulkan's and Direct3D's NDC z range of [0..+1] when true or whether to use OpenGL's NDC z range of [-1..+1] when false
      Returns:
      dest
      See Also:
      setPerspectiveRect(float, float, float, float, boolean)
    • perspectiveRect

      public Matrix4f perspectiveRect​(float width, float height, float zNear, float zFar, Matrix4f dest)
      Apply a symmetric perspective projection frustum transformation for a right-handed coordinate system using OpenGL's NDC z range of [-1..+1] to this matrix and store the result in dest.

      If M is this matrix and P the perspective projection matrix, then the new matrix will be M * P. So when transforming a vector v with the new matrix by using M * P * v, the perspective projection will be applied first!

      In order to set the matrix to a perspective frustum transformation without post-multiplying, use setPerspectiveRect.

      Specified by:
      perspectiveRect in interface Matrix4fc
      Parameters:
      width - the width of the near frustum plane
      height - the height of the near frustum plane
      zNear - near clipping plane distance. If the special value Float.POSITIVE_INFINITY is used, the near clipping plane will be at positive infinity. In that case, zFar may not also be Float.POSITIVE_INFINITY.
      zFar - far clipping plane distance. If the special value Float.POSITIVE_INFINITY is used, the far clipping plane will be at positive infinity. In that case, zNear may not also be Float.POSITIVE_INFINITY.
      dest - will hold the result
      Returns:
      dest
      See Also:
      setPerspectiveRect(float, float, float, float)
    • perspectiveRect

      public Matrix4f perspectiveRect​(float width, float height, float zNear, float zFar, boolean zZeroToOne)
      Apply a symmetric perspective projection frustum transformation using for a right-handed coordinate system the given NDC z range to this matrix.

      If M is this matrix and P the perspective projection matrix, then the new matrix will be M * P. So when transforming a vector v with the new matrix by using M * P * v, the perspective projection will be applied first!

      In order to set the matrix to a perspective frustum transformation without post-multiplying, use setPerspectiveRect.

      Specified by:
      perspectiveRect in interface Matrix4fc
      Parameters:
      width - the width of the near frustum plane
      height - the height of the near frustum plane
      zNear - near clipping plane distance. If the special value Float.POSITIVE_INFINITY is used, the near clipping plane will be at positive infinity. In that case, zFar may not also be Float.POSITIVE_INFINITY.
      zFar - far clipping plane distance. If the special value Float.POSITIVE_INFINITY is used, the far clipping plane will be at positive infinity. In that case, zNear may not also be Float.POSITIVE_INFINITY.
      zZeroToOne - whether to use Vulkan's and Direct3D's NDC z range of [0..+1] when true or whether to use OpenGL's NDC z range of [-1..+1] when false
      Returns:
      a matrix holding the result
      See Also:
      setPerspectiveRect(float, float, float, float, boolean)
    • perspectiveRect

      public Matrix4f perspectiveRect​(float width, float height, float zNear, float zFar)
      Apply a symmetric perspective projection frustum transformation for a right-handed coordinate system using OpenGL's NDC z range of [-1..+1] to this matrix.

      If M is this matrix and P the perspective projection matrix, then the new matrix will be M * P. So when transforming a vector v with the new matrix by using M * P * v, the perspective projection will be applied first!

      In order to set the matrix to a perspective frustum transformation without post-multiplying, use setPerspectiveRect.

      Specified by:
      perspectiveRect in interface Matrix4fc
      Parameters:
      width - the width of the near frustum plane
      height - the height of the near frustum plane
      zNear - near clipping plane distance. If the special value Float.POSITIVE_INFINITY is used, the near clipping plane will be at positive infinity. In that case, zFar may not also be Float.POSITIVE_INFINITY.
      zFar - far clipping plane distance. If the special value Float.POSITIVE_INFINITY is used, the far clipping plane will be at positive infinity. In that case, zNear may not also be Float.POSITIVE_INFINITY.
      Returns:
      a matrix holding the result
      See Also:
      setPerspectiveRect(float, float, float, float)
    • perspectiveOffCenter

      public Matrix4f perspectiveOffCenter​(float fovy, float offAngleX, float offAngleY, float aspect, float zNear, float zFar, boolean zZeroToOne, Matrix4f dest)
      Apply an asymmetric off-center perspective projection frustum transformation for a right-handed coordinate system using the given NDC z range to this matrix and store the result in dest.

      The given angles offAngleX and offAngleY are the horizontal and vertical angles between the line of sight and the line given by the center of the near and far frustum planes. So, when offAngleY is just fovy/2 then the projection frustum is rotated towards +Y and the bottom frustum plane is parallel to the XZ-plane.

      If M is this matrix and P the perspective projection matrix, then the new matrix will be M * P. So when transforming a vector v with the new matrix by using M * P * v, the perspective projection will be applied first!

      In order to set the matrix to a perspective frustum transformation without post-multiplying, use setPerspectiveOffCenter.

      Specified by:
      perspectiveOffCenter in interface Matrix4fc
      Parameters:
      fovy - the vertical field of view in radians (must be greater than zero and less than PI)
      offAngleX - the horizontal angle between the line of sight and the line crossing the center of the near and far frustum planes
      offAngleY - the vertical angle between the line of sight and the line crossing the center of the near and far frustum planes
      aspect - the aspect ratio (i.e. width / height; must be greater than zero)
      zNear - near clipping plane distance. If the special value Float.POSITIVE_INFINITY is used, the near clipping plane will be at positive infinity. In that case, zFar may not also be Float.POSITIVE_INFINITY.
      zFar - far clipping plane distance. If the special value Float.POSITIVE_INFINITY is used, the far clipping plane will be at positive infinity. In that case, zNear may not also be Float.POSITIVE_INFINITY.
      dest - will hold the result
      zZeroToOne - whether to use Vulkan's and Direct3D's NDC z range of [0..+1] when true or whether to use OpenGL's NDC z range of [-1..+1] when false
      Returns:
      dest
      See Also:
      setPerspectiveOffCenter(float, float, float, float, float, float, boolean)
    • perspectiveOffCenter

      public Matrix4f perspectiveOffCenter​(float fovy, float offAngleX, float offAngleY, float aspect, float zNear, float zFar, Matrix4f dest)
      Apply an asymmetric off-center perspective projection frustum transformation for a right-handed coordinate system using OpenGL's NDC z range of [-1..+1] to this matrix and store the result in dest.

      The given angles offAngleX and offAngleY are the horizontal and vertical angles between the line of sight and the line given by the center of the near and far frustum planes. So, when offAngleY is just fovy/2 then the projection frustum is rotated towards +Y and the bottom frustum plane is parallel to the XZ-plane.

      If M is this matrix and P the perspective projection matrix, then the new matrix will be M * P. So when transforming a vector v with the new matrix by using M * P * v, the perspective projection will be applied first!

      In order to set the matrix to a perspective frustum transformation without post-multiplying, use setPerspectiveOffCenter.

      Specified by:
      perspectiveOffCenter in interface Matrix4fc
      Parameters:
      fovy - the vertical field of view in radians (must be greater than zero and less than PI)
      offAngleX - the horizontal angle between the line of sight and the line crossing the center of the near and far frustum planes
      offAngleY - the vertical angle between the line of sight and the line crossing the center of the near and far frustum planes
      aspect - the aspect ratio (i.e. width / height; must be greater than zero)
      zNear - near clipping plane distance. If the special value Float.POSITIVE_INFINITY is used, the near clipping plane will be at positive infinity. In that case, zFar may not also be Float.POSITIVE_INFINITY.
      zFar - far clipping plane distance. If the special value Float.POSITIVE_INFINITY is used, the far clipping plane will be at positive infinity. In that case, zNear may not also be Float.POSITIVE_INFINITY.
      dest - will hold the result
      Returns:
      dest
      See Also:
      setPerspectiveOffCenter(float, float, float, float, float, float)
    • perspectiveOffCenter

      public Matrix4f perspectiveOffCenter​(float fovy, float offAngleX, float offAngleY, float aspect, float zNear, float zFar, boolean zZeroToOne)
      Apply an asymmetric off-center perspective projection frustum transformation using for a right-handed coordinate system the given NDC z range to this matrix.

      The given angles offAngleX and offAngleY are the horizontal and vertical angles between the line of sight and the line given by the center of the near and far frustum planes. So, when offAngleY is just fovy/2 then the projection frustum is rotated towards +Y and the bottom frustum plane is parallel to the XZ-plane.

      If M is this matrix and P the perspective projection matrix, then the new matrix will be M * P. So when transforming a vector v with the new matrix by using M * P * v, the perspective projection will be applied first!

      In order to set the matrix to a perspective frustum transformation without post-multiplying, use setPerspectiveOffCenter.

      Specified by:
      perspectiveOffCenter in interface Matrix4fc
      Parameters:
      fovy - the vertical field of view in radians (must be greater than zero and less than PI)
      offAngleX - the horizontal angle between the line of sight and the line crossing the center of the near and far frustum planes
      offAngleY - the vertical angle between the line of sight and the line crossing the center of the near and far frustum planes
      aspect - the aspect ratio (i.e. width / height; must be greater than zero)
      zNear - near clipping plane distance. If the special value Float.POSITIVE_INFINITY is used, the near clipping plane will be at positive infinity. In that case, zFar may not also be Float.POSITIVE_INFINITY.
      zFar - far clipping plane distance. If the special value Float.POSITIVE_INFINITY is used, the far clipping plane will be at positive infinity. In that case, zNear may not also be Float.POSITIVE_INFINITY.
      zZeroToOne - whether to use Vulkan's and Direct3D's NDC z range of [0..+1] when true or whether to use OpenGL's NDC z range of [-1..+1] when false
      Returns:
      a matrix holding the result
      See Also:
      setPerspectiveOffCenter(float, float, float, float, float, float, boolean)
    • perspectiveOffCenter

      public Matrix4f perspectiveOffCenter​(float fovy, float offAngleX, float offAngleY, float aspect, float zNear, float zFar)
      Apply an asymmetric off-center perspective projection frustum transformation for a right-handed coordinate system using OpenGL's NDC z range of [-1..+1] to this matrix.

      The given angles offAngleX and offAngleY are the horizontal and vertical angles between the line of sight and the line given by the center of the near and far frustum planes. So, when offAngleY is just fovy/2 then the projection frustum is rotated towards +Y and the bottom frustum plane is parallel to the XZ-plane.

      If M is this matrix and P the perspective projection matrix, then the new matrix will be M * P. So when transforming a vector v with the new matrix by using M * P * v, the perspective projection will be applied first!

      In order to set the matrix to a perspective frustum transformation without post-multiplying, use setPerspectiveOffCenter.

      Specified by:
      perspectiveOffCenter in interface Matrix4fc
      Parameters:
      fovy - the vertical field of view in radians (must be greater than zero and less than PI)
      offAngleX - the horizontal angle between the line of sight and the line crossing the center of the near and far frustum planes
      offAngleY - the vertical angle between the line of sight and the line crossing the center of the near and far frustum planes
      aspect - the aspect ratio (i.e. width / height; must be greater than zero)
      zNear - near clipping plane distance. If the special value Float.POSITIVE_INFINITY is used, the near clipping plane will be at positive infinity. In that case, zFar may not also be Float.POSITIVE_INFINITY.
      zFar - far clipping plane distance. If the special value Float.POSITIVE_INFINITY is used, the far clipping plane will be at positive infinity. In that case, zNear may not also be Float.POSITIVE_INFINITY.
      Returns:
      a matrix holding the result
      See Also:
      setPerspectiveOffCenter(float, float, float, float, float, float)
    • setPerspective

      public Matrix4f setPerspective​(float fovy, float aspect, float zNear, float zFar, boolean zZeroToOne)
      Set this matrix to be a symmetric perspective projection frustum transformation for a right-handed coordinate system using the given NDC z range.

      In order to apply the perspective projection transformation to an existing transformation, use perspective().

      Parameters:
      fovy - the vertical field of view in radians (must be greater than zero and less than PI)
      aspect - the aspect ratio (i.e. width / height; must be greater than zero)
      zNear - near clipping plane distance. If the special value Float.POSITIVE_INFINITY is used, the near clipping plane will be at positive infinity. In that case, zFar may not also be Float.POSITIVE_INFINITY.
      zFar - far clipping plane distance. If the special value Float.POSITIVE_INFINITY is used, the far clipping plane will be at positive infinity. In that case, zNear may not also be Float.POSITIVE_INFINITY.
      zZeroToOne - whether to use Vulkan's and Direct3D's NDC z range of [0..+1] when true or whether to use OpenGL's NDC z range of [-1..+1] when false
      Returns:
      this
      See Also:
      perspective(float, float, float, float, boolean)
    • setPerspective

      public Matrix4f setPerspective​(float fovy, float aspect, float zNear, float zFar)
      Set this matrix to be a symmetric perspective projection frustum transformation for a right-handed coordinate system using OpenGL's NDC z range of [-1..+1].

      In order to apply the perspective projection transformation to an existing transformation, use perspective().

      Parameters:
      fovy - the vertical field of view in radians (must be greater than zero and less than PI)
      aspect - the aspect ratio (i.e. width / height; must be greater than zero)
      zNear - near clipping plane distance. If the special value Float.POSITIVE_INFINITY is used, the near clipping plane will be at positive infinity. In that case, zFar may not also be Float.POSITIVE_INFINITY.
      zFar - far clipping plane distance. If the special value Float.POSITIVE_INFINITY is used, the far clipping plane will be at positive infinity. In that case, zNear may not also be Float.POSITIVE_INFINITY.
      Returns:
      this
      See Also:
      perspective(float, float, float, float)
    • setPerspectiveRect

      public Matrix4f setPerspectiveRect​(float width, float height, float zNear, float zFar, boolean zZeroToOne)
      Set this matrix to be a symmetric perspective projection frustum transformation for a right-handed coordinate system using the given NDC z range.

      In order to apply the perspective projection transformation to an existing transformation, use perspectiveRect().

      Parameters:
      width - the width of the near frustum plane
      height - the height of the near frustum plane
      zNear - near clipping plane distance. If the special value Float.POSITIVE_INFINITY is used, the near clipping plane will be at positive infinity. In that case, zFar may not also be Float.POSITIVE_INFINITY.
      zFar - far clipping plane distance. If the special value Float.POSITIVE_INFINITY is used, the far clipping plane will be at positive infinity. In that case, zNear may not also be Float.POSITIVE_INFINITY.
      zZeroToOne - whether to use Vulkan's and Direct3D's NDC z range of [0..+1] when true or whether to use OpenGL's NDC z range of [-1..+1] when false
      Returns:
      this
      See Also:
      perspectiveRect(float, float, float, float, boolean)
    • setPerspectiveRect

      public Matrix4f setPerspectiveRect​(float width, float height, float zNear, float zFar)
      Set this matrix to be a symmetric perspective projection frustum transformation for a right-handed coordinate system using OpenGL's NDC z range of [-1..+1].

      In order to apply the perspective projection transformation to an existing transformation, use perspectiveRect().

      Parameters:
      width - the width of the near frustum plane
      height - the height of the near frustum plane
      zNear - near clipping plane distance. If the special value Float.POSITIVE_INFINITY is used, the near clipping plane will be at positive infinity. In that case, zFar may not also be Float.POSITIVE_INFINITY.
      zFar - far clipping plane distance. If the special value Float.POSITIVE_INFINITY is used, the far clipping plane will be at positive infinity. In that case, zNear may not also be Float.POSITIVE_INFINITY.
      Returns:
      this
      See Also:
      perspectiveRect(float, float, float, float)
    • setPerspectiveOffCenter

      public Matrix4f setPerspectiveOffCenter​(float fovy, float offAngleX, float offAngleY, float aspect, float zNear, float zFar)
      Set this matrix to be an asymmetric off-center perspective projection frustum transformation for a right-handed coordinate system using OpenGL's NDC z range of [-1..+1].

      The given angles offAngleX and offAngleY are the horizontal and vertical angles between the line of sight and the line given by the center of the near and far frustum planes. So, when offAngleY is just fovy/2 then the projection frustum is rotated towards +Y and the bottom frustum plane is parallel to the XZ-plane.

      In order to apply the perspective projection transformation to an existing transformation, use perspectiveOffCenter().

      Parameters:
      fovy - the vertical field of view in radians (must be greater than zero and less than PI)
      offAngleX - the horizontal angle between the line of sight and the line crossing the center of the near and far frustum planes
      offAngleY - the vertical angle between the line of sight and the line crossing the center of the near and far frustum planes
      aspect - the aspect ratio (i.e. width / height; must be greater than zero)
      zNear - near clipping plane distance. If the special value Float.POSITIVE_INFINITY is used, the near clipping plane will be at positive infinity. In that case, zFar may not also be Float.POSITIVE_INFINITY.
      zFar - far clipping plane distance. If the special value Float.POSITIVE_INFINITY is used, the far clipping plane will be at positive infinity. In that case, zNear may not also be Float.POSITIVE_INFINITY.
      Returns:
      this
      See Also:
      perspectiveOffCenter(float, float, float, float, float, float)
    • setPerspectiveOffCenter

      public Matrix4f setPerspectiveOffCenter​(float fovy, float offAngleX, float offAngleY, float aspect, float zNear, float zFar, boolean zZeroToOne)
      Set this matrix to be an asymmetric off-center perspective projection frustum transformation for a right-handed coordinate system using the given NDC z range.

      The given angles offAngleX and offAngleY are the horizontal and vertical angles between the line of sight and the line given by the center of the near and far frustum planes. So, when offAngleY is just fovy/2 then the projection frustum is rotated towards +Y and the bottom frustum plane is parallel to the XZ-plane.

      In order to apply the perspective projection transformation to an existing transformation, use perspectiveOffCenter().

      Parameters:
      fovy - the vertical field of view in radians (must be greater than zero and less than PI)
      offAngleX - the horizontal angle between the line of sight and the line crossing the center of the near and far frustum planes
      offAngleY - the vertical angle between the line of sight and the line crossing the center of the near and far frustum planes
      aspect - the aspect ratio (i.e. width / height; must be greater than zero)
      zNear - near clipping plane distance. If the special value Float.POSITIVE_INFINITY is used, the near clipping plane will be at positive infinity. In that case, zFar may not also be Float.POSITIVE_INFINITY.
      zFar - far clipping plane distance. If the special value Float.POSITIVE_INFINITY is used, the far clipping plane will be at positive infinity. In that case, zNear may not also be Float.POSITIVE_INFINITY.
      zZeroToOne - whether to use Vulkan's and Direct3D's NDC z range of [0..+1] when true or whether to use OpenGL's NDC z range of [-1..+1] when false
      Returns:
      this
      See Also:
      perspectiveOffCenter(float, float, float, float, float, float)
    • perspectiveLH

      public Matrix4f perspectiveLH​(float fovy, float aspect, float zNear, float zFar, boolean zZeroToOne, Matrix4f dest)
      Apply a symmetric perspective projection frustum transformation for a left-handed coordinate system using the given NDC z range to this matrix and store the result in dest.

      If M is this matrix and P the perspective projection matrix, then the new matrix will be M * P. So when transforming a vector v with the new matrix by using M * P * v, the perspective projection will be applied first!

      In order to set the matrix to a perspective frustum transformation without post-multiplying, use setPerspectiveLH.

      Specified by:
      perspectiveLH in interface Matrix4fc
      Parameters:
      fovy - the vertical field of view in radians (must be greater than zero and less than PI)
      aspect - the aspect ratio (i.e. width / height; must be greater than zero)
      zNear - near clipping plane distance. If the special value Float.POSITIVE_INFINITY is used, the near clipping plane will be at positive infinity. In that case, zFar may not also be Float.POSITIVE_INFINITY.
      zFar - far clipping plane distance. If the special value Float.POSITIVE_INFINITY is used, the far clipping plane will be at positive infinity. In that case, zNear may not also be Float.POSITIVE_INFINITY.
      zZeroToOne - whether to use Vulkan's and Direct3D's NDC z range of [0..+1] when true or whether to use OpenGL's NDC z range of [-1..+1] when false
      dest - will hold the result
      Returns:
      dest
      See Also:
      setPerspectiveLH(float, float, float, float, boolean)
    • perspectiveLH

      public Matrix4f perspectiveLH​(float fovy, float aspect, float zNear, float zFar, boolean zZeroToOne)
      Apply a symmetric perspective projection frustum transformation for a left-handed coordinate system using the given NDC z range to this matrix.

      If M is this matrix and P the perspective projection matrix, then the new matrix will be M * P. So when transforming a vector v with the new matrix by using M * P * v, the perspective projection will be applied first!

      In order to set the matrix to a perspective frustum transformation without post-multiplying, use setPerspectiveLH.

      Parameters:
      fovy - the vertical field of view in radians (must be greater than zero and less than PI)
      aspect - the aspect ratio (i.e. width / height; must be greater than zero)
      zNear - near clipping plane distance. If the special value Float.POSITIVE_INFINITY is used, the near clipping plane will be at positive infinity. In that case, zFar may not also be Float.POSITIVE_INFINITY.
      zFar - far clipping plane distance. If the special value Float.POSITIVE_INFINITY is used, the far clipping plane will be at positive infinity. In that case, zNear may not also be Float.POSITIVE_INFINITY.
      zZeroToOne - whether to use Vulkan's and Direct3D's NDC z range of [0..+1] when true or whether to use OpenGL's NDC z range of [-1..+1] when false
      Returns:
      a matrix holding the result
      See Also:
      setPerspectiveLH(float, float, float, float, boolean)
    • perspectiveLH

      public Matrix4f perspectiveLH​(float fovy, float aspect, float zNear, float zFar, Matrix4f dest)
      Apply a symmetric perspective projection frustum transformation for a left-handed coordinate system using OpenGL's NDC z range of [-1..+1] to this matrix and store the result in dest.

      If M is this matrix and P the perspective projection matrix, then the new matrix will be M * P. So when transforming a vector v with the new matrix by using M * P * v, the perspective projection will be applied first!

      In order to set the matrix to a perspective frustum transformation without post-multiplying, use setPerspectiveLH.

      Specified by:
      perspectiveLH in interface Matrix4fc
      Parameters:
      fovy - the vertical field of view in radians (must be greater than zero and less than PI)
      aspect - the aspect ratio (i.e. width / height; must be greater than zero)
      zNear - near clipping plane distance. If the special value Float.POSITIVE_INFINITY is used, the near clipping plane will be at positive infinity. In that case, zFar may not also be Float.POSITIVE_INFINITY.
      zFar - far clipping plane distance. If the special value Float.POSITIVE_INFINITY is used, the far clipping plane will be at positive infinity. In that case, zNear may not also be Float.POSITIVE_INFINITY.
      dest - will hold the result
      Returns:
      dest
      See Also:
      setPerspectiveLH(float, float, float, float)
    • perspectiveLH

      public Matrix4f perspectiveLH​(float fovy, float aspect, float zNear, float zFar)
      Apply a symmetric perspective projection frustum transformation for a left-handed coordinate system using OpenGL's NDC z range of [-1..+1] to this matrix.

      If M is this matrix and P the perspective projection matrix, then the new matrix will be M * P. So when transforming a vector v with the new matrix by using M * P * v, the perspective projection will be applied first!

      In order to set the matrix to a perspective frustum transformation without post-multiplying, use setPerspectiveLH.

      Parameters:
      fovy - the vertical field of view in radians (must be greater than zero and less than PI)
      aspect - the aspect ratio (i.e. width / height; must be greater than zero)
      zNear - near clipping plane distance. If the special value Float.POSITIVE_INFINITY is used, the near clipping plane will be at positive infinity. In that case, zFar may not also be Float.POSITIVE_INFINITY.
      zFar - far clipping plane distance. If the special value Float.POSITIVE_INFINITY is used, the far clipping plane will be at positive infinity. In that case, zNear may not also be Float.POSITIVE_INFINITY.
      Returns:
      a matrix holding the result
      See Also:
      setPerspectiveLH(float, float, float, float)
    • setPerspectiveLH

      public Matrix4f setPerspectiveLH​(float fovy, float aspect, float zNear, float zFar, boolean zZeroToOne)
      Set this matrix to be a symmetric perspective projection frustum transformation for a left-handed coordinate system using the given NDC z range of [-1..+1].

      In order to apply the perspective projection transformation to an existing transformation, use perspectiveLH().

      Parameters:
      fovy - the vertical field of view in radians (must be greater than zero and less than PI)
      aspect - the aspect ratio (i.e. width / height; must be greater than zero)
      zNear - near clipping plane distance. If the special value Float.POSITIVE_INFINITY is used, the near clipping plane will be at positive infinity. In that case, zFar may not also be Float.POSITIVE_INFINITY.
      zFar - far clipping plane distance. If the special value Float.POSITIVE_INFINITY is used, the far clipping plane will be at positive infinity. In that case, zNear may not also be Float.POSITIVE_INFINITY.
      zZeroToOne - whether to use Vulkan's and Direct3D's NDC z range of [0..+1] when true or whether to use OpenGL's NDC z range of [-1..+1] when false
      Returns:
      this
      See Also:
      perspectiveLH(float, float, float, float, boolean)
    • setPerspectiveLH

      public Matrix4f setPerspectiveLH​(float fovy, float aspect, float zNear, float zFar)
      Set this matrix to be a symmetric perspective projection frustum transformation for a left-handed coordinate system using OpenGL's NDC z range of [-1..+1].

      In order to apply the perspective projection transformation to an existing transformation, use perspectiveLH().

      Parameters:
      fovy - the vertical field of view in radians (must be greater than zero and less than PI)
      aspect - the aspect ratio (i.e. width / height; must be greater than zero)
      zNear - near clipping plane distance. If the special value Float.POSITIVE_INFINITY is used, the near clipping plane will be at positive infinity. In that case, zFar may not also be Float.POSITIVE_INFINITY.
      zFar - far clipping plane distance. If the special value Float.POSITIVE_INFINITY is used, the far clipping plane will be at positive infinity. In that case, zNear may not also be Float.POSITIVE_INFINITY.
      Returns:
      this
      See Also:
      perspectiveLH(float, float, float, float)
    • frustum

      public Matrix4f frustum​(float left, float right, float bottom, float top, float zNear, float zFar, boolean zZeroToOne, Matrix4f dest)
      Apply an arbitrary perspective projection frustum transformation for a right-handed coordinate system using the given NDC z range to this matrix and store the result in dest.

      If M is this matrix and F the frustum matrix, then the new matrix will be M * F. So when transforming a vector v with the new matrix by using M * F * v, the frustum transformation will be applied first!

      In order to set the matrix to a perspective frustum transformation without post-multiplying, use setFrustum().

      Reference: http://www.songho.ca

      Specified by:
      frustum in interface Matrix4fc
      Parameters:
      left - the distance along the x-axis to the left frustum edge
      right - the distance along the x-axis to the right frustum edge
      bottom - the distance along the y-axis to the bottom frustum edge
      top - the distance along the y-axis to the top frustum edge
      zNear - near clipping plane distance. If the special value Float.POSITIVE_INFINITY is used, the near clipping plane will be at positive infinity. In that case, zFar may not also be Float.POSITIVE_INFINITY.
      zFar - far clipping plane distance. If the special value Float.POSITIVE_INFINITY is used, the far clipping plane will be at positive infinity. In that case, zNear may not also be Float.POSITIVE_INFINITY.
      zZeroToOne - whether to use Vulkan's and Direct3D's NDC z range of [0..+1] when true or whether to use OpenGL's NDC z range of [-1..+1] when false
      dest - will hold the result
      Returns:
      dest
      See Also:
      setFrustum(float, float, float, float, float, float, boolean)
    • frustum

      public Matrix4f frustum​(float left, float right, float bottom, float top, float zNear, float zFar, Matrix4f dest)
      Apply an arbitrary perspective projection frustum transformation for a right-handed coordinate system using OpenGL's NDC z range of [-1..+1] to this matrix and store the result in dest.

      If M is this matrix and F the frustum matrix, then the new matrix will be M * F. So when transforming a vector v with the new matrix by using M * F * v, the frustum transformation will be applied first!

      In order to set the matrix to a perspective frustum transformation without post-multiplying, use setFrustum().

      Reference: http://www.songho.ca

      Specified by:
      frustum in interface Matrix4fc
      Parameters:
      left - the distance along the x-axis to the left frustum edge
      right - the distance along the x-axis to the right frustum edge
      bottom - the distance along the y-axis to the bottom frustum edge
      top - the distance along the y-axis to the top frustum edge
      zNear - near clipping plane distance. If the special value Float.POSITIVE_INFINITY is used, the near clipping plane will be at positive infinity. In that case, zFar may not also be Float.POSITIVE_INFINITY.
      zFar - far clipping plane distance. If the special value Float.POSITIVE_INFINITY is used, the far clipping plane will be at positive infinity. In that case, zNear may not also be Float.POSITIVE_INFINITY.
      dest - will hold the result
      Returns:
      dest
      See Also:
      setFrustum(float, float, float, float, float, float)
    • frustum

      public Matrix4f frustum​(float left, float right, float bottom, float top, float zNear, float zFar, boolean zZeroToOne)
      Apply an arbitrary perspective projection frustum transformation for a right-handed coordinate system using the given NDC z range to this matrix.

      If M is this matrix and F the frustum matrix, then the new matrix will be M * F. So when transforming a vector v with the new matrix by using M * F * v, the frustum transformation will be applied first!

      In order to set the matrix to a perspective frustum transformation without post-multiplying, use setFrustum().

      Reference: http://www.songho.ca

      Parameters:
      left - the distance along the x-axis to the left frustum edge
      right - the distance along the x-axis to the right frustum edge
      bottom - the distance along the y-axis to the bottom frustum edge
      top - the distance along the y-axis to the top frustum edge
      zNear - near clipping plane distance. If the special value Float.POSITIVE_INFINITY is used, the near clipping plane will be at positive infinity. In that case, zFar may not also be Float.POSITIVE_INFINITY.
      zFar - far clipping plane distance. If the special value Float.POSITIVE_INFINITY is used, the far clipping plane will be at positive infinity. In that case, zNear may not also be Float.POSITIVE_INFINITY.
      zZeroToOne - whether to use Vulkan's and Direct3D's NDC z range of [0..+1] when true or whether to use OpenGL's NDC z range of [-1..+1] when false
      Returns:
      a matrix holding the result
      See Also:
      setFrustum(float, float, float, float, float, float, boolean)
    • frustum

      public Matrix4f frustum​(float left, float right, float bottom, float top, float zNear, float zFar)
      Apply an arbitrary perspective projection frustum transformation for a right-handed coordinate system using OpenGL's NDC z range of [-1..+1] to this matrix.

      If M is this matrix and F the frustum matrix, then the new matrix will be M * F. So when transforming a vector v with the new matrix by using M * F * v, the frustum transformation will be applied first!

      In order to set the matrix to a perspective frustum transformation without post-multiplying, use setFrustum().

      Reference: http://www.songho.ca

      Parameters:
      left - the distance along the x-axis to the left frustum edge
      right - the distance along the x-axis to the right frustum edge
      bottom - the distance along the y-axis to the bottom frustum edge
      top - the distance along the y-axis to the top frustum edge
      zNear - near clipping plane distance. If the special value Float.POSITIVE_INFINITY is used, the near clipping plane will be at positive infinity. In that case, zFar may not also be Float.POSITIVE_INFINITY.
      zFar - far clipping plane distance. If the special value Float.POSITIVE_INFINITY is used, the far clipping plane will be at positive infinity. In that case, zNear may not also be Float.POSITIVE_INFINITY.
      Returns:
      a matrix holding the result
      See Also:
      setFrustum(float, float, float, float, float, float)
    • setFrustum

      public Matrix4f setFrustum​(float left, float right, float bottom, float top, float zNear, float zFar, boolean zZeroToOne)
      Set this matrix to be an arbitrary perspective projection frustum transformation for a right-handed coordinate system using the given NDC z range.

      In order to apply the perspective frustum transformation to an existing transformation, use frustum().

      Reference: http://www.songho.ca

      Parameters:
      left - the distance along the x-axis to the left frustum edge
      right - the distance along the x-axis to the right frustum edge
      bottom - the distance along the y-axis to the bottom frustum edge
      top - the distance along the y-axis to the top frustum edge
      zNear - near clipping plane distance. If the special value Float.POSITIVE_INFINITY is used, the near clipping plane will be at positive infinity. In that case, zFar may not also be Float.POSITIVE_INFINITY.
      zFar - far clipping plane distance. If the special value Float.POSITIVE_INFINITY is used, the far clipping plane will be at positive infinity. In that case, zNear may not also be Float.POSITIVE_INFINITY.
      zZeroToOne - whether to use Vulkan's and Direct3D's NDC z range of [0..+1] when true or whether to use OpenGL's NDC z range of [-1..+1] when false
      Returns:
      this
      See Also:
      frustum(float, float, float, float, float, float, boolean)
    • setFrustum

      public Matrix4f setFrustum​(float left, float right, float bottom, float top, float zNear, float zFar)
      Set this matrix to be an arbitrary perspective projection frustum transformation for a right-handed coordinate system using OpenGL's NDC z range of [-1..+1].

      In order to apply the perspective frustum transformation to an existing transformation, use frustum().

      Reference: http://www.songho.ca

      Parameters:
      left - the distance along the x-axis to the left frustum edge
      right - the distance along the x-axis to the right frustum edge
      bottom - the distance along the y-axis to the bottom frustum edge
      top - the distance along the y-axis to the top frustum edge
      zNear - near clipping plane distance. If the special value Float.POSITIVE_INFINITY is used, the near clipping plane will be at positive infinity. In that case, zFar may not also be Float.POSITIVE_INFINITY.
      zFar - far clipping plane distance. If the special value Float.POSITIVE_INFINITY is used, the far clipping plane will be at positive infinity. In that case, zNear may not also be Float.POSITIVE_INFINITY.
      Returns:
      this
      See Also:
      frustum(float, float, float, float, float, float)
    • frustumLH

      public Matrix4f frustumLH​(float left, float right, float bottom, float top, float zNear, float zFar, boolean zZeroToOne, Matrix4f dest)
      Apply an arbitrary perspective projection frustum transformation for a left-handed coordinate system using the given NDC z range to this matrix and store the result in dest.

      If M is this matrix and F the frustum matrix, then the new matrix will be M * F. So when transforming a vector v with the new matrix by using M * F * v, the frustum transformation will be applied first!

      In order to set the matrix to a perspective frustum transformation without post-multiplying, use setFrustumLH().

      Reference: http://www.songho.ca

      Specified by:
      frustumLH in interface Matrix4fc
      Parameters:
      left - the distance along the x-axis to the left frustum edge
      right - the distance along the x-axis to the right frustum edge
      bottom - the distance along the y-axis to the bottom frustum edge
      top - the distance along the y-axis to the top frustum edge
      zNear - near clipping plane distance. If the special value Float.POSITIVE_INFINITY is used, the near clipping plane will be at positive infinity. In that case, zFar may not also be Float.POSITIVE_INFINITY.
      zFar - far clipping plane distance. If the special value Float.POSITIVE_INFINITY is used, the far clipping plane will be at positive infinity. In that case, zNear may not also be Float.POSITIVE_INFINITY.
      zZeroToOne - whether to use Vulkan's and Direct3D's NDC z range of [0..+1] when true or whether to use OpenGL's NDC z range of [-1..+1] when false
      dest - will hold the result
      Returns:
      dest
      See Also:
      setFrustumLH(float, float, float, float, float, float, boolean)
    • frustumLH

      public Matrix4f frustumLH​(float left, float right, float bottom, float top, float zNear, float zFar, boolean zZeroToOne)
      Apply an arbitrary perspective projection frustum transformation for a left-handed coordinate system using the given NDC z range to this matrix.

      If M is this matrix and F the frustum matrix, then the new matrix will be M * F. So when transforming a vector v with the new matrix by using M * F * v, the frustum transformation will be applied first!

      In order to set the matrix to a perspective frustum transformation without post-multiplying, use setFrustumLH().

      Reference: http://www.songho.ca

      Parameters:
      left - the distance along the x-axis to the left frustum edge
      right - the distance along the x-axis to the right frustum edge
      bottom - the distance along the y-axis to the bottom frustum edge
      top - the distance along the y-axis to the top frustum edge
      zNear - near clipping plane distance. If the special value Float.POSITIVE_INFINITY is used, the near clipping plane will be at positive infinity. In that case, zFar may not also be Float.POSITIVE_INFINITY.
      zFar - far clipping plane distance. If the special value Float.POSITIVE_INFINITY is used, the far clipping plane will be at positive infinity. In that case, zNear may not also be Float.POSITIVE_INFINITY.
      zZeroToOne - whether to use Vulkan's and Direct3D's NDC z range of [0..+1] when true or whether to use OpenGL's NDC z range of [-1..+1] when false
      Returns:
      a matrix holding the result
      See Also:
      setFrustumLH(float, float, float, float, float, float, boolean)
    • frustumLH

      public Matrix4f frustumLH​(float left, float right, float bottom, float top, float zNear, float zFar, Matrix4f dest)
      Apply an arbitrary perspective projection frustum transformation for a left-handed coordinate system using OpenGL's NDC z range of [-1..+1] to this matrix and store the result in dest.

      If M is this matrix and F the frustum matrix, then the new matrix will be M * F. So when transforming a vector v with the new matrix by using M * F * v, the frustum transformation will be applied first!

      In order to set the matrix to a perspective frustum transformation without post-multiplying, use setFrustumLH().

      Reference: http://www.songho.ca

      Specified by:
      frustumLH in interface Matrix4fc
      Parameters:
      left - the distance along the x-axis to the left frustum edge
      right - the distance along the x-axis to the right frustum edge
      bottom - the distance along the y-axis to the bottom frustum edge
      top - the distance along the y-axis to the top frustum edge
      zNear - near clipping plane distance. If the special value Float.POSITIVE_INFINITY is used, the near clipping plane will be at positive infinity. In that case, zFar may not also be Float.POSITIVE_INFINITY.
      zFar - far clipping plane distance. If the special value Float.POSITIVE_INFINITY is used, the far clipping plane will be at positive infinity. In that case, zNear may not also be Float.POSITIVE_INFINITY.
      dest - will hold the result
      Returns:
      dest
      See Also:
      setFrustumLH(float, float, float, float, float, float)
    • frustumLH

      public Matrix4f frustumLH​(float left, float right, float bottom, float top, float zNear, float zFar)
      Apply an arbitrary perspective projection frustum transformation for a left-handed coordinate system using the given NDC z range to this matrix.

      If M is this matrix and F the frustum matrix, then the new matrix will be M * F. So when transforming a vector v with the new matrix by using M * F * v, the frustum transformation will be applied first!

      In order to set the matrix to a perspective frustum transformation without post-multiplying, use setFrustumLH().

      Reference: http://www.songho.ca

      Parameters:
      left - the distance along the x-axis to the left frustum edge
      right - the distance along the x-axis to the right frustum edge
      bottom - the distance along the y-axis to the bottom frustum edge
      top - the distance along the y-axis to the top frustum edge
      zNear - near clipping plane distance. If the special value Float.POSITIVE_INFINITY is used, the near clipping plane will be at positive infinity. In that case, zFar may not also be Float.POSITIVE_INFINITY.
      zFar - far clipping plane distance. If the special value Float.POSITIVE_INFINITY is used, the far clipping plane will be at positive infinity. In that case, zNear may not also be Float.POSITIVE_INFINITY.
      Returns:
      a matrix holding the result
      See Also:
      setFrustumLH(float, float, float, float, float, float)
    • setFrustumLH

      public Matrix4f setFrustumLH​(float left, float right, float bottom, float top, float zNear, float zFar, boolean zZeroToOne)
      Set this matrix to be an arbitrary perspective projection frustum transformation for a left-handed coordinate system using OpenGL's NDC z range of [-1..+1].

      In order to apply the perspective frustum transformation to an existing transformation, use frustumLH().

      Reference: http://www.songho.ca

      Parameters:
      left - the distance along the x-axis to the left frustum edge
      right - the distance along the x-axis to the right frustum edge
      bottom - the distance along the y-axis to the bottom frustum edge
      top - the distance along the y-axis to the top frustum edge
      zNear - near clipping plane distance. If the special value Float.POSITIVE_INFINITY is used, the near clipping plane will be at positive infinity. In that case, zFar may not also be Float.POSITIVE_INFINITY.
      zFar - far clipping plane distance. If the special value Float.POSITIVE_INFINITY is used, the far clipping plane will be at positive infinity. In that case, zNear may not also be Float.POSITIVE_INFINITY.
      zZeroToOne - whether to use Vulkan's and Direct3D's NDC z range of [0..+1] when true or whether to use OpenGL's NDC z range of [-1..+1] when false
      Returns:
      this
      See Also:
      frustumLH(float, float, float, float, float, float, boolean)
    • setFrustumLH

      public Matrix4f setFrustumLH​(float left, float right, float bottom, float top, float zNear, float zFar)
      Set this matrix to be an arbitrary perspective projection frustum transformation for a left-handed coordinate system using OpenGL's NDC z range of [-1..+1].

      In order to apply the perspective frustum transformation to an existing transformation, use frustumLH().

      Reference: http://www.songho.ca

      Parameters:
      left - the distance along the x-axis to the left frustum edge
      right - the distance along the x-axis to the right frustum edge
      bottom - the distance along the y-axis to the bottom frustum edge
      top - the distance along the y-axis to the top frustum edge
      zNear - near clipping plane distance. If the special value Float.POSITIVE_INFINITY is used, the near clipping plane will be at positive infinity. In that case, zFar may not also be Float.POSITIVE_INFINITY.
      zFar - far clipping plane distance. If the special value Float.POSITIVE_INFINITY is used, the far clipping plane will be at positive infinity. In that case, zNear may not also be Float.POSITIVE_INFINITY.
      Returns:
      this
      See Also:
      frustumLH(float, float, float, float, float, float)
    • setFromIntrinsic

      public Matrix4f setFromIntrinsic​(float alphaX, float alphaY, float gamma, float u0, float v0, int imgWidth, int imgHeight, float near, float far)
      Set this matrix to represent a perspective projection equivalent to the given intrinsic camera calibration parameters. The resulting matrix will be suited for a right-handed coordinate system using OpenGL's NDC z range of [-1..+1].

      See: https://en.wikipedia.org/

      Reference: http://ksimek.github.io/

      Parameters:
      alphaX - specifies the focal length and scale along the X axis
      alphaY - specifies the focal length and scale along the Y axis
      gamma - the skew coefficient between the X and Y axis (may be 0)
      u0 - the X coordinate of the principal point in image/sensor units
      v0 - the Y coordinate of the principal point in image/sensor units
      imgWidth - the width of the sensor/image image/sensor units
      imgHeight - the height of the sensor/image image/sensor units
      near - the distance to the near plane
      far - the distance to the far plane
      Returns:
      this
    • rotate

      public Matrix4f rotate​(Quaternionfc quat, Matrix4f dest)
      Apply the rotation transformation of the given Quaternionfc to this matrix and store the result in dest.

      When used with a right-handed coordinate system, the produced rotation will rotate a vector counter-clockwise around the rotation axis, when viewing along the negative axis direction towards the origin. When used with a left-handed coordinate system, the rotation is clockwise.

      If M is this matrix and Q the rotation matrix obtained from the given quaternion, then the new matrix will be M * Q. So when transforming a vector v with the new matrix by using M * Q * v, the quaternion rotation will be applied first!

      In order to set the matrix to a rotation transformation without post-multiplying, use rotation(Quaternionfc).

      Reference: http://en.wikipedia.org

      Specified by:
      rotate in interface Matrix4fc
      Parameters:
      quat - the Quaternionfc
      dest - will hold the result
      Returns:
      dest
      See Also:
      rotation(Quaternionfc)
    • rotate

      public Matrix4f rotate​(Quaternionfc quat)
      Apply the rotation transformation of the given Quaternionfc to this matrix.

      When used with a right-handed coordinate system, the produced rotation will rotate a vector counter-clockwise around the rotation axis, when viewing along the negative axis direction towards the origin. When used with a left-handed coordinate system, the rotation is clockwise.

      If M is this matrix and Q the rotation matrix obtained from the given quaternion, then the new matrix will be M * Q. So when transforming a vector v with the new matrix by using M * Q * v, the quaternion rotation will be applied first!

      In order to set the matrix to a rotation transformation without post-multiplying, use rotation(Quaternionfc).

      Reference: http://en.wikipedia.org

      Parameters:
      quat - the Quaternionfc
      Returns:
      a matrix holding the result
      See Also:
      rotation(Quaternionfc)
    • rotateAffine

      public Matrix4f rotateAffine​(Quaternionfc quat, Matrix4f dest)
      Apply the rotation transformation of the given Quaternionfc to this affine matrix and store the result in dest.

      This method assumes this to be affine.

      When used with a right-handed coordinate system, the produced rotation will rotate a vector counter-clockwise around the rotation axis, when viewing along the negative axis direction towards the origin. When used with a left-handed coordinate system, the rotation is clockwise.

      If M is this matrix and Q the rotation matrix obtained from the given quaternion, then the new matrix will be M * Q. So when transforming a vector v with the new matrix by using M * Q * v, the quaternion rotation will be applied first!

      In order to set the matrix to a rotation transformation without post-multiplying, use rotation(Quaternionfc).

      Reference: http://en.wikipedia.org

      Specified by:
      rotateAffine in interface Matrix4fc
      Parameters:
      quat - the Quaternionfc
      dest - will hold the result
      Returns:
      dest
      See Also:
      rotation(Quaternionfc)
    • rotateAffine

      public Matrix4f rotateAffine​(Quaternionfc quat)
      Apply the rotation transformation of the given Quaternionfc to this matrix.

      This method assumes this to be affine.

      When used with a right-handed coordinate system, the produced rotation will rotate a vector counter-clockwise around the rotation axis, when viewing along the negative axis direction towards the origin. When used with a left-handed coordinate system, the rotation is clockwise.

      If M is this matrix and Q the rotation matrix obtained from the given quaternion, then the new matrix will be M * Q. So when transforming a vector v with the new matrix by using M * Q * v, the quaternion rotation will be applied first!

      In order to set the matrix to a rotation transformation without post-multiplying, use rotation(Quaternionfc).

      Reference: http://en.wikipedia.org

      Parameters:
      quat - the Quaternionfc
      Returns:
      a matrix holding the result
      See Also:
      rotation(Quaternionfc)
    • rotateTranslation

      public Matrix4f rotateTranslation​(Quaternionfc quat, Matrix4f dest)
      Apply the rotation transformation of the given Quaternionfc to this matrix, which is assumed to only contain a translation, and store the result in dest.

      This method assumes this to only contain a translation.

      When used with a right-handed coordinate system, the produced rotation will rotate a vector counter-clockwise around the rotation axis, when viewing along the negative axis direction towards the origin. When used with a left-handed coordinate system, the rotation is clockwise.

      If M is this matrix and Q the rotation matrix obtained from the given quaternion, then the new matrix will be M * Q. So when transforming a vector v with the new matrix by using M * Q * v, the quaternion rotation will be applied first!

      In order to set the matrix to a rotation transformation without post-multiplying, use rotation(Quaternionfc).

      Reference: http://en.wikipedia.org

      Specified by:
      rotateTranslation in interface Matrix4fc
      Parameters:
      quat - the Quaternionfc
      dest - will hold the result
      Returns:
      dest
      See Also:
      rotation(Quaternionfc)
    • rotateAround

      public Matrix4f rotateAround​(Quaternionfc quat, float ox, float oy, float oz)
      Apply the rotation transformation of the given Quaternionfc to this matrix while using (ox, oy, oz) as the rotation origin.

      When used with a right-handed coordinate system, the produced rotation will rotate a vector counter-clockwise around the rotation axis, when viewing along the negative axis direction towards the origin. When used with a left-handed coordinate system, the rotation is clockwise.

      If M is this matrix and Q the rotation matrix obtained from the given quaternion, then the new matrix will be M * Q. So when transforming a vector v with the new matrix by using M * Q * v, the quaternion rotation will be applied first!

      This method is equivalent to calling: translate(ox, oy, oz).rotate(quat).translate(-ox, -oy, -oz)

      Reference: http://en.wikipedia.org

      Parameters:
      quat - the Quaternionfc
      ox - the x coordinate of the rotation origin
      oy - the y coordinate of the rotation origin
      oz - the z coordinate of the rotation origin
      Returns:
      a matrix holding the result
    • rotateAroundAffine

      public Matrix4f rotateAroundAffine​(Quaternionfc quat, float ox, float oy, float oz, Matrix4f dest)
      Description copied from interface: Matrix4fc
      Apply the rotation - and possibly scaling - transformation of the given Quaternionfc to this affine matrix while using (ox, oy, oz) as the rotation origin, and store the result in dest.

      When used with a right-handed coordinate system, the produced rotation will rotate a vector counter-clockwise around the rotation axis, when viewing along the negative axis direction towards the origin. When used with a left-handed coordinate system, the rotation is clockwise.

      If M is this matrix and Q the rotation matrix obtained from the given quaternion, then the new matrix will be M * Q. So when transforming a vector v with the new matrix by using M * Q * v, the quaternion rotation will be applied first!

      This method is only applicable if this is an affine matrix.

      This method is equivalent to calling: translate(ox, oy, oz, dest).rotate(quat).translate(-ox, -oy, -oz)

      Reference: http://en.wikipedia.org

      Specified by:
      rotateAroundAffine in interface Matrix4fc
      Parameters:
      quat - the Quaternionfc
      ox - the x coordinate of the rotation origin
      oy - the y coordinate of the rotation origin
      oz - the z coordinate of the rotation origin
      dest - will hold the result
      Returns:
      dest
    • rotateAround

      public Matrix4f rotateAround​(Quaternionfc quat, float ox, float oy, float oz, Matrix4f dest)
      Description copied from interface: Matrix4fc
      Apply the rotation - and possibly scaling - transformation of the given Quaternionfc to this matrix while using (ox, oy, oz) as the rotation origin, and store the result in dest.

      When used with a right-handed coordinate system, the produced rotation will rotate a vector counter-clockwise around the rotation axis, when viewing along the negative axis direction towards the origin. When used with a left-handed coordinate system, the rotation is clockwise.

      If M is this matrix and Q the rotation matrix obtained from the given quaternion, then the new matrix will be M * Q. So when transforming a vector v with the new matrix by using M * Q * v, the quaternion rotation will be applied first!

      This method is equivalent to calling: translate(ox, oy, oz, dest).rotate(quat).translate(-ox, -oy, -oz)

      Reference: http://en.wikipedia.org

      Specified by:
      rotateAround in interface Matrix4fc
      Parameters:
      quat - the Quaternionfc
      ox - the x coordinate of the rotation origin
      oy - the y coordinate of the rotation origin
      oz - the z coordinate of the rotation origin
      dest - will hold the result
      Returns:
      dest
    • rotationAround

      public Matrix4f rotationAround​(Quaternionfc quat, float ox, float oy, float oz)
      Set this matrix to a transformation composed of a rotation of the specified Quaternionfc while using (ox, oy, oz) as the rotation origin.

      When used with a right-handed coordinate system, the produced rotation will rotate a vector counter-clockwise around the rotation axis, when viewing along the negative axis direction towards the origin. When used with a left-handed coordinate system, the rotation is clockwise.

      This method is equivalent to calling: translation(ox, oy, oz).rotate(quat).translate(-ox, -oy, -oz)

      Reference: http://en.wikipedia.org

      Parameters:
      quat - the Quaternionfc
      ox - the x coordinate of the rotation origin
      oy - the y coordinate of the rotation origin
      oz - the z coordinate of the rotation origin
      Returns:
      this
    • rotateLocal

      public Matrix4f rotateLocal​(Quaternionfc quat, Matrix4f dest)
      Pre-multiply the rotation transformation of the given Quaternionfc to this matrix and store the result in dest.

      When used with a right-handed coordinate system, the produced rotation will rotate a vector counter-clockwise around the rotation axis, when viewing along the negative axis direction towards the origin. When used with a left-handed coordinate system, the rotation is clockwise.

      If M is this matrix and Q the rotation matrix obtained from the given quaternion, then the new matrix will be Q * M. So when transforming a vector v with the new matrix by using Q * M * v, the quaternion rotation will be applied last!

      In order to set the matrix to a rotation transformation without pre-multiplying, use rotation(Quaternionfc).

      Reference: http://en.wikipedia.org

      Specified by:
      rotateLocal in interface Matrix4fc
      Parameters:
      quat - the Quaternionfc
      dest - will hold the result
      Returns:
      dest
      See Also:
      rotation(Quaternionfc)
    • rotateLocal

      public Matrix4f rotateLocal​(Quaternionfc quat)
      Pre-multiply the rotation transformation of the given Quaternionfc to this matrix.

      When used with a right-handed coordinate system, the produced rotation will rotate a vector counter-clockwise around the rotation axis, when viewing along the negative axis direction towards the origin. When used with a left-handed coordinate system, the rotation is clockwise.

      If M is this matrix and Q the rotation matrix obtained from the given quaternion, then the new matrix will be Q * M. So when transforming a vector v with the new matrix by using Q * M * v, the quaternion rotation will be applied last!

      In order to set the matrix to a rotation transformation without pre-multiplying, use rotation(Quaternionfc).

      Reference: http://en.wikipedia.org

      Parameters:
      quat - the Quaternionfc
      Returns:
      a matrix holding the result
      See Also:
      rotation(Quaternionfc)
    • rotateAroundLocal

      public Matrix4f rotateAroundLocal​(Quaternionfc quat, float ox, float oy, float oz, Matrix4f dest)
      Description copied from interface: Matrix4fc
      Pre-multiply the rotation - and possibly scaling - transformation of the given Quaternionfc to this matrix while using (ox, oy, oz) as the rotation origin, and store the result in dest.

      When used with a right-handed coordinate system, the produced rotation will rotate a vector counter-clockwise around the rotation axis, when viewing along the negative axis direction towards the origin. When used with a left-handed coordinate system, the rotation is clockwise.

      If M is this matrix and Q the rotation matrix obtained from the given quaternion, then the new matrix will be Q * M. So when transforming a vector v with the new matrix by using Q * M * v, the quaternion rotation will be applied last!

      This method is equivalent to calling: translateLocal(-ox, -oy, -oz, dest).rotateLocal(quat).translateLocal(ox, oy, oz)

      Reference: http://en.wikipedia.org

      Specified by:
      rotateAroundLocal in interface Matrix4fc
      Parameters:
      quat - the Quaternionfc
      ox - the x coordinate of the rotation origin
      oy - the y coordinate of the rotation origin
      oz - the z coordinate of the rotation origin
      dest - will hold the result
      Returns:
      dest
    • rotateAroundLocal

      public Matrix4f rotateAroundLocal​(Quaternionfc quat, float ox, float oy, float oz)
      Pre-multiply the rotation transformation of the given Quaternionfc to this matrix while using (ox, oy, oz) as the rotation origin.

      When used with a right-handed coordinate system, the produced rotation will rotate a vector counter-clockwise around the rotation axis, when viewing along the negative axis direction towards the origin. When used with a left-handed coordinate system, the rotation is clockwise.

      If M is this matrix and Q the rotation matrix obtained from the given quaternion, then the new matrix will be Q * M. So when transforming a vector v with the new matrix by using Q * M * v, the quaternion rotation will be applied last!

      This method is equivalent to calling: translateLocal(-ox, -oy, -oz).rotateLocal(quat).translateLocal(ox, oy, oz)

      Reference: http://en.wikipedia.org

      Parameters:
      quat - the Quaternionfc
      ox - the x coordinate of the rotation origin
      oy - the y coordinate of the rotation origin
      oz - the z coordinate of the rotation origin
      Returns:
      a matrix holding the result
    • rotate

      public Matrix4f rotate​(AxisAngle4f axisAngle)
      Apply a rotation transformation, rotating about the given AxisAngle4f, to this matrix.

      When used with a right-handed coordinate system, the produced rotation will rotate a vector counter-clockwise around the rotation axis, when viewing along the negative axis direction towards the origin. When used with a left-handed coordinate system, the rotation is clockwise.

      If M is this matrix and A the rotation matrix obtained from the given AxisAngle4f, then the new matrix will be M * A. So when transforming a vector v with the new matrix by using M * A * v, the AxisAngle4f rotation will be applied first!

      In order to set the matrix to a rotation transformation without post-multiplying, use rotation(AxisAngle4f).

      Reference: http://en.wikipedia.org

      Parameters:
      axisAngle - the AxisAngle4f (needs to be normalized)
      Returns:
      this
      See Also:
      rotate(float, float, float, float), rotation(AxisAngle4f)
    • rotate

      public Matrix4f rotate​(AxisAngle4f axisAngle, Matrix4f dest)
      Apply a rotation transformation, rotating about the given AxisAngle4f and store the result in dest.

      When used with a right-handed coordinate system, the produced rotation will rotate a vector counter-clockwise around the rotation axis, when viewing along the negative axis direction towards the origin. When used with a left-handed coordinate system, the rotation is clockwise.

      If M is this matrix and A the rotation matrix obtained from the given AxisAngle4f, then the new matrix will be M * A. So when transforming a vector v with the new matrix by using M * A * v, the AxisAngle4f rotation will be applied first!

      In order to set the matrix to a rotation transformation without post-multiplying, use rotation(AxisAngle4f).

      Reference: http://en.wikipedia.org

      Specified by:
      rotate in interface Matrix4fc
      Parameters:
      axisAngle - the AxisAngle4f (needs to be normalized)
      dest - will hold the result
      Returns:
      dest
      See Also:
      rotate(float, float, float, float), rotation(AxisAngle4f)
    • rotate

      public Matrix4f rotate​(float angle, Vector3fc axis)
      Apply a rotation transformation, rotating the given radians about the specified axis, to this matrix.

      The axis described by the axis vector needs to be a unit vector.

      When used with a right-handed coordinate system, the produced rotation will rotate a vector counter-clockwise around the rotation axis, when viewing along the negative axis direction towards the origin. When used with a left-handed coordinate system, the rotation is clockwise.

      If M is this matrix and A the rotation matrix obtained from the given axis-angle, then the new matrix will be M * A. So when transforming a vector v with the new matrix by using M * A * v, the axis-angle rotation will be applied first!

      In order to set the matrix to a rotation transformation without post-multiplying, use rotation(float, Vector3fc).

      Reference: http://en.wikipedia.org

      Parameters:
      angle - the angle in radians
      axis - the rotation axis (needs to be normalized)
      Returns:
      this
      See Also:
      rotate(float, float, float, float), rotation(float, Vector3fc)
    • rotate

      public Matrix4f rotate​(float angle, Vector3fc axis, Matrix4f dest)
      Apply a rotation transformation, rotating the given radians about the specified axis and store the result in dest.

      The axis described by the axis vector needs to be a unit vector.

      When used with a right-handed coordinate system, the produced rotation will rotate a vector counter-clockwise around the rotation axis, when viewing along the negative axis direction towards the origin. When used with a left-handed coordinate system, the rotation is clockwise.

      If M is this matrix and A the rotation matrix obtained from the given axis-angle, then the new matrix will be M * A. So when transforming a vector v with the new matrix by using M * A * v, the axis-angle rotation will be applied first!

      In order to set the matrix to a rotation transformation without post-multiplying, use rotation(float, Vector3fc).

      Reference: http://en.wikipedia.org

      Specified by:
      rotate in interface Matrix4fc
      Parameters:
      angle - the angle in radians
      axis - the rotation axis (needs to be normalized)
      dest - will hold the result
      Returns:
      dest
      See Also:
      rotate(float, float, float, float), rotation(float, Vector3fc)
    • unproject

      public Vector4f unproject​(float winX, float winY, float winZ, int[] viewport, Vector4f dest)
      Description copied from interface: Matrix4fc
      Unproject the given window coordinates (winX, winY, winZ) by this matrix using the specified viewport.

      This method first converts the given window coordinates to normalized device coordinates in the range [-1..1] and then transforms those NDC coordinates by the inverse of this matrix.

      The depth range of winZ is assumed to be [0..1], which is also the OpenGL default.

      As a necessary computation step for unprojecting, this method computes the inverse of this matrix. In order to avoid computing the matrix inverse with every invocation, the inverse of this matrix can be built once outside using Matrix4fc.invert(Matrix4f) and then the method unprojectInv() can be invoked on it.

      Specified by:
      unproject in interface Matrix4fc
      Parameters:
      winX - the x-coordinate in window coordinates (pixels)
      winY - the y-coordinate in window coordinates (pixels)
      winZ - the z-coordinate, which is the depth value in [0..1]
      viewport - the viewport described by [x, y, width, height]
      dest - will hold the unprojected position
      Returns:
      dest
      See Also:
      Matrix4fc.unprojectInv(float, float, float, int[], Vector4f), Matrix4fc.invert(Matrix4f)
    • unproject

      public Vector3f unproject​(float winX, float winY, float winZ, int[] viewport, Vector3f dest)
      Description copied from interface: Matrix4fc
      Unproject the given window coordinates (winX, winY, winZ) by this matrix using the specified viewport.

      This method first converts the given window coordinates to normalized device coordinates in the range [-1..1] and then transforms those NDC coordinates by the inverse of this matrix.

      The depth range of winZ is assumed to be [0..1], which is also the OpenGL default.

      As a necessary computation step for unprojecting, this method computes the inverse of this matrix. In order to avoid computing the matrix inverse with every invocation, the inverse of this matrix can be built once outside using Matrix4fc.invert(Matrix4f) and then the method unprojectInv() can be invoked on it.

      Specified by:
      unproject in interface Matrix4fc
      Parameters:
      winX - the x-coordinate in window coordinates (pixels)
      winY - the y-coordinate in window coordinates (pixels)
      winZ - the z-coordinate, which is the depth value in [0..1]
      viewport - the viewport described by [x, y, width, height]
      dest - will hold the unprojected position
      Returns:
      dest
      See Also:
      Matrix4fc.unprojectInv(float, float, float, int[], Vector3f), Matrix4fc.invert(Matrix4f)
    • unproject

      public Vector4f unproject​(Vector3fc winCoords, int[] viewport, Vector4f dest)
      Description copied from interface: Matrix4fc
      Unproject the given window coordinates winCoords by this matrix using the specified viewport.

      This method first converts the given window coordinates to normalized device coordinates in the range [-1..1] and then transforms those NDC coordinates by the inverse of this matrix.

      The depth range of winCoords.z is assumed to be [0..1], which is also the OpenGL default.

      As a necessary computation step for unprojecting, this method computes the inverse of this matrix. In order to avoid computing the matrix inverse with every invocation, the inverse of this matrix can be built once outside using Matrix4fc.invert(Matrix4f) and then the method unprojectInv() can be invoked on it.

      Specified by:
      unproject in interface Matrix4fc
      Parameters:
      winCoords - the window coordinates to unproject
      viewport - the viewport described by [x, y, width, height]
      dest - will hold the unprojected position
      Returns:
      dest
      See Also:
      Matrix4fc.unprojectInv(float, float, float, int[], Vector4f), Matrix4fc.unproject(float, float, float, int[], Vector4f), Matrix4fc.invert(Matrix4f)
    • unproject

      public Vector3f unproject​(Vector3fc winCoords, int[] viewport, Vector3f dest)
      Description copied from interface: Matrix4fc
      Unproject the given window coordinates winCoords by this matrix using the specified viewport.

      This method first converts the given window coordinates to normalized device coordinates in the range [-1..1] and then transforms those NDC coordinates by the inverse of this matrix.

      The depth range of winCoords.z is assumed to be [0..1], which is also the OpenGL default.

      As a necessary computation step for unprojecting, this method computes the inverse of this matrix. In order to avoid computing the matrix inverse with every invocation, the inverse of this matrix can be built once outside using Matrix4fc.invert(Matrix4f) and then the method unprojectInv() can be invoked on it.

      Specified by:
      unproject in interface Matrix4fc
      Parameters:
      winCoords - the window coordinates to unproject
      viewport - the viewport described by [x, y, width, height]
      dest - will hold the unprojected position
      Returns:
      dest
      See Also:
      Matrix4fc.unprojectInv(float, float, float, int[], Vector3f), Matrix4fc.unproject(float, float, float, int[], Vector3f), Matrix4fc.invert(Matrix4f)
    • unprojectRay

      public Matrix4f unprojectRay​(float winX, float winY, int[] viewport, Vector3f originDest, Vector3f dirDest)
      Description copied from interface: Matrix4fc
      Unproject the given 2D window coordinates (winX, winY) by this matrix using the specified viewport and compute the origin and the direction of the resulting ray which starts at NDC z = -1.0 and goes through NDC z = +1.0.

      This method first converts the given window coordinates to normalized device coordinates in the range [-1..1] and then transforms those NDC coordinates by the inverse of this matrix.

      As a necessary computation step for unprojecting, this method computes the inverse of this matrix. In order to avoid computing the matrix inverse with every invocation, the inverse of this matrix can be built once outside using Matrix4fc.invert(Matrix4f) and then the method unprojectInvRay() can be invoked on it.

      Specified by:
      unprojectRay in interface Matrix4fc
      Parameters:
      winX - the x-coordinate in window coordinates (pixels)
      winY - the y-coordinate in window coordinates (pixels)
      viewport - the viewport described by [x, y, width, height]
      originDest - will hold the ray origin
      dirDest - will hold the (unnormalized) ray direction
      Returns:
      this
      See Also:
      Matrix4fc.unprojectInvRay(float, float, int[], Vector3f, Vector3f), Matrix4fc.invert(Matrix4f)
    • unprojectRay

      public Matrix4f unprojectRay​(Vector2fc winCoords, int[] viewport, Vector3f originDest, Vector3f dirDest)
      Description copied from interface: Matrix4fc
      Unproject the given 2D window coordinates winCoords by this matrix using the specified viewport and compute the origin and the direction of the resulting ray which starts at NDC z = -1.0 and goes through NDC z = +1.0.

      This method first converts the given window coordinates to normalized device coordinates in the range [-1..1] and then transforms those NDC coordinates by the inverse of this matrix.

      As a necessary computation step for unprojecting, this method computes the inverse of this matrix. In order to avoid computing the matrix inverse with every invocation, the inverse of this matrix can be built once outside using Matrix4fc.invert(Matrix4f) and then the method unprojectInvRay() can be invoked on it.

      Specified by:
      unprojectRay in interface Matrix4fc
      Parameters:
      winCoords - the window coordinates to unproject
      viewport - the viewport described by [x, y, width, height]
      originDest - will hold the ray origin
      dirDest - will hold the (unnormalized) ray direction
      Returns:
      this
      See Also:
      Matrix4fc.unprojectInvRay(float, float, int[], Vector3f, Vector3f), Matrix4fc.unprojectRay(float, float, int[], Vector3f, Vector3f), Matrix4fc.invert(Matrix4f)
    • unprojectInv

      public Vector4f unprojectInv​(Vector3fc winCoords, int[] viewport, Vector4f dest)
      Description copied from interface: Matrix4fc
      Unproject the given window coordinates winCoords by this matrix using the specified viewport.

      This method differs from unproject() in that it assumes that this is already the inverse matrix of the original projection matrix. It exists to avoid recomputing the matrix inverse with every invocation.

      The depth range of winCoords.z is assumed to be [0..1], which is also the OpenGL default.

      This method reads the four viewport parameters from the given int[].

      Specified by:
      unprojectInv in interface Matrix4fc
      Parameters:
      winCoords - the window coordinates to unproject
      viewport - the viewport described by [x, y, width, height]
      dest - will hold the unprojected position
      Returns:
      dest
      See Also:
      Matrix4fc.unproject(Vector3fc, int[], Vector4f)
    • unprojectInv

      public Vector4f unprojectInv​(float winX, float winY, float winZ, int[] viewport, Vector4f dest)
      Description copied from interface: Matrix4fc
      Unproject the given window coordinates (winX, winY, winZ) by this matrix using the specified viewport.

      This method differs from unproject() in that it assumes that this is already the inverse matrix of the original projection matrix. It exists to avoid recomputing the matrix inverse with every invocation.

      The depth range of winZ is assumed to be [0..1], which is also the OpenGL default.

      Specified by:
      unprojectInv in interface Matrix4fc
      Parameters:
      winX - the x-coordinate in window coordinates (pixels)
      winY - the y-coordinate in window coordinates (pixels)
      winZ - the z-coordinate, which is the depth value in [0..1]
      viewport - the viewport described by [x, y, width, height]
      dest - will hold the unprojected position
      Returns:
      dest
      See Also:
      Matrix4fc.unproject(float, float, float, int[], Vector4f)
    • unprojectInvRay

      public Matrix4f unprojectInvRay​(Vector2fc winCoords, int[] viewport, Vector3f originDest, Vector3f dirDest)
      Description copied from interface: Matrix4fc
      Unproject the given window coordinates winCoords by this matrix using the specified viewport and compute the origin and the direction of the resulting ray which starts at NDC z = -1.0 and goes through NDC z = +1.0.

      This method differs from unprojectRay() in that it assumes that this is already the inverse matrix of the original projection matrix. It exists to avoid recomputing the matrix inverse with every invocation.

      Specified by:
      unprojectInvRay in interface Matrix4fc
      Parameters:
      winCoords - the window coordinates to unproject
      viewport - the viewport described by [x, y, width, height]
      originDest - will hold the ray origin
      dirDest - will hold the (unnormalized) ray direction
      Returns:
      this
      See Also:
      Matrix4fc.unprojectRay(Vector2fc, int[], Vector3f, Vector3f)
    • unprojectInvRay

      public Matrix4f unprojectInvRay​(float winX, float winY, int[] viewport, Vector3f originDest, Vector3f dirDest)
      Description copied from interface: Matrix4fc
      Unproject the given 2D window coordinates (winX, winY) by this matrix using the specified viewport and compute the origin and the direction of the resulting ray which starts at NDC z = -1.0 and goes through NDC z = +1.0.

      This method differs from unprojectRay() in that it assumes that this is already the inverse matrix of the original projection matrix. It exists to avoid recomputing the matrix inverse with every invocation.

      Specified by:
      unprojectInvRay in interface Matrix4fc
      Parameters:
      winX - the x-coordinate in window coordinates (pixels)
      winY - the y-coordinate in window coordinates (pixels)
      viewport - the viewport described by [x, y, width, height]
      originDest - will hold the ray origin
      dirDest - will hold the (unnormalized) ray direction
      Returns:
      this
      See Also:
      Matrix4fc.unprojectRay(float, float, int[], Vector3f, Vector3f)
    • unprojectInv

      public Vector3f unprojectInv​(Vector3fc winCoords, int[] viewport, Vector3f dest)
      Description copied from interface: Matrix4fc
      Unproject the given window coordinates winCoords by this matrix using the specified viewport.

      This method differs from unproject() in that it assumes that this is already the inverse matrix of the original projection matrix. It exists to avoid recomputing the matrix inverse with every invocation.

      The depth range of winCoords.z is assumed to be [0..1], which is also the OpenGL default.

      Specified by:
      unprojectInv in interface Matrix4fc
      Parameters:
      winCoords - the window coordinates to unproject
      viewport - the viewport described by [x, y, width, height]
      dest - will hold the unprojected position
      Returns:
      dest
      See Also:
      Matrix4fc.unproject(Vector3fc, int[], Vector3f)
    • unprojectInv

      public Vector3f unprojectInv​(float winX, float winY, float winZ, int[] viewport, Vector3f dest)
      Description copied from interface: Matrix4fc
      Unproject the given window coordinates (winX, winY, winZ) by this matrix using the specified viewport.

      This method differs from unproject() in that it assumes that this is already the inverse matrix of the original projection matrix. It exists to avoid recomputing the matrix inverse with every invocation.

      The depth range of winZ is assumed to be [0..1], which is also the OpenGL default.

      Specified by:
      unprojectInv in interface Matrix4fc
      Parameters:
      winX - the x-coordinate in window coordinates (pixels)
      winY - the y-coordinate in window coordinates (pixels)
      winZ - the z-coordinate, which is the depth value in [0..1]
      viewport - the viewport described by [x, y, width, height]
      dest - will hold the unprojected position
      Returns:
      dest
      See Also:
      Matrix4fc.unproject(float, float, float, int[], Vector3f)
    • project

      public Vector4f project​(float x, float y, float z, int[] viewport, Vector4f winCoordsDest)
      Description copied from interface: Matrix4fc
      Project the given (x, y, z) position via this matrix using the specified viewport and store the resulting window coordinates in winCoordsDest.

      This method transforms the given coordinates by this matrix including perspective division to obtain normalized device coordinates, and then translates these into window coordinates by using the given viewport settings [x, y, width, height].

      The depth range of the returned winCoordsDest.z will be [0..1], which is also the OpenGL default.

      Specified by:
      project in interface Matrix4fc
      Parameters:
      x - the x-coordinate of the position to project
      y - the y-coordinate of the position to project
      z - the z-coordinate of the position to project
      viewport - the viewport described by [x, y, width, height]
      winCoordsDest - will hold the projected window coordinates
      Returns:
      winCoordsDest
    • project

      public Vector3f project​(float x, float y, float z, int[] viewport, Vector3f winCoordsDest)
      Description copied from interface: Matrix4fc
      Project the given (x, y, z) position via this matrix using the specified viewport and store the resulting window coordinates in winCoordsDest.

      This method transforms the given coordinates by this matrix including perspective division to obtain normalized device coordinates, and then translates these into window coordinates by using the given viewport settings [x, y, width, height].

      The depth range of the returned winCoordsDest.z will be [0..1], which is also the OpenGL default.

      Specified by:
      project in interface Matrix4fc
      Parameters:
      x - the x-coordinate of the position to project
      y - the y-coordinate of the position to project
      z - the z-coordinate of the position to project
      viewport - the viewport described by [x, y, width, height]
      winCoordsDest - will hold the projected window coordinates
      Returns:
      winCoordsDest
    • project

      public Vector4f project​(Vector3fc position, int[] viewport, Vector4f winCoordsDest)
      Description copied from interface: Matrix4fc
      Project the given position via this matrix using the specified viewport and store the resulting window coordinates in winCoordsDest.

      This method transforms the given coordinates by this matrix including perspective division to obtain normalized device coordinates, and then translates these into window coordinates by using the given viewport settings [x, y, width, height].

      The depth range of the returned winCoordsDest.z will be [0..1], which is also the OpenGL default.

      Specified by:
      project in interface Matrix4fc
      Parameters:
      position - the position to project into window coordinates
      viewport - the viewport described by [x, y, width, height]
      winCoordsDest - will hold the projected window coordinates
      Returns:
      winCoordsDest
      See Also:
      Matrix4fc.project(float, float, float, int[], Vector4f)
    • project

      public Vector3f project​(Vector3fc position, int[] viewport, Vector3f winCoordsDest)
      Description copied from interface: Matrix4fc
      Project the given position via this matrix using the specified viewport and store the resulting window coordinates in winCoordsDest.

      This method transforms the given coordinates by this matrix including perspective division to obtain normalized device coordinates, and then translates these into window coordinates by using the given viewport settings [x, y, width, height].

      The depth range of the returned winCoordsDest.z will be [0..1], which is also the OpenGL default.

      Specified by:
      project in interface Matrix4fc
      Parameters:
      position - the position to project into window coordinates
      viewport - the viewport described by [x, y, width, height]
      winCoordsDest - will hold the projected window coordinates
      Returns:
      winCoordsDest
      See Also:
      Matrix4fc.project(float, float, float, int[], Vector4f)
    • reflect

      public Matrix4f reflect​(float a, float b, float c, float d, Matrix4f dest)
      Description copied from interface: Matrix4fc
      Apply a mirror/reflection transformation to this matrix that reflects about the given plane specified via the equation x*a + y*b + z*c + d = 0 and store the result in dest.

      The vector (a, b, c) must be a unit vector.

      If M is this matrix and R the reflection matrix, then the new matrix will be M * R. So when transforming a vector v with the new matrix by using M * R * v, the reflection will be applied first!

      Reference: msdn.microsoft.com

      Specified by:
      reflect in interface Matrix4fc
      Parameters:
      a - the x factor in the plane equation
      b - the y factor in the plane equation
      c - the z factor in the plane equation
      d - the constant in the plane equation
      dest - will hold the result
      Returns:
      dest
    • reflect

      public Matrix4f reflect​(float a, float b, float c, float d)
      Apply a mirror/reflection transformation to this matrix that reflects about the given plane specified via the equation x*a + y*b + z*c + d = 0.

      The vector (a, b, c) must be a unit vector.

      If M is this matrix and R the reflection matrix, then the new matrix will be M * R. So when transforming a vector v with the new matrix by using M * R * v, the reflection will be applied first!

      Reference: msdn.microsoft.com

      Parameters:
      a - the x factor in the plane equation
      b - the y factor in the plane equation
      c - the z factor in the plane equation
      d - the constant in the plane equation
      Returns:
      a matrix holding the result
    • reflect

      public Matrix4f reflect​(float nx, float ny, float nz, float px, float py, float pz)
      Apply a mirror/reflection transformation to this matrix that reflects about the given plane specified via the plane normal and a point on the plane.

      If M is this matrix and R the reflection matrix, then the new matrix will be M * R. So when transforming a vector v with the new matrix by using M * R * v, the reflection will be applied first!

      Parameters: