Package org.joml

Class Matrix4f

  • All Implemented Interfaces:
    java.io.Externalizable, java.io.Serializable, Matrix4fc
    Direct Known Subclasses:
    Matrix4fStack

    public class Matrix4f
    extends java.lang.Object
    implements java.io.Externalizable, Matrix4fc
    Contains the definition of a 4x4 matrix of floats, and associated functions to transform it. The matrix is column-major to match OpenGL's interpretation, and it looks like this:

    m00 m10 m20 m30
    m01 m11 m21 m31
    m02 m12 m22 m32
    m03 m13 m23 m33

    Author:
    Richard Greenlees, Kai Burjack
    See Also:
    Serialized Form
    • Constructor Summary

      Constructors 
      Constructor Description
      Matrix4f()
      Create a new Matrix4f and set it to identity.
      Matrix4f​(float m00, float m01, float m02, float m03, float m10, float m11, float m12, float m13, float m20, float m21, float m22, float m23, float m30, float m31, float m32, float m33)
      Create a new 4x4 matrix using the supplied float values.
      Matrix4f​(java.nio.FloatBuffer buffer)
      Create a new Matrix4f by reading its 16 float components from the given FloatBuffer at the buffer's current position.
      Matrix4f​(Matrix3fc mat)
      Create a new Matrix4f by setting its uppper left 3x3 submatrix to the values of the given Matrix3fc and the rest to identity.
      Matrix4f​(Matrix4dc mat)
      Create a new Matrix4f and make it a copy of the given matrix.
      Matrix4f​(Matrix4fc mat)
      Create a new Matrix4f and make it a copy of the given matrix.
      Matrix4f​(Matrix4x3fc mat)
      Create a new Matrix4f and set its upper 4x3 submatrix to the given matrix mat and all other elements to identity.
      Matrix4f​(Vector4fc col0, Vector4fc col1, Vector4fc col2, Vector4fc col3)
      Create a new Matrix4f and initialize its four columns using the supplied vectors.
    • Method Summary

      All Methods Static Methods Instance Methods Concrete Methods 
      Modifier and Type Method Description
      Matrix4f _m00​(float m00)
      Set the value of the matrix element at column 0 and row 0 without updating the properties of the matrix.
      Matrix4f _m01​(float m01)
      Set the value of the matrix element at column 0 and row 1 without updating the properties of the matrix.
      Matrix4f _m02​(float m02)
      Set the value of the matrix element at column 0 and row 2 without updating the properties of the matrix.
      Matrix4f _m03​(float m03)
      Set the value of the matrix element at column 0 and row 3 without updating the properties of the matrix.
      Matrix4f _m10​(float m10)
      Set the value of the matrix element at column 1 and row 0 without updating the properties of the matrix.
      Matrix4f _m11​(float m11)
      Set the value of the matrix element at column 1 and row 1 without updating the properties of the matrix.
      Matrix4f _m12​(float m12)
      Set the value of the matrix element at column 1 and row 2 without updating the properties of the matrix.
      Matrix4f _m13​(float m13)
      Set the value of the matrix element at column 1 and row 3 without updating the properties of the matrix.
      Matrix4f _m20​(float m20)
      Set the value of the matrix element at column 2 and row 0 without updating the properties of the matrix.
      Matrix4f _m21​(float m21)
      Set the value of the matrix element at column 2 and row 1 without updating the properties of the matrix.
      Matrix4f _m22​(float m22)
      Set the value of the matrix element at column 2 and row 2 without updating the properties of the matrix.
      Matrix4f _m23​(float m23)
      Set the value of the matrix element at column 2 and row 3 without updating the properties of the matrix.
      Matrix4f _m30​(float m30)
      Set the value of the matrix element at column 3 and row 0 without updating the properties of the matrix.
      Matrix4f _m31​(float m31)
      Set the value of the matrix element at column 3 and row 1 without updating the properties of the matrix.
      Matrix4f _m32​(float m32)
      Set the value of the matrix element at column 3 and row 2 without updating the properties of the matrix.
      Matrix4f _m33​(float m33)
      Set the value of the matrix element at column 3 and row 3 without updating the properties of the matrix.
      Matrix4f add​(Matrix4fc other)
      Component-wise add this and other.
      Matrix4f add​(Matrix4fc other, Matrix4f dest)
      Component-wise add this and other and store the result in dest.
      Matrix4f add4x3​(Matrix4fc other)
      Component-wise add the upper 4x3 submatrices of this and other.
      Matrix4f add4x3​(Matrix4fc other, Matrix4f dest)
      Component-wise add the upper 4x3 submatrices of this and other and store the result in dest.
      Matrix4f affineSpan​(Vector3f corner, Vector3f xDir, Vector3f yDir, Vector3f zDir)
      Compute the extents of the coordinate system before this affine transformation was applied and store the resulting corner coordinates in corner and the span vectors in xDir, yDir and zDir.
      Matrix4f arcball​(float radius, float centerX, float centerY, float centerZ, float angleX, float angleY)
      Apply an arcball view transformation to this matrix with the given radius and center (centerX, centerY, centerZ) position of the arcball and the specified X and Y rotation angles.
      Matrix4f arcball​(float radius, float centerX, float centerY, float centerZ, float angleX, float angleY, Matrix4f dest)
      Apply an arcball view transformation to this matrix with the given radius and center (centerX, centerY, centerZ) position of the arcball and the specified X and Y rotation angles, and store the result in dest.
      Matrix4f arcball​(float radius, Vector3fc center, float angleX, float angleY)
      Apply an arcball view transformation to this matrix with the given radius and center position of the arcball and the specified X and Y rotation angles.
      Matrix4f arcball​(float radius, Vector3fc center, float angleX, float angleY, Matrix4f dest)
      Apply an arcball view transformation to this matrix with the given radius and center position of the arcball and the specified X and Y rotation angles, and store the result in dest.
      Matrix4f assume​(int properties)
      Assume the given properties about this matrix.
      Matrix4f billboardCylindrical​(Vector3fc objPos, Vector3fc targetPos, Vector3fc up)
      Set this matrix to a cylindrical billboard transformation that rotates the local +Z axis of a given object with position objPos towards a target position at targetPos while constraining a cylindrical rotation around the given up vector.
      Matrix4f billboardSpherical​(Vector3fc objPos, Vector3fc targetPos)
      Set this matrix to a spherical billboard transformation that rotates the local +Z axis of a given object with position objPos towards a target position at targetPos using a shortest arc rotation by not preserving any up vector of the object.
      Matrix4f billboardSpherical​(Vector3fc objPos, Vector3fc targetPos, Vector3fc up)
      Set this matrix to a spherical billboard transformation that rotates the local +Z axis of a given object with position objPos towards a target position at targetPos.
      float determinant()
      Return the determinant of this matrix.
      float determinant3x3()
      Return the determinant of the upper left 3x3 submatrix of this matrix.
      float determinantAffine()
      Return the determinant of this matrix by assuming that it represents an affine transformation and thus its last row is equal to (0, 0, 0, 1).
      Matrix4f determineProperties()
      Compute and set the matrix properties returned by properties() based on the current matrix element values.
      boolean equals​(java.lang.Object obj)  
      boolean equals​(Matrix4fc m, float delta)
      Compare the matrix elements of this matrix with the given matrix using the given delta and return whether all of them are equal within a maximum difference of delta.
      Matrix4f fma4x3​(Matrix4fc other, float otherFactor)
      Component-wise add the upper 4x3 submatrices of this and other by first multiplying each component of other's 4x3 submatrix by otherFactor and adding that result to this.
      Matrix4f fma4x3​(Matrix4fc other, float otherFactor, Matrix4f dest)
      Component-wise add the upper 4x3 submatrices of this and other by first multiplying each component of other's 4x3 submatrix by otherFactor, adding that to this and storing the final result in dest.
      Matrix4f frustum​(float left, float right, float bottom, float top, float zNear, float zFar)
      Apply an arbitrary perspective projection frustum transformation for a right-handed coordinate system using OpenGL's NDC z range of [-1..+1] to this matrix.
      Matrix4f frustum​(float left, float right, float bottom, float top, float zNear, float zFar, boolean zZeroToOne)
      Apply an arbitrary perspective projection frustum transformation for a right-handed coordinate system using the given NDC z range to this matrix.
      Matrix4f frustum​(float left, float right, float bottom, float top, float zNear, float zFar, boolean zZeroToOne, Matrix4f dest)
      Apply an arbitrary perspective projection frustum transformation for a right-handed coordinate system using the given NDC z range to this matrix and store the result in dest.
      Matrix4f frustum​(float left, float right, float bottom, float top, float zNear, float zFar, Matrix4f dest)
      Apply an arbitrary perspective projection frustum transformation for a right-handed coordinate system using OpenGL's NDC z range of [-1..+1] to this matrix and store the result in dest.
      Matrix4f frustumAabb​(Vector3f min, Vector3f max)
      Compute the axis-aligned bounding box of the frustum described by this matrix and store the minimum corner coordinates in the given min and the maximum corner coordinates in the given max vector.
      Vector3f frustumCorner​(int corner, Vector3f point)
      Compute the corner coordinates of the frustum defined by this matrix, which can be a projection matrix or a combined modelview-projection matrix, and store the result in the given point.
      Matrix4f frustumLH​(float left, float right, float bottom, float top, float zNear, float zFar)
      Apply an arbitrary perspective projection frustum transformation for a left-handed coordinate system using the given NDC z range to this matrix.
      Matrix4f frustumLH​(float left, float right, float bottom, float top, float zNear, float zFar, boolean zZeroToOne)
      Apply an arbitrary perspective projection frustum transformation for a left-handed coordinate system using the given NDC z range to this matrix.
      Matrix4f frustumLH​(float left, float right, float bottom, float top, float zNear, float zFar, boolean zZeroToOne, Matrix4f dest)
      Apply an arbitrary perspective projection frustum transformation for a left-handed coordinate system using the given NDC z range to this matrix and store the result in dest.
      Matrix4f frustumLH​(float left, float right, float bottom, float top, float zNear, float zFar, Matrix4f dest)
      Apply an arbitrary perspective projection frustum transformation for a left-handed coordinate system using OpenGL's NDC z range of [-1..+1] to this matrix and store the result in dest.
      Planef frustumPlane​(int which, Planef plane)
      Calculate a frustum plane of this matrix, which can be a projection matrix or a combined modelview-projection matrix, and store the result in the given plane.
      Vector4f frustumPlane​(int plane, Vector4f planeEquation)
      Calculate a frustum plane of this matrix, which can be a projection matrix or a combined modelview-projection matrix, and store the result in the given planeEquation.
      Vector3f frustumRayDir​(float x, float y, Vector3f dir)
      Obtain the direction of a ray starting at the center of the coordinate system and going through the near frustum plane.
      float[] get​(float[] arr)
      Store this matrix into the supplied float array in column-major order.
      float[] get​(float[] arr, int offset)
      Store this matrix into the supplied float array in column-major order at the given offset.
      java.nio.ByteBuffer get​(int index, java.nio.ByteBuffer buffer)
      Store this matrix in column-major order into the supplied ByteBuffer starting at the specified absolute buffer position/index.
      java.nio.FloatBuffer get​(int index, java.nio.FloatBuffer buffer)
      Store this matrix in column-major order into the supplied FloatBuffer starting at the specified absolute buffer position/index.
      java.nio.ByteBuffer get​(java.nio.ByteBuffer buffer)
      Store this matrix in column-major order into the supplied ByteBuffer at the current buffer position.
      java.nio.FloatBuffer get​(java.nio.FloatBuffer buffer)
      Store this matrix in column-major order into the supplied FloatBuffer at the current buffer position.
      Matrix4d get​(Matrix4d dest)
      Get the current values of this matrix and store them into dest.
      Matrix4f get​(Matrix4f dest)
      Get the current values of this matrix and store them into dest.
      Matrix3d get3x3​(Matrix3d dest)
      Get the current values of the upper left 3x3 submatrix of this matrix and store them into dest.
      Matrix3f get3x3​(Matrix3f dest)
      Get the current values of the upper left 3x3 submatrix of this matrix and store them into dest.
      Matrix4x3f get4x3​(Matrix4x3f dest)
      Get the current values of the upper 4x3 submatrix of this matrix and store them into dest.
      java.nio.ByteBuffer get4x3Transposed​(int index, java.nio.ByteBuffer buffer)
      Store the upper 4x3 submatrix of this matrix in row-major order into the supplied ByteBuffer starting at the specified absolute buffer position/index.
      java.nio.FloatBuffer get4x3Transposed​(int index, java.nio.FloatBuffer buffer)
      Store the upper 4x3 submatrix of this matrix in row-major order into the supplied FloatBuffer starting at the specified absolute buffer position/index.
      java.nio.ByteBuffer get4x3Transposed​(java.nio.ByteBuffer buffer)
      Store the upper 4x3 submatrix of this matrix in row-major order into the supplied ByteBuffer at the current buffer position.
      java.nio.FloatBuffer get4x3Transposed​(java.nio.FloatBuffer buffer)
      Store the upper 4x3 submatrix of this matrix in row-major order into the supplied FloatBuffer at the current buffer position.
      Vector3f getColumn​(int column, Vector3f dest)
      Get the first three components of the column at the given column index, starting with 0.
      Vector4f getColumn​(int column, Vector4f dest)
      Get the column at the given column index, starting with 0.
      Vector3f getEulerAnglesZYX​(Vector3f dest)
      Extract the Euler angles from the rotation represented by the upper left 3x3 submatrix of this and store the extracted Euler angles in dest.
      Quaterniond getNormalizedRotation​(Quaterniond dest)
      Get the current values of this matrix and store the represented rotation into the given Quaterniond.
      Quaternionf getNormalizedRotation​(Quaternionf dest)
      Get the current values of this matrix and store the represented rotation into the given Quaternionf.
      AxisAngle4d getRotation​(AxisAngle4d dest)
      Get the rotational component of this matrix and store the represented rotation into the given AxisAngle4d.
      AxisAngle4f getRotation​(AxisAngle4f dest)
      Get the rotational component of this matrix and store the represented rotation into the given AxisAngle4f.
      Vector3f getRow​(int row, Vector3f dest)
      Get the first three components of the row at the given row index, starting with 0.
      Vector4f getRow​(int row, Vector4f dest)
      Get the row at the given row index, starting with 0.
      Vector3f getScale​(Vector3f dest)
      Get the scaling factors of this matrix for the three base axes.
      Matrix4fc getToAddress​(long address)
      Store this matrix in column-major order at the given off-heap address.
      Vector3f getTranslation​(Vector3f dest)
      Get only the translation components (m30, m31, m32) of this matrix and store them in the given vector xyz.
      java.nio.ByteBuffer getTransposed​(int index, java.nio.ByteBuffer buffer)
      Store the transpose of this matrix in column-major order into the supplied ByteBuffer starting at the specified absolute buffer position/index.
      java.nio.FloatBuffer getTransposed​(int index, java.nio.FloatBuffer buffer)
      Store the transpose of this matrix in column-major order into the supplied FloatBuffer starting at the specified absolute buffer position/index.
      java.nio.ByteBuffer getTransposed​(java.nio.ByteBuffer buffer)
      Store the transpose of this matrix in column-major order into the supplied ByteBuffer at the current buffer position.
      java.nio.FloatBuffer getTransposed​(java.nio.FloatBuffer buffer)
      Store the transpose of this matrix in column-major order into the supplied FloatBuffer at the current buffer position.
      Quaterniond getUnnormalizedRotation​(Quaterniond dest)
      Get the current values of this matrix and store the represented rotation into the given Quaterniond.
      Quaternionf getUnnormalizedRotation​(Quaternionf dest)
      Get the current values of this matrix and store the represented rotation into the given Quaternionf.
      int hashCode()  
      Matrix4f identity()
      Reset this matrix to the identity.
      Matrix4f invert()
      Invert this matrix.
      Matrix4f invert​(Matrix4f dest)
      Invert this matrix and write the result into dest.
      Matrix4f invertAffine()
      Invert this matrix by assuming that it is an affine transformation (i.e. its last row is equal to (0, 0, 0, 1)).
      Matrix4f invertAffine​(Matrix4f dest)
      Invert this matrix by assuming that it is an affine transformation (i.e. its last row is equal to (0, 0, 0, 1)) and write the result into dest.
      Matrix4f invertFrustum()
      If this is an arbitrary perspective projection matrix obtained via one of the frustum() methods or via setFrustum(), then this method builds the inverse of this.
      Matrix4f invertFrustum​(Matrix4f dest)
      If this is an arbitrary perspective projection matrix obtained via one of the frustum() methods or via setFrustum(), then this method builds the inverse of this and stores it into the given dest.
      Matrix4f invertOrtho()
      Invert this orthographic projection matrix.
      Matrix4f invertOrtho​(Matrix4f dest)
      Invert this orthographic projection matrix and store the result into the given dest.
      Matrix4f invertPerspective()
      If this is a perspective projection matrix obtained via one of the perspective() methods or via setPerspective(), that is, if this is a symmetrical perspective frustum transformation, then this method builds the inverse of this.
      Matrix4f invertPerspective​(Matrix4f dest)
      If this is a perspective projection matrix obtained via one of the perspective() methods or via setPerspective(), that is, if this is a symmetrical perspective frustum transformation, then this method builds the inverse of this and stores it into the given dest.
      Matrix4f invertPerspectiveView​(Matrix4fc view, Matrix4f dest)
      If this is a perspective projection matrix obtained via one of the perspective() methods or via setPerspective(), that is, if this is a symmetrical perspective frustum transformation and the given view matrix is affine and has unit scaling (for example by being obtained via lookAt()), then this method builds the inverse of this * view and stores it into the given dest.
      Matrix4f invertPerspectiveView​(Matrix4x3fc view, Matrix4f dest)
      If this is a perspective projection matrix obtained via one of the perspective() methods or via setPerspective(), that is, if this is a symmetrical perspective frustum transformation and the given view matrix has unit scaling, then this method builds the inverse of this * view and stores it into the given dest.
      boolean isAffine()
      Determine whether this matrix describes an affine transformation.
      Matrix4f lerp​(Matrix4fc other, float t)
      Linearly interpolate this and other using the given interpolation factor t and store the result in this.
      Matrix4f lerp​(Matrix4fc other, float t, Matrix4f dest)
      Linearly interpolate this and other using the given interpolation factor t and store the result in dest.
      Matrix4f lookAlong​(float dirX, float dirY, float dirZ, float upX, float upY, float upZ)
      Apply a rotation transformation to this matrix to make -z point along dir.
      Matrix4f lookAlong​(float dirX, float dirY, float dirZ, float upX, float upY, float upZ, Matrix4f dest)
      Apply a rotation transformation to this matrix to make -z point along dir and store the result in dest.
      Matrix4f lookAlong​(Vector3fc dir, Vector3fc up)
      Apply a rotation transformation to this matrix to make -z point along dir.
      Matrix4f lookAlong​(Vector3fc dir, Vector3fc up, Matrix4f dest)
      Apply a rotation transformation to this matrix to make -z point along dir and store the result in dest.
      Matrix4f lookAt​(float eyeX, float eyeY, float eyeZ, float centerX, float centerY, float centerZ, float upX, float upY, float upZ)
      Apply a "lookat" transformation to this matrix for a right-handed coordinate system, that aligns -z with center - eye.
      Matrix4f lookAt​(float eyeX, float eyeY, float eyeZ, float centerX, float centerY, float centerZ, float upX, float upY, float upZ, Matrix4f dest)
      Apply a "lookat" transformation to this matrix for a right-handed coordinate system, that aligns -z with center - eye and store the result in dest.
      Matrix4f lookAt​(Vector3fc eye, Vector3fc center, Vector3fc up)
      Apply a "lookat" transformation to this matrix for a right-handed coordinate system, that aligns -z with center - eye.
      Matrix4f lookAt​(Vector3fc eye, Vector3fc center, Vector3fc up, Matrix4f dest)
      Apply a "lookat" transformation to this matrix for a right-handed coordinate system, that aligns -z with center - eye and store the result in dest.
      Matrix4f lookAtLH​(float eyeX, float eyeY, float eyeZ, float centerX, float centerY, float centerZ, float upX, float upY, float upZ)
      Apply a "lookat" transformation to this matrix for a left-handed coordinate system, that aligns +z with center - eye.
      Matrix4f lookAtLH​(float eyeX, float eyeY, float eyeZ, float centerX, float centerY, float centerZ, float upX, float upY, float upZ, Matrix4f dest)
      Apply a "lookat" transformation to this matrix for a left-handed coordinate system, that aligns +z with center - eye and store the result in dest.
      Matrix4f lookAtLH​(Vector3fc eye, Vector3fc center, Vector3fc up)
      Apply a "lookat" transformation to this matrix for a left-handed coordinate system, that aligns +z with center - eye.
      Matrix4f lookAtLH​(Vector3fc eye, Vector3fc center, Vector3fc up, Matrix4f dest)
      Apply a "lookat" transformation to this matrix for a left-handed coordinate system, that aligns +z with center - eye and store the result in dest.
      Matrix4f lookAtPerspective​(float eyeX, float eyeY, float eyeZ, float centerX, float centerY, float centerZ, float upX, float upY, float upZ, Matrix4f dest)
      Apply a "lookat" transformation to this matrix for a right-handed coordinate system, that aligns -z with center - eye and store the result in dest.
      Matrix4f lookAtPerspectiveLH​(float eyeX, float eyeY, float eyeZ, float centerX, float centerY, float centerZ, float upX, float upY, float upZ, Matrix4f dest)
      Apply a "lookat" transformation to this matrix for a left-handed coordinate system, that aligns +z with center - eye and store the result in dest.
      float m00()
      Return the value of the matrix element at column 0 and row 0.
      Matrix4f m00​(float m00)
      Set the value of the matrix element at column 0 and row 0.
      float m01()
      Return the value of the matrix element at column 0 and row 1.
      Matrix4f m01​(float m01)
      Set the value of the matrix element at column 0 and row 1.
      float m02()
      Return the value of the matrix element at column 0 and row 2.
      Matrix4f m02​(float m02)
      Set the value of the matrix element at column 0 and row 2.
      float m03()
      Return the value of the matrix element at column 0 and row 3.
      Matrix4f m03​(float m03)
      Set the value of the matrix element at column 0 and row 3.
      float m10()
      Return the value of the matrix element at column 1 and row 0.
      Matrix4f m10​(float m10)
      Set the value of the matrix element at column 1 and row 0.
      float m11()
      Return the value of the matrix element at column 1 and row 1.
      Matrix4f m11​(float m11)
      Set the value of the matrix element at column 1 and row 1.
      float m12()
      Return the value of the matrix element at column 1 and row 2.
      Matrix4f m12​(float m12)
      Set the value of the matrix element at column 1 and row 2.
      float m13()
      Return the value of the matrix element at column 1 and row 3.
      Matrix4f m13​(float m13)
      Set the value of the matrix element at column 1 and row 3.
      float m20()
      Return the value of the matrix element at column 2 and row 0.
      Matrix4f m20​(float m20)
      Set the value of the matrix element at column 2 and row 0.
      float m21()
      Return the value of the matrix element at column 2 and row 1.
      Matrix4f m21​(float m21)
      Set the value of the matrix element at column 2 and row 1.
      float m22()
      Return the value of the matrix element at column 2 and row 2.
      Matrix4f m22​(float m22)
      Set the value of the matrix element at column 2 and row 2.
      float m23()
      Return the value of the matrix element at column 2 and row 3.
      Matrix4f m23​(float m23)
      Set the value of the matrix element at column 2 and row 3.
      float m30()
      Return the value of the matrix element at column 3 and row 0.
      Matrix4f m30​(float m30)
      Set the value of the matrix element at column 3 and row 0.
      float m31()
      Return the value of the matrix element at column 3 and row 1.
      Matrix4f m31​(float m31)
      Set the value of the matrix element at column 3 and row 1.
      float m32()
      Return the value of the matrix element at column 3 and row 2.
      Matrix4f m32​(float m32)
      Set the value of the matrix element at column 3 and row 2.
      float m33()
      Return the value of the matrix element at column 3 and row 3.
      Matrix4f m33​(float m33)
      Set the value of the matrix element at column 3 and row 3.
      Matrix4f mul​(Matrix3x2fc right)
      Multiply this matrix by the supplied right matrix and store the result in this.
      Matrix4f mul​(Matrix3x2fc right, Matrix4f dest)
      Multiply this matrix by the supplied right matrix and store the result in dest.
      Matrix4f mul​(Matrix4fc right)
      Multiply this matrix by the supplied right matrix and store the result in this.
      Matrix4f mul​(Matrix4fc right, Matrix4f dest)
      Multiply this matrix by the supplied right matrix and store the result in dest.
      Matrix4f mul​(Matrix4x3fc right)
      Multiply this matrix by the supplied right matrix and store the result in this.
      Matrix4f mul​(Matrix4x3fc right, Matrix4f dest)
      Multiply this matrix by the supplied right matrix and store the result in dest.
      Matrix4f mul4x3ComponentWise​(Matrix4fc other)
      Component-wise multiply the upper 4x3 submatrices of this by other.
      Matrix4f mul4x3ComponentWise​(Matrix4fc other, Matrix4f dest)
      Component-wise multiply the upper 4x3 submatrices of this by other and store the result in dest.
      Matrix4f mulAffine​(Matrix4fc right)
      Multiply this matrix by the supplied right matrix, both of which are assumed to be affine, and store the result in this.
      Matrix4f mulAffine​(Matrix4fc right, Matrix4f dest)
      Multiply this matrix by the supplied right matrix, both of which are assumed to be affine, and store the result in dest.
      Matrix4f mulAffineR​(Matrix4fc right)
      Multiply this matrix by the supplied right matrix, which is assumed to be affine, and store the result in this.
      Matrix4f mulAffineR​(Matrix4fc right, Matrix4f dest)
      Multiply this matrix by the supplied right matrix, which is assumed to be affine, and store the result in dest.
      Matrix4f mulComponentWise​(Matrix4fc other)
      Component-wise multiply this by other.
      Matrix4f mulComponentWise​(Matrix4fc other, Matrix4f dest)
      Component-wise multiply this by other and store the result in dest.
      Matrix4f mulLocal​(Matrix4fc left)
      Pre-multiply this matrix by the supplied left matrix and store the result in this.
      Matrix4f mulLocal​(Matrix4fc left, Matrix4f dest)
      Pre-multiply this matrix by the supplied left matrix and store the result in dest.
      Matrix4f mulLocalAffine​(Matrix4fc left)
      Pre-multiply this matrix by the supplied left matrix, both of which are assumed to be affine, and store the result in this.
      Matrix4f mulLocalAffine​(Matrix4fc left, Matrix4f dest)
      Pre-multiply this matrix by the supplied left matrix, both of which are assumed to be affine, and store the result in dest.
      Matrix4f mulOrthoAffine​(Matrix4fc view)
      Multiply this orthographic projection matrix by the supplied affine view matrix.
      Matrix4f mulOrthoAffine​(Matrix4fc view, Matrix4f dest)
      Multiply this orthographic projection matrix by the supplied affine view matrix and store the result in dest.
      Matrix4f mulPerspectiveAffine​(Matrix4fc view)
      Multiply this symmetric perspective projection matrix by the supplied affine view matrix.
      Matrix4f mulPerspectiveAffine​(Matrix4fc view, Matrix4f dest)
      Multiply this symmetric perspective projection matrix by the supplied affine view matrix and store the result in dest.
      Matrix4f mulPerspectiveAffine​(Matrix4x3fc view)
      Multiply this symmetric perspective projection matrix by the supplied view matrix.
      Matrix4f mulPerspectiveAffine​(Matrix4x3fc view, Matrix4f dest)
      Multiply this symmetric perspective projection matrix by the supplied view matrix and store the result in dest.
      Matrix4f mulTranslationAffine​(Matrix4fc right, Matrix4f dest)
      Multiply this matrix, which is assumed to only contain a translation, by the supplied right matrix, which is assumed to be affine, and store the result in dest.
      Matrix4f normal()
      Compute a normal matrix from the upper left 3x3 submatrix of this and store it into the upper left 3x3 submatrix of this.
      Matrix3f normal​(Matrix3f dest)
      Compute a normal matrix from the upper left 3x3 submatrix of this and store it into dest.
      Matrix4f normal​(Matrix4f dest)
      Compute a normal matrix from the upper left 3x3 submatrix of this and store it into the upper left 3x3 submatrix of dest.
      Matrix4f normalize3x3()
      Normalize the upper left 3x3 submatrix of this matrix.
      Matrix3f normalize3x3​(Matrix3f dest)
      Normalize the upper left 3x3 submatrix of this matrix and store the result in dest.
      Matrix4f normalize3x3​(Matrix4f dest)
      Normalize the upper left 3x3 submatrix of this matrix and store the result in dest.
      Vector3f normalizedPositiveX​(Vector3f dir)
      Obtain the direction of +X before the transformation represented by this orthogonal matrix is applied.
      Vector3f normalizedPositiveY​(Vector3f dir)
      Obtain the direction of +Y before the transformation represented by this orthogonal matrix is applied.
      Vector3f normalizedPositiveZ​(Vector3f dir)
      Obtain the direction of +Z before the transformation represented by this orthogonal matrix is applied.
      Matrix4f obliqueZ​(float a, float b)
      Apply an oblique projection transformation to this matrix with the given values for a and b.
      Matrix4f obliqueZ​(float a, float b, Matrix4f dest)
      Apply an oblique projection transformation to this matrix with the given values for a and b and store the result in dest.
      Vector3f origin​(Vector3f dest)
      Obtain the position that gets transformed to the origin by this matrix.
      Vector3f originAffine​(Vector3f origin)
      Obtain the position that gets transformed to the origin by this affine matrix.
      Matrix4f ortho​(float left, float right, float bottom, float top, float zNear, float zFar)
      Apply an orthographic projection transformation for a right-handed coordinate system using OpenGL's NDC z range of [-1..+1] to this matrix.
      Matrix4f ortho​(float left, float right, float bottom, float top, float zNear, float zFar, boolean zZeroToOne)
      Apply an orthographic projection transformation for a right-handed coordinate system using the given NDC z range to this matrix.
      Matrix4f ortho​(float left, float right, float bottom, float top, float zNear, float zFar, boolean zZeroToOne, Matrix4f dest)
      Apply an orthographic projection transformation for a right-handed coordinate system using the given NDC z range to this matrix and store the result in dest.
      Matrix4f ortho​(float left, float right, float bottom, float top, float zNear, float zFar, Matrix4f dest)
      Apply an orthographic projection transformation for a right-handed coordinate system using OpenGL's NDC z range of [-1..+1] to this matrix and store the result in dest.
      Matrix4f ortho2D​(float left, float right, float bottom, float top)
      Apply an orthographic projection transformation for a right-handed coordinate system to this matrix.
      Matrix4f ortho2D​(float left, float right, float bottom, float top, Matrix4f dest)
      Apply an orthographic projection transformation for a right-handed coordinate system to this matrix and store the result in dest.
      Matrix4f ortho2DLH​(float left, float right, float bottom, float top)
      Apply an orthographic projection transformation for a left-handed coordinate system to this matrix.
      Matrix4f ortho2DLH​(float left, float right, float bottom, float top, Matrix4f dest)
      Apply an orthographic projection transformation for a left-handed coordinate system to this matrix and store the result in dest.
      Matrix4f orthoCrop​(Matrix4fc view, Matrix4f dest)
      Build an ortographic projection transformation that fits the view-projection transformation represented by this into the given affine view transformation.
      Matrix4f orthoLH​(float left, float right, float bottom, float top, float zNear, float zFar)
      Apply an orthographic projection transformation for a left-handed coordiante system using OpenGL's NDC z range of [-1..+1] to this matrix.
      Matrix4f orthoLH​(float left, float right, float bottom, float top, float zNear, float zFar, boolean zZeroToOne)
      Apply an orthographic projection transformation for a left-handed coordiante system using the given NDC z range to this matrix.
      Matrix4f orthoLH​(float left, float right, float bottom, float top, float zNear, float zFar, boolean zZeroToOne, Matrix4f dest)
      Apply an orthographic projection transformation for a left-handed coordiante system using the given NDC z range to this matrix and store the result in dest.
      Matrix4f orthoLH​(float left, float right, float bottom, float top, float zNear, float zFar, Matrix4f dest)
      Apply an orthographic projection transformation for a left-handed coordiante system using OpenGL's NDC z range of [-1..+1] to this matrix and store the result in dest.
      Matrix4f orthoSymmetric​(float width, float height, float zNear, float zFar)
      Apply a symmetric orthographic projection transformation for a right-handed coordinate system using OpenGL's NDC z range of [-1..+1] to this matrix.
      Matrix4f orthoSymmetric​(float width, float height, float zNear, float zFar, boolean zZeroToOne)
      Apply a symmetric orthographic projection transformation for a right-handed coordinate system using the given NDC z range to this matrix.
      Matrix4f orthoSymmetric​(float width, float height, float zNear, float zFar, boolean zZeroToOne, Matrix4f dest)
      Apply a symmetric orthographic projection transformation for a right-handed coordinate system using the given NDC z range to this matrix and store the result in dest.
      Matrix4f orthoSymmetric​(float width, float height, float zNear, float zFar, Matrix4f dest)
      Apply a symmetric orthographic projection transformation for a right-handed coordinate system using OpenGL's NDC z range of [-1..+1] to this matrix and store the result in dest.
      Matrix4f orthoSymmetricLH​(float width, float height, float zNear, float zFar)
      Apply a symmetric orthographic projection transformation for a left-handed coordinate system using OpenGL's NDC z range of [-1..+1] to this matrix.
      Matrix4f orthoSymmetricLH​(float width, float height, float zNear, float zFar, boolean zZeroToOne)
      Apply a symmetric orthographic projection transformation for a left-handed coordinate system using the given NDC z range to this matrix.
      Matrix4f orthoSymmetricLH​(float width, float height, float zNear, float zFar, boolean zZeroToOne, Matrix4f dest)
      Apply a symmetric orthographic projection transformation for a left-handed coordinate system using the given NDC z range to this matrix and store the result in dest.
      Matrix4f orthoSymmetricLH​(float width, float height, float zNear, float zFar, Matrix4f dest)
      Apply a symmetric orthographic projection transformation for a left-handed coordinate system using OpenGL's NDC z range of [-1..+1] to this matrix and store the result in dest.
      Matrix4f perspective​(float fovy, float aspect, float zNear, float zFar)
      Apply a symmetric perspective projection frustum transformation for a right-handed coordinate system using OpenGL's NDC z range of [-1..+1] to this matrix.
      Matrix4f perspective​(float fovy, float aspect, float zNear, float zFar, boolean zZeroToOne)
      Apply a symmetric perspective projection frustum transformation using for a right-handed coordinate system the given NDC z range to this matrix.
      Matrix4f perspective​(float fovy, float aspect, float zNear, float zFar, boolean zZeroToOne, Matrix4f dest)
      Apply a symmetric perspective projection frustum transformation for a right-handed coordinate system using the given NDC z range to this matrix and store the result in dest.
      Matrix4f perspective​(float fovy, float aspect, float zNear, float zFar, Matrix4f dest)
      Apply a symmetric perspective projection frustum transformation for a right-handed coordinate system using OpenGL's NDC z range of [-1..+1] to this matrix and store the result in dest.
      float perspectiveFar()
      Extract the far clip plane distance from this perspective projection matrix.
      float perspectiveFov()
      Return the vertical field-of-view angle in radians of this perspective transformation matrix.
      Matrix4f perspectiveFrustumSlice​(float near, float far, Matrix4f dest)
      Change the near and far clip plane distances of this perspective frustum transformation matrix and store the result in dest.
      Matrix4f perspectiveLH​(float fovy, float aspect, float zNear, float zFar)
      Apply a symmetric perspective projection frustum transformation for a left-handed coordinate system using OpenGL's NDC z range of [-1..+1] to this matrix.
      Matrix4f perspectiveLH​(float fovy, float aspect, float zNear, float zFar, boolean zZeroToOne)
      Apply a symmetric perspective projection frustum transformation for a left-handed coordinate system using the given NDC z range to this matrix.
      Matrix4f perspectiveLH​(float fovy, float aspect, float zNear, float zFar, boolean zZeroToOne, Matrix4f dest)
      Apply a symmetric perspective projection frustum transformation for a left-handed coordinate system using the given NDC z range to this matrix and store the result in dest.
      Matrix4f perspectiveLH​(float fovy, float aspect, float zNear, float zFar, Matrix4f dest)
      Apply a symmetric perspective projection frustum transformation for a left-handed coordinate system using OpenGL's NDC z range of [-1..+1] to this matrix and store the result in dest.
      float perspectiveNear()
      Extract the near clip plane distance from this perspective projection matrix.
      Vector3f perspectiveOrigin​(Vector3f origin)
      Compute the eye/origin of the perspective frustum transformation defined by this matrix, which can be a projection matrix or a combined modelview-projection matrix, and store the result in the given origin.
      Matrix4f pick​(float x, float y, float width, float height, int[] viewport)
      Apply a picking transformation to this matrix using the given window coordinates (x, y) as the pick center and the given (width, height) as the size of the picking region in window coordinates.
      Matrix4f pick​(float x, float y, float width, float height, int[] viewport, Matrix4f dest)
      Apply a picking transformation to this matrix using the given window coordinates (x, y) as the pick center and the given (width, height) as the size of the picking region in window coordinates, and store the result in dest.
      Vector3f positiveX​(Vector3f dir)
      Obtain the direction of +X before the transformation represented by this matrix is applied.
      Vector3f positiveY​(Vector3f dir)
      Obtain the direction of +Y before the transformation represented by this matrix is applied.
      Vector3f positiveZ​(Vector3f dir)
      Obtain the direction of +Z before the transformation represented by this matrix is applied.
      Vector3f project​(float x, float y, float z, int[] viewport, Vector3f winCoordsDest)
      Project the given (x, y, z) position via this matrix using the specified viewport and store the resulting window coordinates in winCoordsDest.
      Vector4f project​(float x, float y, float z, int[] viewport, Vector4f winCoordsDest)
      Project the given (x, y, z) position via this matrix using the specified viewport and store the resulting window coordinates in winCoordsDest.
      Vector3f project​(Vector3fc position, int[] viewport, Vector3f winCoordsDest)
      Project the given position via this matrix using the specified viewport and store the resulting window coordinates in winCoordsDest.
      Vector4f project​(Vector3fc position, int[] viewport, Vector4f winCoordsDest)
      Project the given position via this matrix using the specified viewport and store the resulting window coordinates in winCoordsDest.
      Matrix4f projectedGridRange​(Matrix4fc projector, float sLower, float sUpper, Matrix4f dest)
      Compute the range matrix for the Projected Grid transformation as described in chapter "2.4.2 Creating the range conversion matrix" of the paper Real-time water rendering - Introducing the projected grid concept based on the inverse of the view-projection matrix which is assumed to be this, and store that range matrix into dest.
      static void projViewFromRectangle​(Vector3f eye, Vector3f p, Vector3f x, Vector3f y, float nearFarDist, boolean zeroToOne, Matrix4f projDest, Matrix4f viewDest)
      Create a view and projection matrix from a given eye position, a given bottom left corner position p of the near plane rectangle and the extents of the near plane rectangle along its local x and y axes, and store the resulting matrices in projDest and viewDest.
      int properties()
      Return the assumed properties of this matrix.
      void readExternal​(java.io.ObjectInput in)  
      Matrix4f reflect​(float a, float b, float c, float d)
      Apply a mirror/reflection transformation to this matrix that reflects about the given plane specified via the equation x*a + y*b + z*c + d = 0.
      Matrix4f reflect​(float nx, float ny, float nz, float px, float py, float pz)
      Apply a mirror/reflection transformation to this matrix that reflects about the given plane specified via the plane normal and a point on the plane.
      Matrix4f reflect​(float nx, float ny, float nz, float px, float py, float pz, Matrix4f dest)
      Apply a mirror/reflection transformation to this matrix that reflects about the given plane specified via the plane normal and a point on the plane, and store the result in dest.
      Matrix4f reflect​(float a, float b, float c, float d, Matrix4f dest)
      Apply a mirror/reflection transformation to this matrix that reflects about the given plane specified via the equation x*a + y*b + z*c + d = 0 and store the result in dest.
      Matrix4f reflect​(Quaternionfc orientation, Vector3fc point)
      Apply a mirror/reflection transformation to this matrix that reflects about a plane specified via the plane orientation and a point on the plane.
      Matrix4f reflect​(Quaternionfc orientation, Vector3fc point, Matrix4f dest)
      Apply a mirror/reflection transformation to this matrix that reflects about a plane specified via the plane orientation and a point on the plane, and store the result in dest.
      Matrix4f reflect​(Vector3fc normal, Vector3fc point)
      Apply a mirror/reflection transformation to this matrix that reflects about the given plane specified via the plane normal and a point on the plane.
      Matrix4f reflect​(Vector3fc normal, Vector3fc point, Matrix4f dest)
      Apply a mirror/reflection transformation to this matrix that reflects about the given plane specified via the plane normal and a point on the plane, and store the result in dest.
      Matrix4f reflection​(float a, float b, float c, float d)
      Set this matrix to a mirror/reflection transformation that reflects about the given plane specified via the equation x*a + y*b + z*c + d = 0.
      Matrix4f reflection​(float nx, float ny, float nz, float px, float py, float pz)
      Set this matrix to a mirror/reflection transformation that reflects about the given plane specified via the plane normal and a point on the plane.
      Matrix4f reflection​(Quaternionfc orientation, Vector3fc point)
      Set this matrix to a mirror/reflection transformation that reflects about a plane specified via the plane orientation and a point on the plane.
      Matrix4f reflection​(Vector3fc normal, Vector3fc point)
      Set this matrix to a mirror/reflection transformation that reflects about the given plane specified via the plane normal and a point on the plane.
      Matrix4f rotate​(float ang, float x, float y, float z)
      Apply rotation to this matrix by rotating the given amount of radians about the specified (x, y, z) axis.
      Matrix4f rotate​(float ang, float x, float y, float z, Matrix4f dest)
      Apply rotation to this matrix by rotating the given amount of radians about the specified (x, y, z) axis and store the result in dest.
      Matrix4f rotate​(float angle, Vector3fc axis)
      Apply a rotation transformation, rotating the given radians about the specified axis, to this matrix.
      Matrix4f rotate​(float angle, Vector3fc axis, Matrix4f dest)
      Apply a rotation transformation, rotating the given radians about the specified axis and store the result in dest.
      Matrix4f rotate​(AxisAngle4f axisAngle)
      Apply a rotation transformation, rotating about the given AxisAngle4f, to this matrix.
      Matrix4f rotate​(AxisAngle4f axisAngle, Matrix4f dest)
      Apply a rotation transformation, rotating about the given AxisAngle4f and store the result in dest.
      Matrix4f rotate​(Quaternionfc quat)
      Apply the rotation transformation of the given Quaternionfc to this matrix.
      Matrix4f rotate​(Quaternionfc quat, Matrix4f dest)
      Apply the rotation transformation of the given Quaternionfc to this matrix and store the result in dest.
      Matrix4f rotateAffine​(float ang, float x, float y, float z)
      Apply rotation to this affine matrix by rotating the given amount of radians about the specified (x, y, z) axis.
      Matrix4f rotateAffine​(float ang, float x, float y, float z, Matrix4f dest)
      Apply rotation to this affine matrix by rotating the given amount of radians about the specified (x, y, z) axis and store the result in dest.
      Matrix4f rotateAffine​(Quaternionfc quat)
      Apply the rotation transformation of the given Quaternionfc to this matrix.
      Matrix4f rotateAffine​(Quaternionfc quat, Matrix4f dest)
      Apply the rotation transformation of the given Quaternionfc to this affine matrix and store the result in dest.
      Matrix4f rotateAffineXYZ​(float angleX, float angleY, float angleZ)
      Apply rotation of angleX radians about the X axis, followed by a rotation of angleY radians about the Y axis and followed by a rotation of angleZ radians about the Z axis.
      Matrix4f rotateAffineXYZ​(float angleX, float angleY, float angleZ, Matrix4f dest)
      Apply rotation of angleX radians about the X axis, followed by a rotation of angleY radians about the Y axis and followed by a rotation of angleZ radians about the Z axis and store the result in dest.
      Matrix4f rotateAffineYXZ​(float angleY, float angleX, float angleZ)
      Apply rotation of angleY radians about the Y axis, followed by a rotation of angleX radians about the X axis and followed by a rotation of angleZ radians about the Z axis.
      Matrix4f rotateAffineYXZ​(float angleY, float angleX, float angleZ, Matrix4f dest)
      Apply rotation of angleY radians about the Y axis, followed by a rotation of angleX radians about the X axis and followed by a rotation of angleZ radians about the Z axis and store the result in dest.
      Matrix4f rotateAffineZYX​(float angleZ, float angleY, float angleX)
      Apply rotation of angleZ radians about the Z axis, followed by a rotation of angleY radians about the Y axis and followed by a rotation of angleX radians about the X axis.
      Matrix4f rotateAffineZYX​(float angleZ, float angleY, float angleX, Matrix4f dest)
      Apply rotation of angleZ radians about the Z axis, followed by a rotation of angleY radians about the Y axis and followed by a rotation of angleX radians about the X axis and store the result in dest.
      Matrix4f rotateAround​(Quaternionfc quat, float ox, float oy, float oz)
      Apply the rotation transformation of the given Quaternionfc to this matrix while using (ox, oy, oz) as the rotation origin.
      Matrix4f rotateAround​(Quaternionfc quat, float ox, float oy, float oz, Matrix4f dest)
      Apply the rotation - and possibly scaling - transformation of the given Quaternionfc to this matrix while using (ox, oy, oz) as the rotation origin, and store the result in dest.
      Matrix4f rotateAroundLocal​(Quaternionfc quat, float ox, float oy, float oz)
      Pre-multiply the rotation transformation of the given Quaternionfc to this matrix while using (ox, oy, oz) as the rotation origin.
      Matrix4f rotateAroundLocal​(Quaternionfc quat, float ox, float oy, float oz, Matrix4f dest)
      Pre-multiply the rotation - and possibly scaling - transformation of the given Quaternionfc to this matrix while using (ox, oy, oz) as the rotation origin, and store the result in dest.
      Matrix4f rotateLocal​(float ang, float x, float y, float z)
      Pre-multiply a rotation to this matrix by rotating the given amount of radians about the specified (x, y, z) axis.
      Matrix4f rotateLocal​(float ang, float x, float y, float z, Matrix4f dest)
      Pre-multiply a rotation to this matrix by rotating the given amount of radians about the specified (x, y, z) axis and store the result in dest.
      Matrix4f rotateLocal​(Quaternionfc quat)
      Pre-multiply the rotation transformation of the given Quaternionfc to this matrix.
      Matrix4f rotateLocal​(Quaternionfc quat, Matrix4f dest)
      Pre-multiply the rotation transformation of the given Quaternionfc to this matrix and store the result in dest.
      Matrix4f rotateLocalX​(float ang)
      Pre-multiply a rotation to this matrix by rotating the given amount of radians about the X axis.
      Matrix4f rotateLocalX​(float ang, Matrix4f dest)
      Pre-multiply a rotation around the X axis to this matrix by rotating the given amount of radians about the X axis and store the result in dest.
      Matrix4f rotateLocalY​(float ang)
      Pre-multiply a rotation to this matrix by rotating the given amount of radians about the Y axis.
      Matrix4f rotateLocalY​(float ang, Matrix4f dest)
      Pre-multiply a rotation around the Y axis to this matrix by rotating the given amount of radians about the Y axis and store the result in dest.
      Matrix4f rotateLocalZ​(float ang)
      Pre-multiply a rotation to this matrix by rotating the given amount of radians about the Z axis.
      Matrix4f rotateLocalZ​(float ang, Matrix4f dest)
      Pre-multiply a rotation around the Z axis to this matrix by rotating the given amount of radians about the Z axis and store the result in dest.
      Matrix4f rotateTowards​(float dirX, float dirY, float dirZ, float upX, float upY, float upZ)
      Apply a model transformation to this matrix for a right-handed coordinate system, that aligns the local +Z axis with (dirX, dirY, dirZ).
      Matrix4f rotateTowards​(float dirX, float dirY, float dirZ, float upX, float upY, float upZ, Matrix4f dest)
      Apply a model transformation to this matrix for a right-handed coordinate system, that aligns the local +Z axis with (dirX, dirY, dirZ) and store the result in dest.
      Matrix4f rotateTowards​(Vector3fc dir, Vector3fc up)
      Apply a model transformation to this matrix for a right-handed coordinate system, that aligns the local +Z axis with dir.
      Matrix4f rotateTowards​(Vector3fc dir, Vector3fc up, Matrix4f dest)
      Apply a model transformation to this matrix for a right-handed coordinate system, that aligns the local +Z axis with dir and store the result in dest.
      Matrix4f rotateTowardsXY​(float dirX, float dirY)
      Apply rotation about the Z axis to align the local +X towards (dirX, dirY).
      Matrix4f rotateTowardsXY​(float dirX, float dirY, Matrix4f dest)
      Apply rotation about the Z axis to align the local +X towards (dirX, dirY) and store the result in dest.
      Matrix4f rotateTranslation​(float ang, float x, float y, float z, Matrix4f dest)
      Apply rotation to this matrix, which is assumed to only contain a translation, by rotating the given amount of radians about the specified (x, y, z) axis and store the result in dest.
      Matrix4f rotateTranslation​(Quaternionfc quat, Matrix4f dest)
      Apply the rotation transformation of the given Quaternionfc to this matrix, which is assumed to only contain a translation, and store the result in dest.
      Matrix4f rotateX​(float ang)
      Apply rotation about the X axis to this matrix by rotating the given amount of radians.
      Matrix4f rotateX​(float ang, Matrix4f dest)
      Apply rotation about the X axis to this matrix by rotating the given amount of radians and store the result in dest.
      Matrix4f rotateXYZ​(float angleX, float angleY, float angleZ)
      Apply rotation of angleX radians about the X axis, followed by a rotation of angleY radians about the Y axis and followed by a rotation of angleZ radians about the Z axis.
      Matrix4f rotateXYZ​(float angleX, float angleY, float angleZ, Matrix4f dest)
      Apply rotation of angleX radians about the X axis, followed by a rotation of angleY radians about the Y axis and followed by a rotation of angleZ radians about the Z axis and store the result in dest.
      Matrix4f rotateXYZ​(Vector3f angles)
      Apply rotation of angles.x radians about the X axis, followed by a rotation of angles.y radians about the Y axis and followed by a rotation of angles.z radians about the Z axis.
      Matrix4f rotateY​(float ang)
      Apply rotation about the Y axis to this matrix by rotating the given amount of radians.
      Matrix4f rotateY​(float ang, Matrix4f dest)
      Apply rotation about the Y axis to this matrix by rotating the given amount of radians and store the result in dest.
      Matrix4f rotateYXZ​(float angleY, float angleX, float angleZ)
      Apply rotation of angleY radians about the Y axis, followed by a rotation of angleX radians about the X axis and followed by a rotation of angleZ radians about the Z axis.
      Matrix4f rotateYXZ​(float angleY, float angleX, float angleZ, Matrix4f dest)
      Apply rotation of angleY radians about the Y axis, followed by a rotation of angleX radians about the X axis and followed by a rotation of angleZ radians about the Z axis and store the result in dest.
      Matrix4f rotateYXZ​(Vector3f angles)
      Apply rotation of angles.y radians about the Y axis, followed by a rotation of angles.x radians about the X axis and followed by a rotation of angles.z radians about the Z axis.
      Matrix4f rotateZ​(float ang)
      Apply rotation about the Z axis to this matrix by rotating the given amount of radians.
      Matrix4f rotateZ​(float ang, Matrix4f dest)
      Apply rotation about the Z axis to this matrix by rotating the given amount of radians and store the result in dest.
      Matrix4f rotateZYX​(float angleZ, float angleY, float angleX)
      Apply rotation of angleZ radians about the Z axis, followed by a rotation of angleY radians about the Y axis and followed by a rotation of angleX radians about the X axis.
      Matrix4f rotateZYX​(float angleZ, float angleY, float angleX, Matrix4f dest)
      Apply rotation of angleZ radians about the Z axis, followed by a rotation of angleY radians about the Y axis and followed by a rotation of angleX radians about the X axis and store the result in dest.
      Matrix4f rotateZYX​(Vector3f angles)
      Apply rotation of angles.z radians about the Z axis, followed by a rotation of angles.y radians about the Y axis and followed by a rotation of angles.x radians about the X axis.
      Matrix4f rotation​(float angle, float x, float y, float z)
      Set this matrix to a rotation matrix which rotates the given radians about a given axis.
      Matrix4f rotation​(float angle, Vector3fc axis)
      Set this matrix to a rotation matrix which rotates the given radians about a given axis.
      Matrix4f rotation​(AxisAngle4f axisAngle)
      Set this matrix to a rotation transformation using the given AxisAngle4f.
      Matrix4f rotation​(Quaternionfc quat)
      Set this matrix to the rotation transformation of the given Quaternionfc.
      Matrix4f rotationTowards​(float dirX, float dirY, float dirZ, float upX, float upY, float upZ)
      Set this matrix to a model transformation for a right-handed coordinate system, that aligns the local -z axis with (dirX, dirY, dirZ).
      Matrix4f rotationTowards​(Vector3fc dir, Vector3fc up)
      Set this matrix to a model transformation for a right-handed coordinate system, that aligns the local -z axis with dir.
      Matrix4f rotationTowardsXY​(float dirX, float dirY)
      Set this matrix to a rotation transformation about the Z axis to align the local +X towards (dirX, dirY).
      Matrix4f rotationX​(float ang)
      Set this matrix to a rotation transformation about the X axis.
      Matrix4f rotationXYZ​(float angleX, float angleY, float angleZ)
      Set this matrix to a rotation of angleX radians about the X axis, followed by a rotation of angleY radians about the Y axis and followed by a rotation of angleZ radians about the Z axis.
      Matrix4f rotationY​(float ang)
      Set this matrix to a rotation transformation about the Y axis.
      Matrix4f rotationYXZ​(float angleY, float angleX, float angleZ)
      Set this matrix to a rotation of angleY radians about the Y axis, followed by a rotation of angleX radians about the X axis and followed by a rotation of angleZ radians about the Z axis.
      Matrix4f rotationZ​(float ang)
      Set this matrix to a rotation transformation about the Z axis.
      Matrix4f rotationZYX​(float angleZ, float angleY, float angleX)
      Set this matrix to a rotation of angleZ radians about the Z axis, followed by a rotation of angleY radians about the Y axis and followed by a rotation of angleX radians about the X axis.
      Matrix4f scale​(float xyz)
      Apply scaling to this matrix by uniformly scaling all base axes by the given xyz factor.
      Matrix4f scale​(float x, float y, float z)
      Apply scaling to this matrix by scaling the base axes by the given sx, sy and sz factors.
      Matrix4f scale​(float x, float y, float z, Matrix4f dest)
      Apply scaling to this matrix by scaling the base axes by the given x, y and z factors and store the result in dest.
      Matrix4f scale​(float xyz, Matrix4f dest)
      Apply scaling to this matrix by uniformly scaling all base axes by the given xyz factor and store the result in dest.
      Matrix4f scale​(Vector3fc xyz)
      Apply scaling to this matrix by scaling the base axes by the given xyz.x, xyz.y and xyz.z factors, respectively.
      Matrix4f scale​(Vector3fc xyz, Matrix4f dest)
      Apply scaling to this matrix by scaling the base axes by the given xyz.x, xyz.y and xyz.z factors, respectively and store the result in dest.
      Matrix4f scaleAround​(float factor, float ox, float oy, float oz)
      Apply scaling to this matrix by scaling all three base axes by the given factor while using (ox, oy, oz) as the scaling origin.
      Matrix4f scaleAround​(float sx, float sy, float sz, float ox, float oy, float oz)
      Apply scaling to this matrix by scaling the base axes by the given sx, sy and sz factors while using (ox, oy, oz) as the scaling origin.
      Matrix4f scaleAround​(float sx, float sy, float sz, float ox, float oy, float oz, Matrix4f dest)
      Apply scaling to this matrix by scaling the base axes by the given sx, sy and sz factors while using (ox, oy, oz) as the scaling origin, and store the result in dest.
      Matrix4f scaleAround​(float factor, float ox, float oy, float oz, Matrix4f dest)
      Apply scaling to this matrix by scaling all three base axes by the given factor while using (ox, oy, oz) as the scaling origin, and store the result in dest.
      Matrix4f scaleAroundLocal​(float factor, float ox, float oy, float oz)
      Pre-multiply scaling to this matrix by scaling all three base axes by the given factor while using (ox, oy, oz) as the scaling origin.
      Matrix4f scaleAroundLocal​(float sx, float sy, float sz, float ox, float oy, float oz)
      Pre-multiply scaling to this matrix by scaling the base axes by the given sx, sy and sz factors while using (ox, oy, oz) as the scaling origin.
      Matrix4f scaleAroundLocal​(float sx, float sy, float sz, float ox, float oy, float oz, Matrix4f dest)
      Pre-multiply scaling to this matrix by scaling the base axes by the given sx, sy and sz factors while using the given (ox, oy, oz) as the scaling origin, and store the result in dest.
      Matrix4f scaleAroundLocal​(float factor, float ox, float oy, float oz, Matrix4f dest)
      Pre-multiply scaling to this matrix by scaling all three base axes by the given factor while using (ox, oy, oz) as the scaling origin, and store the result in dest.
      Matrix4f scaleLocal​(float xyz)
      Pre-multiply scaling to this matrix by scaling the base axes by the given xyz factor.
      Matrix4f scaleLocal​(float x, float y, float z)
      Pre-multiply scaling to this matrix by scaling the base axes by the given x, y and z factors.
      Matrix4f scaleLocal​(float x, float y, float z, Matrix4f dest)
      Pre-multiply scaling to this matrix by scaling the base axes by the given x, y and z factors and store the result in dest.
      Matrix4f scaleLocal​(float xyz, Matrix4f dest)
      Pre-multiply scaling to this matrix by scaling all base axes by the given xyz factor, and store the result in dest.
      Matrix4f scaling​(float factor)
      Set this matrix to be a simple scale matrix, which scales all axes uniformly by the given factor.
      Matrix4f scaling​(float x, float y, float z)
      Set this matrix to be a simple scale matrix.
      Matrix4f scaling​(Vector3fc xyz)
      Set this matrix to be a simple scale matrix which scales the base axes by xyz.x, xyz.y and xyz.z respectively.
      Matrix4f set​(float[] m)
      Set the values in the matrix using a float array that contains the matrix elements in column-major order.
      Matrix4f set​(float[] m, int off)
      Set the values in the matrix using a float array that contains the matrix elements in column-major order.
      Matrix4f set​(float m00, float m01, float m02, float m03, float m10, float m11, float m12, float m13, float m20, float m21, float m22, float m23, float m30, float m31, float m32, float m33)
      Set the values within this matrix to the supplied float values.
      Matrix4f set​(java.nio.ByteBuffer buffer)
      Set the values of this matrix by reading 16 float values from the given ByteBuffer in column-major order, starting at its current position.
      Matrix4f set​(java.nio.FloatBuffer buffer)
      Set the values of this matrix by reading 16 float values from the given FloatBuffer in column-major order, starting at its current position.
      Matrix4f set​(AxisAngle4d axisAngle)
      Set this matrix to be equivalent to the rotation specified by the given AxisAngle4d.
      Matrix4f set​(AxisAngle4f axisAngle)
      Set this matrix to be equivalent to the rotation specified by the given AxisAngle4f.
      Matrix4f set​(Matrix3fc mat)
      Set the upper left 3x3 submatrix of this Matrix4f to the given Matrix3fc and the rest to identity.
      Matrix4f set​(Matrix4dc m)
      Store the values of the given matrix m into this matrix.
      Matrix4f set​(Matrix4fc m)
      Store the values of the given matrix m into this matrix.
      Matrix4f set​(Matrix4x3fc m)
      Store the values of the given matrix m into this matrix and set the other matrix elements to identity.
      Matrix4f set​(Quaterniondc q)
      Set this matrix to be equivalent to the rotation specified by the given Quaterniondc.
      Matrix4f set​(Quaternionfc q)
      Set this matrix to be equivalent to the rotation specified by the given Quaternionfc.
      Matrix4f set​(Vector4fc col0, Vector4fc col1, Vector4fc col2, Vector4fc col3)
      Set the four columns of this matrix to the supplied vectors, respectively.
      Matrix4f set3x3​(Matrix3fc mat)
      Set the upper left 3x3 submatrix of this Matrix4f to the given Matrix3fc and don't change the other elements.
      Matrix4f set3x3​(Matrix4f mat)
      Set the upper left 3x3 submatrix of this Matrix4f to that of the given Matrix4f and don't change the other elements.
      Matrix4f set4x3​(Matrix4f mat)
      Set the upper 4x3 submatrix of this Matrix4f to the upper 4x3 submatrix of the given Matrix4f and don't change the other elements.
      Matrix4f set4x3​(Matrix4x3fc mat)
      Set the upper 4x3 submatrix of this Matrix4f to the given Matrix4x3fc and don't change the other elements.
      Matrix4f setColumn​(int column, Vector4fc src)
      Set the column at the given column index, starting with 0.
      Matrix4f setFromAddress​(long address)
      Set the values of this matrix by reading 16 float values from off-heap memory in column-major order, starting at the given address.
      Matrix4f setFromIntrinsic​(float alphaX, float alphaY, float gamma, float u0, float v0, int imgWidth, int imgHeight, float near, float far)
      Set this matrix to represent a perspective projection equivalent to the given intrinsic camera calibration parameters.
      Matrix4f setFrustum​(float left, float right, float bottom, float top, float zNear, float zFar)
      Set this matrix to be an arbitrary perspective projection frustum transformation for a right-handed coordinate system using OpenGL's NDC z range of [-1..+1].
      Matrix4f setFrustum​(float left, float right, float bottom, float top, float zNear, float zFar, boolean zZeroToOne)
      Set this matrix to be an arbitrary perspective projection frustum transformation for a right-handed coordinate system using the given NDC z range.
      Matrix4f setFrustumLH​(float left, float right, float bottom, float top, float zNear, float zFar)
      Set this matrix to be an arbitrary perspective projection frustum transformation for a left-handed coordinate system using OpenGL's NDC z range of [-1..+1].
      Matrix4f setFrustumLH​(float left, float right, float bottom, float top, float zNear, float zFar, boolean zZeroToOne)
      Set this matrix to be an arbitrary perspective projection frustum transformation for a left-handed coordinate system using OpenGL's NDC z range of [-1..+1].
      Matrix4f setLookAlong​(float dirX, float dirY, float dirZ, float upX, float upY, float upZ)
      Set this matrix to a rotation transformation to make -z point along dir.
      Matrix4f setLookAlong​(Vector3fc dir, Vector3fc up)
      Set this matrix to a rotation transformation to make -z point along dir.
      Matrix4f setLookAt​(float eyeX, float eyeY, float eyeZ, float centerX, float centerY, float centerZ, float upX, float upY, float upZ)
      Set this matrix to be a "lookat" transformation for a right-handed coordinate system, that aligns -z with center - eye.
      Matrix4f setLookAt​(Vector3fc eye, Vector3fc center, Vector3fc up)
      Set this matrix to be a "lookat" transformation for a right-handed coordinate system, that aligns -z with center - eye.
      Matrix4f setLookAtLH​(float eyeX, float eyeY, float eyeZ, float centerX, float centerY, float centerZ, float upX, float upY, float upZ)
      Set this matrix to be a "lookat" transformation for a left-handed coordinate system, that aligns +z with center - eye.
      Matrix4f setLookAtLH​(Vector3fc eye, Vector3fc center, Vector3fc up)
      Set this matrix to be a "lookat" transformation for a left-handed coordinate system, that aligns +z with center - eye.
      Matrix4f setOrtho​(float left, float right, float bottom, float top, float zNear, float zFar)
      Set this matrix to be an orthographic projection transformation for a right-handed coordinate system using OpenGL's NDC z range of [-1..+1].
      Matrix4f setOrtho​(float left, float right, float bottom, float top, float zNear, float zFar, boolean zZeroToOne)
      Set this matrix to be an orthographic projection transformation for a right-handed coordinate system using the given NDC z range.
      Matrix4f setOrtho2D​(float left, float right, float bottom, float top)
      Set this matrix to be an orthographic projection transformation for a right-handed coordinate system.
      Matrix4f setOrtho2DLH​(float left, float right, float bottom, float top)
      Set this matrix to be an orthographic projection transformation for a left-handed coordinate system.
      Matrix4f setOrthoLH​(float left, float right, float bottom, float top, float zNear, float zFar)
      Set this matrix to be an orthographic projection transformation for a left-handed coordinate system using OpenGL's NDC z range of [-1..+1].
      Matrix4f setOrthoLH​(float left, float right, float bottom, float top, float zNear, float zFar, boolean zZeroToOne)
      Set this matrix to be an orthographic projection transformation for a left-handed coordinate system using the given NDC z range.
      Matrix4f setOrthoSymmetric​(float width, float height, float zNear, float zFar)
      Set this matrix to be a symmetric orthographic projection transformation for a right-handed coordinate system using OpenGL's NDC z range of [-1..+1].
      Matrix4f setOrthoSymmetric​(float width, float height, float zNear, float zFar, boolean zZeroToOne)
      Set this matrix to be a symmetric orthographic projection transformation for a right-handed coordinate system using the given NDC z range.
      Matrix4f setOrthoSymmetricLH​(float width, float height, float zNear, float zFar)
      Set this matrix to be a symmetric orthographic projection transformation for a left-handed coordinate system using OpenGL's NDC z range of [-1..+1].
      Matrix4f setOrthoSymmetricLH​(float width, float height, float zNear, float zFar, boolean zZeroToOne)
      Set this matrix to be a symmetric orthographic projection transformation for a left-handed coordinate system using the given NDC z range.
      Matrix4f setPerspective​(float fovy, float aspect, float zNear, float zFar)
      Set this matrix to be a symmetric perspective projection frustum transformation for a right-handed coordinate system using OpenGL's NDC z range of [-1..+1].
      Matrix4f setPerspective​(float fovy, float aspect, float zNear, float zFar, boolean zZeroToOne)
      Set this matrix to be a symmetric perspective projection frustum transformation for a right-handed coordinate system using the given NDC z range.
      Matrix4f setPerspectiveLH​(float fovy, float aspect, float zNear, float zFar)
      Set this matrix to be a symmetric perspective projection frustum transformation for a left-handed coordinate system using OpenGL's NDC z range of [-1..+1].
      Matrix4f setPerspectiveLH​(float fovy, float aspect, float zNear, float zFar, boolean zZeroToOne)
      Set this matrix to be a symmetric perspective projection frustum transformation for a left-handed coordinate system using the given NDC z range of [-1..+1].
      Matrix4f setRotationXYZ​(float angleX, float angleY, float angleZ)
      Set only the upper left 3x3 submatrix of this matrix to a rotation of angleX radians about the X axis, followed by a rotation of angleY radians about the Y axis and followed by a rotation of angleZ radians about the Z axis.
      Matrix4f setRotationYXZ​(float angleY, float angleX, float angleZ)
      Set only the upper left 3x3 submatrix of this matrix to a rotation of angleY radians about the Y axis, followed by a rotation of angleX radians about the X axis and followed by a rotation of angleZ radians about the Z axis.
      Matrix4f setRotationZYX​(float angleZ, float angleY, float angleX)
      Set only the upper left 3x3 submatrix of this matrix to a rotation of angleZ radians about the Z axis, followed by a rotation of angleY radians about the Y axis and followed by a rotation of angleX radians about the X axis.
      Matrix4f setRow​(int row, Vector4fc src)
      Set the row at the given row index, starting with 0.
      Matrix4f setTranslation​(float x, float y, float z)
      Set only the translation components (m30, m31, m32) of this matrix to the given values (x, y, z).
      Matrix4f setTranslation​(Vector3fc xyz)
      Set only the translation components (m30, m31, m32) of this matrix to the values (xyz.x, xyz.y, xyz.z).
      Matrix4f shadow​(float lightX, float lightY, float lightZ, float lightW, float a, float b, float c, float d)
      Apply a projection transformation to this matrix that projects onto the plane specified via the general plane equation x*a + y*b + z*c + d = 0 as if casting a shadow from a given light position/direction (lightX, lightY, lightZ, lightW).
      Matrix4f shadow​(float lightX, float lightY, float lightZ, float lightW, float a, float b, float c, float d, Matrix4f dest)
      Apply a projection transformation to this matrix that projects onto the plane specified via the general plane equation x*a + y*b + z*c + d = 0 as if casting a shadow from a given light position/direction (lightX, lightY, lightZ, lightW) and store the result in dest.
      Matrix4f shadow​(float lightX, float lightY, float lightZ, float lightW, Matrix4f planeTransform)
      Apply a projection transformation to this matrix that projects onto the plane with the general plane equation y = 0 as if casting a shadow from a given light position/direction (lightX, lightY, lightZ, lightW).
      Matrix4f shadow​(float lightX, float lightY, float lightZ, float lightW, Matrix4fc planeTransform, Matrix4f dest)
      Apply a projection transformation to this matrix that projects onto the plane with the general plane equation y = 0 as if casting a shadow from a given light position/direction (lightX, lightY, lightZ, lightW) and store the result in dest.
      Matrix4f shadow​(Vector4f light, float a, float b, float c, float d)
      Apply a projection transformation to this matrix that projects onto the plane specified via the general plane equation x*a + y*b + z*c + d = 0 as if casting a shadow from a given light position/direction light.
      Matrix4f shadow​(Vector4f light, float a, float b, float c, float d, Matrix4f dest)
      Apply a projection transformation to this matrix that projects onto the plane specified via the general plane equation x*a + y*b + z*c + d = 0 as if casting a shadow from a given light position/direction light and store the result in dest.
      Matrix4f shadow​(Vector4f light, Matrix4f planeTransform)
      Apply a projection transformation to this matrix that projects onto the plane with the general plane equation y = 0 as if casting a shadow from a given light position/direction light.
      Matrix4f shadow​(Vector4f light, Matrix4fc planeTransform, Matrix4f dest)
      Apply a projection transformation to this matrix that projects onto the plane with the general plane equation y = 0 as if casting a shadow from a given light position/direction light and store the result in dest.
      Matrix4f sub​(Matrix4fc subtrahend)
      Component-wise subtract subtrahend from this.
      Matrix4f sub​(Matrix4fc subtrahend, Matrix4f dest)
      Component-wise subtract subtrahend from this and store the result in dest.
      Matrix4f sub4x3​(Matrix4f subtrahend)
      Component-wise subtract the upper 4x3 submatrices of subtrahend from this.
      Matrix4f sub4x3​(Matrix4fc subtrahend, Matrix4f dest)
      Component-wise subtract the upper 4x3 submatrices of subtrahend from this and store the result in dest.
      Matrix4f swap​(Matrix4f other)
      Exchange the values of this matrix with the given other matrix.
      boolean testAab​(float minX, float minY, float minZ, float maxX, float maxY, float maxZ)
      Test whether the given axis-aligned box is partly or completely within or outside of the frustum defined by this matrix.
      boolean testPoint​(float x, float y, float z)
      Test whether the given point (x, y, z) is within the frustum defined by this matrix.
      boolean testSphere​(float x, float y, float z, float r)
      Test whether the given sphere is partly or completely within or outside of the frustum defined by this matrix.
      java.lang.String toString()
      Return a string representation of this matrix.
      java.lang.String toString​(java.text.NumberFormat formatter)
      Return a string representation of this matrix by formatting the matrix elements with the given NumberFormat.
      Vector4f transform​(float x, float y, float z, float w, Vector4f dest)
      Transform/multiply the vector (x, y, z, w) by this matrix and store the result in dest.
      Vector4f transform​(Vector4f v)
      Transform/multiply the given vector by this matrix and store the result in that vector.
      Vector4f transform​(Vector4fc v, Vector4f dest)
      Transform/multiply the given vector by this matrix and store the result in dest.
      Matrix4f transformAab​(float minX, float minY, float minZ, float maxX, float maxY, float maxZ, Vector3f outMin, Vector3f outMax)
      Transform the axis-aligned box given as the minimum corner (minX, minY, minZ) and maximum corner (maxX, maxY, maxZ) by this affine matrix and compute the axis-aligned box of the result whose minimum corner is stored in outMin and maximum corner stored in outMax.
      Matrix4f transformAab​(Vector3fc min, Vector3fc max, Vector3f outMin, Vector3f outMax)
      Transform the axis-aligned box given as the minimum corner min and maximum corner max by this affine matrix and compute the axis-aligned box of the result whose minimum corner is stored in outMin and maximum corner stored in outMax.
      Vector4f transformAffine​(float x, float y, float z, float w, Vector4f dest)
      Transform/multiply the 4D-vector (x, y, z, w) by assuming that this matrix represents an affine transformation (i.e. its last row is equal to (0, 0, 0, 1)) and store the result in dest.
      Vector4f transformAffine​(Vector4f v)
      Transform/multiply the given 4D-vector by assuming that this matrix represents an affine transformation (i.e. its last row is equal to (0, 0, 0, 1)).
      Vector4f transformAffine​(Vector4fc v, Vector4f dest)
      Transform/multiply the given 4D-vector by assuming that this matrix represents an affine transformation (i.e. its last row is equal to (0, 0, 0, 1)) and store the result in dest.
      Vector3f transformDirection​(float x, float y, float z, Vector3f dest)
      Transform/multiply the given 3D-vector (x, y, z), as if it was a 4D-vector with w=0, by this matrix and store the result in dest.
      Vector3f transformDirection​(Vector3f v)
      Transform/multiply the given 3D-vector, as if it was a 4D-vector with w=0, by this matrix and store the result in that vector.
      Vector3f transformDirection​(Vector3fc v, Vector3f dest)
      Transform/multiply the given 3D-vector, as if it was a 4D-vector with w=0, by this matrix and store the result in dest.
      Vector3f transformPosition​(float x, float y, float z, Vector3f dest)
      Transform/multiply the 3D-vector (x, y, z), as if it was a 4D-vector with w=1, by this matrix and store the result in dest.
      Vector3f transformPosition​(Vector3f v)
      Transform/multiply the given 3D-vector, as if it was a 4D-vector with w=1, by this matrix and store the result in that vector.
      Vector3f transformPosition​(Vector3fc v, Vector3f dest)
      Transform/multiply the given 3D-vector, as if it was a 4D-vector with w=1, by this matrix and store the result in dest.
      Vector4f transformProject​(float x, float y, float z, float w, Vector4f dest)
      Transform/multiply the vector (x, y, z, w) by this matrix, perform perspective divide and store the result in dest.
      Vector3f transformProject​(float x, float y, float z, Vector3f dest)
      Transform/multiply the vector (x, y, z) by this matrix, perform perspective divide and store the result in dest.
      Vector3f transformProject​(Vector3f v)
      Transform/multiply the given vector by this matrix, perform perspective divide and store the result in that vector.
      Vector3f transformProject​(Vector3fc v, Vector3f dest)
      Transform/multiply the given vector by this matrix, perform perspective divide and store the result in dest.
      Vector4f transformProject​(Vector4f v)
      Transform/multiply the given vector by this matrix, perform perspective divide and store the result in that vector.
      Vector4f transformProject​(Vector4fc v, Vector4f dest)
      Transform/multiply the given vector by this matrix, perform perspective divide and store the result in dest.
      Matrix4f translate​(float x, float y, float z)
      Apply a translation to this matrix by translating by the given number of units in x, y and z.
      Matrix4f translate​(float x, float y, float z, Matrix4f dest)
      Apply a translation to this matrix by translating by the given number of units in x, y and z and store the result in dest.
      Matrix4f translate​(Vector3fc offset)
      Apply a translation to this matrix by translating by the given number of units in x, y and z.
      Matrix4f translate​(Vector3fc offset, Matrix4f dest)
      Apply a translation to this matrix by translating by the given number of units in x, y and z and store the result in dest.
      Matrix4f translateLocal​(float x, float y, float z)
      Pre-multiply a translation to this matrix by translating by the given number of units in x, y and z.
      Matrix4f translateLocal​(float x, float y, float z, Matrix4f dest)
      Pre-multiply a translation to this matrix by translating by the given number of units in x, y and z and store the result in dest.
      Matrix4f translateLocal​(Vector3fc offset)
      Pre-multiply a translation to this matrix by translating by the given number of units in x, y and z.
      Matrix4f translateLocal​(Vector3fc offset, Matrix4f dest)
      Pre-multiply a translation to this matrix by translating by the given number of units in x, y and z and store the result in dest.
      Matrix4f translation​(float x, float y, float z)
      Set this matrix to be a simple translation matrix.
      Matrix4f translation​(Vector3fc offset)
      Set this matrix to be a simple translation matrix.
      Matrix4f translationRotate​(float tx, float ty, float tz, float qx, float qy, float qz, float qw)
      Set this matrix to T * R, where T is a translation by the given (tx, ty, tz) and R is a rotation - and possibly scaling - transformation specified by the quaternion (qx, qy, qz, qw).
      Matrix4f translationRotate​(float tx, float ty, float tz, Quaternionfc quat)
      Set this matrix to T * R, where T is a translation by the given (tx, ty, tz) and R is a rotation - and possibly scaling - transformation specified by the given quaternion.
      Matrix4f translationRotateScale​(float tx, float ty, float tz, float qx, float qy, float qz, float qw, float scale)
      Set this matrix to T * R * S, where T is a translation by the given (tx, ty, tz), R is a rotation transformation specified by the quaternion (qx, qy, qz, qw), and S is a scaling transformation which scales all three axes by scale.
      Matrix4f translationRotateScale​(float tx, float ty, float tz, float qx, float qy, float qz, float qw, float sx, float sy, float sz)
      Set this matrix to T * R * S, where T is a translation by the given (tx, ty, tz), R is a rotation transformation specified by the quaternion (qx, qy, qz, qw), and S is a scaling transformation which scales the three axes x, y and z by (sx, sy, sz).
      Matrix4f translationRotateScale​(Vector3fc translation, Quaternionfc quat, float scale)
      Set this matrix to T * R * S, where T is the given translation, R is a rotation transformation specified by the given quaternion, and S is a scaling transformation which scales all three axes by scale.
      Matrix4f translationRotateScale​(Vector3fc translation, Quaternionfc quat, Vector3fc scale)
      Set this matrix to T * R * S, where T is the given translation, R is a rotation transformation specified by the given quaternion, and S is a scaling transformation which scales the axes by scale.
      Matrix4f translationRotateScaleInvert​(float tx, float ty, float tz, float qx, float qy, float qz, float qw, float sx, float sy, float sz)
      Set this matrix to (T * R * S)-1, where T is a translation by the given (tx, ty, tz), R is a rotation transformation specified by the quaternion (qx, qy, qz, qw), and S is a scaling transformation which scales the three axes x, y and z by (sx, sy, sz).
      Matrix4f translationRotateScaleInvert​(Vector3fc translation, Quaternionfc quat, float scale)
      Set this matrix to (T * R * S)-1, where T is the given translation, R is a rotation transformation specified by the given quaternion, and S is a scaling transformation which scales all three axes by scale.
      Matrix4f translationRotateScaleInvert​(Vector3fc translation, Quaternionfc quat, Vector3fc scale)
      Set this matrix to (T * R * S)-1, where T is the given translation, R is a rotation transformation specified by the given quaternion, and S is a scaling transformation which scales the axes by scale.
      Matrix4f translationRotateScaleMulAffine​(float tx, float ty, float tz, float qx, float qy, float qz, float qw, float sx, float sy, float sz, Matrix4f m)
      Set this matrix to T * R * S * M, where T is a translation by the given (tx, ty, tz), R is a rotation - and possibly scaling - transformation specified by the quaternion (qx, qy, qz, qw), S is a scaling transformation which scales the three axes x, y and z by (sx, sy, sz) and M is an affine matrix.
      Matrix4f translationRotateScaleMulAffine​(Vector3fc translation, Quaternionfc quat, Vector3fc scale, Matrix4f m)
      Set this matrix to T * R * S * M, where T is the given translation, R is a rotation - and possibly scaling - transformation specified by the given quaternion, S is a scaling transformation which scales the axes by scale and M is an affine matrix.
      Matrix4f translationRotateTowards​(float posX, float posY, float posZ, float dirX, float dirY, float dirZ, float upX, float upY, float upZ)
      Set this matrix to a model transformation for a right-handed coordinate system, that translates to the given (posX, posY, posZ) and aligns the local -z axis with (dirX, dirY, dirZ).
      Matrix4f translationRotateTowards​(Vector3fc pos, Vector3fc dir, Vector3fc up)
      Set this matrix to a model transformation for a right-handed coordinate system, that translates to the given pos and aligns the local -z axis with dir.
      Matrix4f transpose()
      Transpose this matrix.
      Matrix4f transpose​(Matrix4f dest)
      Transpose this matrix and store the result in dest.
      Matrix4f transpose3x3()
      Transpose only the upper left 3x3 submatrix of this matrix.
      Matrix3f transpose3x3​(Matrix3f dest)
      Transpose only the upper left 3x3 submatrix of this matrix and store the result in dest.
      Matrix4f transpose3x3​(Matrix4f dest)
      Transpose only the upper left 3x3 submatrix of this matrix and store the result in dest.
      Matrix4f trapezoidCrop​(float p0x, float p0y, float p1x, float p1y, float p2x, float p2y, float p3x, float p3y)
      Set this matrix to a perspective transformation that maps the trapezoid spanned by the four corner coordinates (p0x, p0y), (p1x, p1y), (p2x, p2y) and (p3x, p3y) to the unit square [(-1, -1)..(+1, +1)].
      Vector3f unproject​(float winX, float winY, float winZ, int[] viewport, Vector3f dest)
      Unproject the given window coordinates (winX, winY, winZ) by this matrix using the specified viewport.
      Vector4f unproject​(float winX, float winY, float winZ, int[] viewport, Vector4f dest)
      Unproject the given window coordinates (winX, winY, winZ) by this matrix using the specified viewport.
      Vector3f unproject​(Vector3fc winCoords, int[] viewport, Vector3f dest)
      Unproject the given window coordinates winCoords by this matrix using the specified viewport.
      Vector4f unproject​(Vector3fc winCoords, int[] viewport, Vector4f dest)
      Unproject the given window coordinates winCoords by this matrix using the specified viewport.
      Vector3f unprojectInv​(float winX, float winY, float winZ, int[] viewport, Vector3f dest)
      Unproject the given window coordinates (winX, winY, winZ) by this matrix using the specified viewport.
      Vector4f unprojectInv​(float winX, float winY, float winZ, int[] viewport, Vector4f dest)
      Unproject the given window coordinates (winX, winY, winZ) by this matrix using the specified viewport.
      Vector3f unprojectInv​(Vector3fc winCoords, int[] viewport, Vector3f dest)
      Unproject the given window coordinates winCoords by this matrix using the specified viewport.
      Vector4f unprojectInv​(Vector3fc winCoords, int[] viewport, Vector4f dest)
      Unproject the given window coordinates winCoords by this matrix using the specified viewport.
      Matrix4f unprojectInvRay​(float winX, float winY, int[] viewport, Vector3f originDest, Vector3f dirDest)
      Unproject the given 2D window coordinates (winX, winY) by this matrix using the specified viewport and compute the origin and the direction of the resulting ray which starts at NDC z = -1.0 and goes through NDC z = +1.0.
      Matrix4f unprojectInvRay​(Vector2fc winCoords, int[] viewport, Vector3f originDest, Vector3f dirDest)
      Unproject the given window coordinates winCoords by this matrix using the specified viewport and compute the origin and the direction of the resulting ray which starts at NDC z = -1.0 and goes through NDC z = +1.0.
      Matrix4f unprojectRay​(float winX, float winY, int[] viewport, Vector3f originDest, Vector3f dirDest)
      Unproject the given 2D window coordinates (winX, winY) by this matrix using the specified viewport and compute the origin and the direction of the resulting ray which starts at NDC z = -1.0 and goes through NDC z = +1.0.
      Matrix4f unprojectRay​(Vector2fc winCoords, int[] viewport, Vector3f originDest, Vector3f dirDest)
      Unproject the given 2D window coordinates winCoords by this matrix using the specified viewport and compute the origin and the direction of the resulting ray which starts at NDC z = -1.0 and goes through NDC z = +1.0.
      void writeExternal​(java.io.ObjectOutput out)  
      Matrix4f zero()
      Set all the values within this matrix to 0.
      • Methods inherited from class java.lang.Object

        clone, finalize, getClass, notify, notifyAll, wait, wait, wait
    • Constructor Detail

      • Matrix4f

        public Matrix4f​(Matrix3fc mat)
        Create a new Matrix4f by setting its uppper left 3x3 submatrix to the values of the given Matrix3fc and the rest to identity.
        Parameters:
        mat - the Matrix3fc
      • Matrix4f

        public Matrix4f​(Matrix4fc mat)
        Create a new Matrix4f and make it a copy of the given matrix.
        Parameters:
        mat - the Matrix4fc to copy the values from
      • Matrix4f

        public Matrix4f​(Matrix4x3fc mat)
        Create a new Matrix4f and set its upper 4x3 submatrix to the given matrix mat and all other elements to identity.
        Parameters:
        mat - the Matrix4x3fc to copy the values from
      • Matrix4f

        public Matrix4f​(Matrix4dc mat)
        Create a new Matrix4f and make it a copy of the given matrix.

        Note that due to the given Matrix4dc storing values in double-precision and the constructed Matrix4f storing them in single-precision, there is the possibility of losing precision.

        Parameters:
        mat - the Matrix4dc to copy the values from
      • Matrix4f

        public Matrix4f​(float m00,
                        float m01,
                        float m02,
                        float m03,
                        float m10,
                        float m11,
                        float m12,
                        float m13,
                        float m20,
                        float m21,
                        float m22,
                        float m23,
                        float m30,
                        float m31,
                        float m32,
                        float m33)
        Create a new 4x4 matrix using the supplied float values.

        The matrix layout will be:

        m00, m10, m20, m30
        m01, m11, m21, m31
        m02, m12, m22, m32
        m03, m13, m23, m33

        Parameters:
        m00 - the value of m00
        m01 - the value of m01
        m02 - the value of m02
        m03 - the value of m03
        m10 - the value of m10
        m11 - the value of m11
        m12 - the value of m12
        m13 - the value of m13
        m20 - the value of m20
        m21 - the value of m21
        m22 - the value of m22
        m23 - the value of m23
        m30 - the value of m30
        m31 - the value of m31
        m32 - the value of m32
        m33 - the value of m33
      • Matrix4f

        public Matrix4f​(java.nio.FloatBuffer buffer)
        Create a new Matrix4f by reading its 16 float components from the given FloatBuffer at the buffer's current position.

        That FloatBuffer is expected to hold the values in column-major order.

        The buffer's position will not be changed by this method.

        Parameters:
        buffer - the FloatBuffer to read the matrix values from
      • Matrix4f

        public Matrix4f​(Vector4fc col0,
                        Vector4fc col1,
                        Vector4fc col2,
                        Vector4fc col3)
        Create a new Matrix4f and initialize its four columns using the supplied vectors.
        Parameters:
        col0 - the first column
        col1 - the second column
        col2 - the third column
        col3 - the fourth column
    • Method Detail

      • determineProperties

        public Matrix4f determineProperties()
        Compute and set the matrix properties returned by properties() based on the current matrix element values.
        Returns:
        this
      • m00

        public float m00()
        Description copied from interface: Matrix4fc
        Return the value of the matrix element at column 0 and row 0.
        Specified by:
        m00 in interface Matrix4fc
        Returns:
        the value of the matrix element
      • m01

        public float m01()
        Description copied from interface: Matrix4fc
        Return the value of the matrix element at column 0 and row 1.
        Specified by:
        m01 in interface Matrix4fc
        Returns:
        the value of the matrix element
      • m02

        public float m02()
        Description copied from interface: Matrix4fc
        Return the value of the matrix element at column 0 and row 2.
        Specified by:
        m02 in interface Matrix4fc
        Returns:
        the value of the matrix element
      • m03

        public float m03()
        Description copied from interface: Matrix4fc
        Return the value of the matrix element at column 0 and row 3.
        Specified by:
        m03 in interface Matrix4fc
        Returns:
        the value of the matrix element
      • m10

        public float m10()
        Description copied from interface: Matrix4fc
        Return the value of the matrix element at column 1 and row 0.
        Specified by:
        m10 in interface Matrix4fc
        Returns:
        the value of the matrix element
      • m11

        public float m11()
        Description copied from interface: Matrix4fc
        Return the value of the matrix element at column 1 and row 1.
        Specified by:
        m11 in interface Matrix4fc
        Returns:
        the value of the matrix element
      • m12

        public float m12()
        Description copied from interface: Matrix4fc
        Return the value of the matrix element at column 1 and row 2.
        Specified by:
        m12 in interface Matrix4fc
        Returns:
        the value of the matrix element
      • m13

        public float m13()
        Description copied from interface: Matrix4fc
        Return the value of the matrix element at column 1 and row 3.
        Specified by:
        m13 in interface Matrix4fc
        Returns:
        the value of the matrix element
      • m20

        public float m20()
        Description copied from interface: Matrix4fc
        Return the value of the matrix element at column 2 and row 0.
        Specified by:
        m20 in interface Matrix4fc
        Returns:
        the value of the matrix element
      • m21

        public float m21()
        Description copied from interface: Matrix4fc
        Return the value of the matrix element at column 2 and row 1.
        Specified by:
        m21 in interface Matrix4fc
        Returns:
        the value of the matrix element
      • m22

        public float m22()
        Description copied from interface: Matrix4fc
        Return the value of the matrix element at column 2 and row 2.
        Specified by:
        m22 in interface Matrix4fc
        Returns:
        the value of the matrix element
      • m23

        public float m23()
        Description copied from interface: Matrix4fc
        Return the value of the matrix element at column 2 and row 3.
        Specified by:
        m23 in interface Matrix4fc
        Returns:
        the value of the matrix element
      • m30

        public float m30()
        Description copied from interface: Matrix4fc
        Return the value of the matrix element at column 3 and row 0.
        Specified by:
        m30 in interface Matrix4fc
        Returns:
        the value of the matrix element
      • m31

        public float m31()
        Description copied from interface: Matrix4fc
        Return the value of the matrix element at column 3 and row 1.
        Specified by:
        m31 in interface Matrix4fc
        Returns:
        the value of the matrix element
      • m32

        public float m32()
        Description copied from interface: Matrix4fc
        Return the value of the matrix element at column 3 and row 2.
        Specified by:
        m32 in interface Matrix4fc
        Returns:
        the value of the matrix element
      • m33

        public float m33()
        Description copied from interface: Matrix4fc
        Return the value of the matrix element at column 3 and row 3.
        Specified by:
        m33 in interface Matrix4fc
        Returns:
        the value of the matrix element
      • m00

        public Matrix4f m00​(float m00)
        Set the value of the matrix element at column 0 and row 0.
        Parameters:
        m00 - the new value
        Returns:
        this
      • m01

        public Matrix4f m01​(float m01)
        Set the value of the matrix element at column 0 and row 1.
        Parameters:
        m01 - the new value
        Returns:
        this
      • m02

        public Matrix4f m02​(float m02)
        Set the value of the matrix element at column 0 and row 2.
        Parameters:
        m02 - the new value
        Returns:
        this
      • m03

        public Matrix4f m03​(float m03)
        Set the value of the matrix element at column 0 and row 3.
        Parameters:
        m03 - the new value
        Returns:
        this
      • m10

        public Matrix4f m10​(float m10)
        Set the value of the matrix element at column 1 and row 0.
        Parameters:
        m10 - the new value
        Returns:
        this
      • m11

        public Matrix4f m11​(float m11)
        Set the value of the matrix element at column 1 and row 1.
        Parameters:
        m11 - the new value
        Returns:
        this
      • m12

        public Matrix4f m12​(float m12)
        Set the value of the matrix element at column 1 and row 2.
        Parameters:
        m12 - the new value
        Returns:
        this
      • m13

        public Matrix4f m13​(float m13)
        Set the value of the matrix element at column 1 and row 3.
        Parameters:
        m13 - the new value
        Returns:
        this
      • m20

        public Matrix4f m20​(float m20)
        Set the value of the matrix element at column 2 and row 0.
        Parameters:
        m20 - the new value
        Returns:
        this
      • m21

        public Matrix4f m21​(float m21)
        Set the value of the matrix element at column 2 and row 1.
        Parameters:
        m21 - the new value
        Returns:
        this
      • m22

        public Matrix4f m22​(float m22)
        Set the value of the matrix element at column 2 and row 2.
        Parameters:
        m22 - the new value
        Returns:
        this
      • m23

        public Matrix4f m23​(float m23)
        Set the value of the matrix element at column 2 and row 3.
        Parameters:
        m23 - the new value
        Returns:
        this
      • m30

        public Matrix4f m30​(float m30)
        Set the value of the matrix element at column 3 and row 0.
        Parameters:
        m30 - the new value
        Returns:
        this
      • m31

        public Matrix4f m31​(float m31)
        Set the value of the matrix element at column 3 and row 1.
        Parameters:
        m31 - the new value
        Returns:
        this
      • m32

        public Matrix4f m32​(float m32)
        Set the value of the matrix element at column 3 and row 2.
        Parameters:
        m32 - the new value
        Returns:
        this
      • m33

        public Matrix4f m33​(float m33)
        Set the value of the matrix element at column 3 and row 3.
        Parameters:
        m33 - the new value
        Returns:
        this
      • _m00

        public Matrix4f _m00​(float m00)
        Set the value of the matrix element at column 0 and row 0 without updating the properties of the matrix.
        Parameters:
        m00 - the new value
        Returns:
        this
      • _m01

        public Matrix4f _m01​(float m01)
        Set the value of the matrix element at column 0 and row 1 without updating the properties of the matrix.
        Parameters:
        m01 - the new value
        Returns:
        this
      • _m02

        public Matrix4f _m02​(float m02)
        Set the value of the matrix element at column 0 and row 2 without updating the properties of the matrix.
        Parameters:
        m02 - the new value
        Returns:
        this
      • _m03

        public Matrix4f _m03​(float m03)
        Set the value of the matrix element at column 0 and row 3 without updating the properties of the matrix.
        Parameters:
        m03 - the new value
        Returns:
        this
      • _m10

        public Matrix4f _m10​(float m10)
        Set the value of the matrix element at column 1 and row 0 without updating the properties of the matrix.
        Parameters:
        m10 - the new value
        Returns:
        this
      • _m11

        public Matrix4f _m11​(float m11)
        Set the value of the matrix element at column 1 and row 1 without updating the properties of the matrix.
        Parameters:
        m11 - the new value
        Returns:
        this
      • _m12

        public Matrix4f _m12​(float m12)
        Set the value of the matrix element at column 1 and row 2 without updating the properties of the matrix.
        Parameters:
        m12 - the new value
        Returns:
        this
      • _m13

        public Matrix4f _m13​(float m13)
        Set the value of the matrix element at column 1 and row 3 without updating the properties of the matrix.
        Parameters:
        m13 - the new value
        Returns:
        this
      • _m20

        public Matrix4f _m20​(float m20)
        Set the value of the matrix element at column 2 and row 0 without updating the properties of the matrix.
        Parameters:
        m20 - the new value
        Returns:
        this
      • _m21

        public Matrix4f _m21​(float m21)
        Set the value of the matrix element at column 2 and row 1 without updating the properties of the matrix.
        Parameters:
        m21 - the new value
        Returns:
        this
      • _m22

        public Matrix4f _m22​(float m22)
        Set the value of the matrix element at column 2 and row 2 without updating the properties of the matrix.
        Parameters:
        m22 - the new value
        Returns:
        this
      • _m23

        public Matrix4f _m23​(float m23)
        Set the value of the matrix element at column 2 and row 3 without updating the properties of the matrix.
        Parameters:
        m23 - the new value
        Returns:
        this
      • _m30

        public Matrix4f _m30​(float m30)
        Set the value of the matrix element at column 3 and row 0 without updating the properties of the matrix.
        Parameters:
        m30 - the new value
        Returns:
        this
      • _m31

        public Matrix4f _m31​(float m31)
        Set the value of the matrix element at column 3 and row 1 without updating the properties of the matrix.
        Parameters:
        m31 - the new value
        Returns:
        this
      • _m32

        public Matrix4f _m32​(float m32)
        Set the value of the matrix element at column 3 and row 2 without updating the properties of the matrix.
        Parameters:
        m32 - the new value
        Returns:
        this
      • _m33

        public Matrix4f _m33​(float m33)
        Set the value of the matrix element at column 3 and row 3 without updating the properties of the matrix.
        Parameters:
        m33 - the new value
        Returns:
        this
      • set

        public Matrix4f set​(Matrix4x3fc m)
        Store the values of the given matrix m into this matrix and set the other matrix elements to identity.
        Parameters:
        m - the matrix to copy the values from
        Returns:
        this
        See Also:
        Matrix4f(Matrix4x3fc)
      • set

        public Matrix4f set​(Matrix4dc m)
        Store the values of the given matrix m into this matrix.

        Note that due to the given matrix m storing values in double-precision and this matrix storing them in single-precision, there is the possibility to lose precision.

        Parameters:
        m - the matrix to copy the values from
        Returns:
        this
        See Also:
        Matrix4f(Matrix4dc), get(Matrix4d)
      • set3x3

        public Matrix4f set3x3​(Matrix4f mat)
        Set the upper left 3x3 submatrix of this Matrix4f to that of the given Matrix4f and don't change the other elements.
        Parameters:
        mat - the Matrix4f
        Returns:
        this
      • set4x3

        public Matrix4f set4x3​(Matrix4f mat)
        Set the upper 4x3 submatrix of this Matrix4f to the upper 4x3 submatrix of the given Matrix4f and don't change the other elements.
        Parameters:
        mat - the Matrix4f
        Returns:
        this
      • mul

        public Matrix4f mul​(Matrix4fc right)
        Multiply this matrix by the supplied right matrix and store the result in this.

        If M is this matrix and R the right matrix, then the new matrix will be M * R. So when transforming a vector v with the new matrix by using M * R * v, the transformation of the right matrix will be applied first!

        Parameters:
        right - the right operand of the matrix multiplication
        Returns:
        a matrix holding the result
      • mul

        public Matrix4f mul​(Matrix4fc right,
                            Matrix4f dest)
        Description copied from interface: Matrix4fc
        Multiply this matrix by the supplied right matrix and store the result in dest.

        If M is this matrix and R the right matrix, then the new matrix will be M * R. So when transforming a vector v with the new matrix by using M * R * v, the transformation of the right matrix will be applied first!

        Specified by:
        mul in interface Matrix4fc
        Parameters:
        right - the right operand of the matrix multiplication
        dest - the destination matrix, which will hold the result
        Returns:
        dest
      • mulLocal

        public Matrix4f mulLocal​(Matrix4fc left)
        Pre-multiply this matrix by the supplied left matrix and store the result in this.

        If M is this matrix and L the left matrix, then the new matrix will be L * M. So when transforming a vector v with the new matrix by using L * M * v, the transformation of this matrix will be applied first!

        Parameters:
        left - the left operand of the matrix multiplication
        Returns:
        a matrix holding the result
      • mulLocal

        public Matrix4f mulLocal​(Matrix4fc left,
                                 Matrix4f dest)
        Description copied from interface: Matrix4fc
        Pre-multiply this matrix by the supplied left matrix and store the result in dest.

        If M is this matrix and L the left matrix, then the new matrix will be L * M. So when transforming a vector v with the new matrix by using L * M * v, the transformation of this matrix will be applied first!

        Specified by:
        mulLocal in interface Matrix4fc
        Parameters:
        left - the left operand of the matrix multiplication
        dest - the destination matrix, which will hold the result
        Returns:
        dest
      • mulLocalAffine

        public Matrix4f mulLocalAffine​(Matrix4fc left)
        Pre-multiply this matrix by the supplied left matrix, both of which are assumed to be affine, and store the result in this.

        This method assumes that this matrix and the given left matrix both represent an affine transformation (i.e. their last rows are equal to (0, 0, 0, 1)) and can be used to speed up matrix multiplication if the matrices only represent affine transformations, such as translation, rotation, scaling and shearing (in any combination).

        This method will not modify either the last row of this or the last row of left.

        If M is this matrix and L the left matrix, then the new matrix will be L * M. So when transforming a vector v with the new matrix by using L * M * v, the transformation of this matrix will be applied first!

        Parameters:
        left - the left operand of the matrix multiplication (the last row is assumed to be (0, 0, 0, 1))
        Returns:
        a matrix holding the result
      • mulLocalAffine

        public Matrix4f mulLocalAffine​(Matrix4fc left,
                                       Matrix4f dest)
        Description copied from interface: Matrix4fc
        Pre-multiply this matrix by the supplied left matrix, both of which are assumed to be affine, and store the result in dest.

        This method assumes that this matrix and the given left matrix both represent an affine transformation (i.e. their last rows are equal to (0, 0, 0, 1)) and can be used to speed up matrix multiplication if the matrices only represent affine transformations, such as translation, rotation, scaling and shearing (in any combination).

        This method will not modify either the last row of this or the last row of left.

        If M is this matrix and L the left matrix, then the new matrix will be L * M. So when transforming a vector v with the new matrix by using L * M * v, the transformation of this matrix will be applied first!

        Specified by:
        mulLocalAffine in interface Matrix4fc
        Parameters:
        left - the left operand of the matrix multiplication (the last row is assumed to be (0, 0, 0, 1))
        dest - the destination matrix, which will hold the result
        Returns:
        dest
      • mul

        public Matrix4f mul​(Matrix4x3fc right)
        Multiply this matrix by the supplied right matrix and store the result in this.

        If M is this matrix and R the right matrix, then the new matrix will be M * R. So when transforming a vector v with the new matrix by using M * R * v, the transformation of the right matrix will be applied first!

        Parameters:
        right - the right operand of the matrix multiplication
        Returns:
        a matrix holding the result
      • mul

        public Matrix4f mul​(Matrix4x3fc right,
                            Matrix4f dest)
        Description copied from interface: Matrix4fc
        Multiply this matrix by the supplied right matrix and store the result in dest.

        The last row of the right matrix is assumed to be (0, 0, 0, 1).

        If M is this matrix and R the right matrix, then the new matrix will be M * R. So when transforming a vector v with the new matrix by using M * R * v, the transformation of the right matrix will be applied first!

        Specified by:
        mul in interface Matrix4fc
        Parameters:
        right - the right operand of the matrix multiplication
        dest - the destination matrix, which will hold the result
        Returns:
        dest
      • mul

        public Matrix4f mul​(Matrix3x2fc right)
        Multiply this matrix by the supplied right matrix and store the result in this.

        If M is this matrix and R the right matrix, then the new matrix will be M * R. So when transforming a vector v with the new matrix by using M * R * v, the transformation of the right matrix will be applied first!

        Parameters:
        right - the right operand of the matrix multiplication
        Returns:
        a matrix holding the result
      • mul

        public Matrix4f mul​(Matrix3x2fc right,
                            Matrix4f dest)
        Description copied from interface: Matrix4fc
        Multiply this matrix by the supplied right matrix and store the result in dest.

        If M is this matrix and R the right matrix, then the new matrix will be M * R. So when transforming a vector v with the new matrix by using M * R * v, the transformation of the right matrix will be applied first!

        Specified by:
        mul in interface Matrix4fc
        Parameters:
        right - the right operand of the matrix multiplication
        dest - the destination matrix, which will hold the result
        Returns:
        dest
      • mulPerspectiveAffine

        public Matrix4f mulPerspectiveAffine​(Matrix4fc view)
        Multiply this symmetric perspective projection matrix by the supplied affine view matrix.

        If P is this matrix and V the view matrix, then the new matrix will be P * V. So when transforming a vector v with the new matrix by using P * V * v, the transformation of the view matrix will be applied first!

        Parameters:
        view - the affine matrix to multiply this symmetric perspective projection matrix by
        Returns:
        a matrix holding the result
      • mulPerspectiveAffine

        public Matrix4f mulPerspectiveAffine​(Matrix4fc view,
                                             Matrix4f dest)
        Description copied from interface: Matrix4fc
        Multiply this symmetric perspective projection matrix by the supplied affine view matrix and store the result in dest.

        If P is this matrix and V the view matrix, then the new matrix will be P * V. So when transforming a vector v with the new matrix by using P * V * v, the transformation of the view matrix will be applied first!

        Specified by:
        mulPerspectiveAffine in interface Matrix4fc
        Parameters:
        view - the affine matrix to multiply this symmetric perspective projection matrix by
        dest - the destination matrix, which will hold the result
        Returns:
        dest
      • mulPerspectiveAffine

        public Matrix4f mulPerspectiveAffine​(Matrix4x3fc view)
        Multiply this symmetric perspective projection matrix by the supplied view matrix.

        If P is this matrix and V the view matrix, then the new matrix will be P * V. So when transforming a vector v with the new matrix by using P * V * v, the transformation of the view matrix will be applied first!

        Parameters:
        view - the matrix to multiply this symmetric perspective projection matrix by
        Returns:
        a matrix holding the result
      • mulPerspectiveAffine

        public Matrix4f mulPerspectiveAffine​(Matrix4x3fc view,
                                             Matrix4f dest)
        Description copied from interface: Matrix4fc
        Multiply this symmetric perspective projection matrix by the supplied view matrix and store the result in dest.

        If P is this matrix and V the view matrix, then the new matrix will be P * V. So when transforming a vector v with the new matrix by using P * V * v, the transformation of the view matrix will be applied first!

        Specified by:
        mulPerspectiveAffine in interface Matrix4fc
        Parameters:
        view - the matrix to multiply this symmetric perspective projection matrix by
        dest - the destination matrix, which will hold the result
        Returns:
        dest
      • mulAffineR

        public Matrix4f mulAffineR​(Matrix4fc right)
        Multiply this matrix by the supplied right matrix, which is assumed to be affine, and store the result in this.

        This method assumes that the given right matrix represents an affine transformation (i.e. its last row is equal to (0, 0, 0, 1)) and can be used to speed up matrix multiplication if the matrix only represents affine transformations, such as translation, rotation, scaling and shearing (in any combination).

        If M is this matrix and R the right matrix, then the new matrix will be M * R. So when transforming a vector v with the new matrix by using M * R * v, the transformation of the right matrix will be applied first!

        Parameters:
        right - the right operand of the matrix multiplication (the last row is assumed to be (0, 0, 0, 1))
        Returns:
        a matrix holding the result
      • mulAffineR

        public Matrix4f mulAffineR​(Matrix4fc right,
                                   Matrix4f dest)
        Description copied from interface: Matrix4fc
        Multiply this matrix by the supplied right matrix, which is assumed to be affine, and store the result in dest.

        This method assumes that the given right matrix represents an affine transformation (i.e. its last row is equal to (0, 0, 0, 1)) and can be used to speed up matrix multiplication if the matrix only represents affine transformations, such as translation, rotation, scaling and shearing (in any combination).

        If M is this matrix and R the right matrix, then the new matrix will be M * R. So when transforming a vector v with the new matrix by using M * R * v, the transformation of the right matrix will be applied first!

        Specified by:
        mulAffineR in interface Matrix4fc
        Parameters:
        right - the right operand of the matrix multiplication (the last row is assumed to be (0, 0, 0, 1))
        dest - the destination matrix, which will hold the result
        Returns:
        dest
      • mulAffine

        public Matrix4f mulAffine​(Matrix4fc right)
        Multiply this matrix by the supplied right matrix, both of which are assumed to be affine, and store the result in this.

        This method assumes that this matrix and the given right matrix both represent an affine transformation (i.e. their last rows are equal to (0, 0, 0, 1)) and can be used to speed up matrix multiplication if the matrices only represent affine transformations, such as translation, rotation, scaling and shearing (in any combination).

        This method will not modify either the last row of this or the last row of right.

        If M is this matrix and R the right matrix, then the new matrix will be M * R. So when transforming a vector v with the new matrix by using M * R * v, the transformation of the right matrix will be applied first!

        Parameters:
        right - the right operand of the matrix multiplication (the last row is assumed to be (0, 0, 0, 1))
        Returns:
        a matrix holding the result
      • mulAffine

        public Matrix4f mulAffine​(Matrix4fc right,
                                  Matrix4f dest)
        Description copied from interface: Matrix4fc
        Multiply this matrix by the supplied right matrix, both of which are assumed to be affine, and store the result in dest.

        This method assumes that this matrix and the given right matrix both represent an affine transformation (i.e. their last rows are equal to (0, 0, 0, 1)) and can be used to speed up matrix multiplication if the matrices only represent affine transformations, such as translation, rotation, scaling and shearing (in any combination).

        This method will not modify either the last row of this or the last row of right.

        If M is this matrix and R the right matrix, then the new matrix will be M * R. So when transforming a vector v with the new matrix by using M * R * v, the transformation of the right matrix will be applied first!

        Specified by:
        mulAffine in interface Matrix4fc
        Parameters:
        right - the right operand of the matrix multiplication (the last row is assumed to be (0, 0, 0, 1))
        dest - the destination matrix, which will hold the result
        Returns:
        dest
      • mulTranslationAffine

        public Matrix4f mulTranslationAffine​(Matrix4fc right,
                                             Matrix4f dest)
        Description copied from interface: Matrix4fc
        Multiply this matrix, which is assumed to only contain a translation, by the supplied right matrix, which is assumed to be affine, and store the result in dest.

        This method assumes that this matrix only contains a translation, and that the given right matrix represents an affine transformation (i.e. its last row is equal to (0, 0, 0, 1)).

        This method will not modify either the last row of this or the last row of right.

        If M is this matrix and R the right matrix, then the new matrix will be M * R. So when transforming a vector v with the new matrix by using M * R * v, the transformation of the right matrix will be applied first!

        Specified by:
        mulTranslationAffine in interface Matrix4fc
        Parameters:
        right - the right operand of the matrix multiplication (the last row is assumed to be (0, 0, 0, 1))
        dest - the destination matrix, which will hold the result
        Returns:
        dest
      • mulOrthoAffine

        public Matrix4f mulOrthoAffine​(Matrix4fc view)
        Multiply this orthographic projection matrix by the supplied affine view matrix.

        If M is this matrix and V the view matrix, then the new matrix will be M * V. So when transforming a vector v with the new matrix by using M * V * v, the transformation of the view matrix will be applied first!

        Parameters:
        view - the affine matrix which to multiply this with
        Returns:
        a matrix holding the result
      • mulOrthoAffine

        public Matrix4f mulOrthoAffine​(Matrix4fc view,
                                       Matrix4f dest)
        Description copied from interface: Matrix4fc
        Multiply this orthographic projection matrix by the supplied affine view matrix and store the result in dest.

        If M is this matrix and V the view matrix, then the new matrix will be M * V. So when transforming a vector v with the new matrix by using M * V * v, the transformation of the view matrix will be applied first!

        Specified by:
        mulOrthoAffine in interface Matrix4fc
        Parameters:
        view - the affine matrix which to multiply this with
        dest - the destination matrix, which will hold the result
        Returns:
        dest
      • fma4x3

        public Matrix4f fma4x3​(Matrix4fc other,
                               float otherFactor)
        Component-wise add the upper 4x3 submatrices of this and other by first multiplying each component of other's 4x3 submatrix by otherFactor and adding that result to this.

        The matrix other will not be changed.

        Parameters:
        other - the other matrix
        otherFactor - the factor to multiply each of the other matrix's 4x3 components
        Returns:
        a matrix holding the result
      • fma4x3

        public Matrix4f fma4x3​(Matrix4fc other,
                               float otherFactor,
                               Matrix4f dest)
        Description copied from interface: Matrix4fc
        Component-wise add the upper 4x3 submatrices of this and other by first multiplying each component of other's 4x3 submatrix by otherFactor, adding that to this and storing the final result in dest.

        The other components of dest will be set to the ones of this.

        The matrices this and other will not be changed.

        Specified by:
        fma4x3 in interface Matrix4fc
        Parameters:
        other - the other matrix
        otherFactor - the factor to multiply each of the other matrix's 4x3 components
        dest - will hold the result
        Returns:
        dest
      • add

        public Matrix4f add​(Matrix4fc other)
        Component-wise add this and other.
        Parameters:
        other - the other addend
        Returns:
        a matrix holding the result
      • add

        public Matrix4f add​(Matrix4fc other,
                            Matrix4f dest)
        Description copied from interface: Matrix4fc
        Component-wise add this and other and store the result in dest.
        Specified by:
        add in interface Matrix4fc
        Parameters:
        other - the other addend
        dest - will hold the result
        Returns:
        dest
      • sub

        public Matrix4f sub​(Matrix4fc subtrahend)
        Component-wise subtract subtrahend from this.
        Parameters:
        subtrahend - the subtrahend
        Returns:
        a matrix holding the result
      • sub

        public Matrix4f sub​(Matrix4fc subtrahend,
                            Matrix4f dest)
        Description copied from interface: Matrix4fc
        Component-wise subtract subtrahend from this and store the result in dest.
        Specified by:
        sub in interface Matrix4fc
        Parameters:
        subtrahend - the subtrahend
        dest - will hold the result
        Returns:
        dest
      • mulComponentWise

        public Matrix4f mulComponentWise​(Matrix4fc other)
        Component-wise multiply this by other.
        Parameters:
        other - the other matrix
        Returns:
        a matrix holding the result
      • mulComponentWise

        public Matrix4f mulComponentWise​(Matrix4fc other,
                                         Matrix4f dest)
        Description copied from interface: Matrix4fc
        Component-wise multiply this by other and store the result in dest.
        Specified by:
        mulComponentWise in interface Matrix4fc
        Parameters:
        other - the other matrix
        dest - will hold the result
        Returns:
        dest
      • add4x3

        public Matrix4f add4x3​(Matrix4fc other)
        Component-wise add the upper 4x3 submatrices of this and other.
        Parameters:
        other - the other addend
        Returns:
        a matrix holding the result
      • add4x3

        public Matrix4f add4x3​(Matrix4fc other,
                               Matrix4f dest)
        Description copied from interface: Matrix4fc
        Component-wise add the upper 4x3 submatrices of this and other and store the result in dest.

        The other components of dest will be set to the ones of this.

        Specified by:
        add4x3 in interface Matrix4fc
        Parameters:
        other - the other addend
        dest - will hold the result
        Returns:
        dest
      • sub4x3

        public Matrix4f sub4x3​(Matrix4f subtrahend)
        Component-wise subtract the upper 4x3 submatrices of subtrahend from this.
        Parameters:
        subtrahend - the subtrahend
        Returns:
        a matrix holding the result
      • sub4x3

        public Matrix4f sub4x3​(Matrix4fc subtrahend,
                               Matrix4f dest)
        Description copied from interface: Matrix4fc
        Component-wise subtract the upper 4x3 submatrices of subtrahend from this and store the result in dest.

        The other components of dest will be set to the ones of this.

        Specified by:
        sub4x3 in interface Matrix4fc
        Parameters:
        subtrahend - the subtrahend
        dest - will hold the result
        Returns:
        dest
      • mul4x3ComponentWise

        public Matrix4f mul4x3ComponentWise​(Matrix4fc other)
        Component-wise multiply the upper 4x3 submatrices of this by other.
        Parameters:
        other - the other matrix
        Returns:
        a matrix holding the result
      • mul4x3ComponentWise

        public Matrix4f mul4x3ComponentWise​(Matrix4fc other,
                                            Matrix4f dest)
        Description copied from interface: Matrix4fc
        Component-wise multiply the upper 4x3 submatrices of this by other and store the result in dest.

        The other components of dest will be set to the ones of this.

        Specified by:
        mul4x3ComponentWise in interface Matrix4fc
        Parameters:
        other - the other matrix
        dest - will hold the result
        Returns:
        dest
      • set

        public Matrix4f set​(float m00,
                            float m01,
                            float m02,
                            float m03,
                            float m10,
                            float m11,
                            float m12,
                            float m13,
                            float m20,
                            float m21,
                            float m22,
                            float m23,
                            float m30,
                            float m31,
                            float m32,
                            float m33)
        Set the values within this matrix to the supplied float values. The matrix will look like this:

        m00, m10, m20, m30
        m01, m11, m21, m31
        m02, m12, m22, m32
        m03, m13, m23, m33
        Parameters:
        m00 - the new value of m00
        m01 - the new value of m01
        m02 - the new value of m02
        m03 - the new value of m03
        m10 - the new value of m10
        m11 - the new value of m11
        m12 - the new value of m12
        m13 - the new value of m13
        m20 - the new value of m20
        m21 - the new value of m21
        m22 - the new value of m22
        m23 - the new value of m23
        m30 - the new value of m30
        m31 - the new value of m31
        m32 - the new value of m32
        m33 - the new value of m33
        Returns:
        this
      • set

        public Matrix4f set​(float[] m,
                            int off)
        Set the values in the matrix using a float array that contains the matrix elements in column-major order.

        The results will look like this:

        0, 4, 8, 12
        1, 5, 9, 13
        2, 6, 10, 14
        3, 7, 11, 15

        Parameters:
        m - the array to read the matrix values from
        off - the offset into the array
        Returns:
        this
        See Also:
        set(float[])
      • set

        public Matrix4f set​(float[] m)
        Set the values in the matrix using a float array that contains the matrix elements in column-major order.

        The results will look like this:

        0, 4, 8, 12
        1, 5, 9, 13
        2, 6, 10, 14
        3, 7, 11, 15

        Parameters:
        m - the array to read the matrix values from
        Returns:
        this
        See Also:
        set(float[], int)
      • set

        public Matrix4f set​(java.nio.FloatBuffer buffer)
        Set the values of this matrix by reading 16 float values from the given FloatBuffer in column-major order, starting at its current position.

        The FloatBuffer is expected to contain the values in column-major order.

        The position of the FloatBuffer will not be changed by this method.

        Parameters:
        buffer - the FloatBuffer to read the matrix values from in column-major order
        Returns:
        this
      • set

        public Matrix4f set​(java.nio.ByteBuffer buffer)
        Set the values of this matrix by reading 16 float values from the given ByteBuffer in column-major order, starting at its current position.

        The ByteBuffer is expected to contain the values in column-major order.

        The position of the ByteBuffer will not be changed by this method.

        Parameters:
        buffer - the ByteBuffer to read the matrix values from in column-major order
        Returns:
        this
      • setFromAddress

        public Matrix4f setFromAddress​(long address)
        Set the values of this matrix by reading 16 float values from off-heap memory in column-major order, starting at the given address.

        This method will throw an UnsupportedOperationException when JOML is used with `-Djoml.nounsafe`.

        This method is unsafe as it can result in a crash of the JVM process when the specified address range does not belong to this process.

        Parameters:
        address - the off-heap memory address to read the matrix values from in column-major order
        Returns:
        this
      • set

        public Matrix4f set​(Vector4fc col0,
                            Vector4fc col1,
                            Vector4fc col2,
                            Vector4fc col3)
        Set the four columns of this matrix to the supplied vectors, respectively.
        Parameters:
        col0 - the first column
        col1 - the second column
        col2 - the third column
        col3 - the fourth column
        Returns:
        this
      • determinant

        public float determinant()
        Description copied from interface: Matrix4fc
        Return the determinant of this matrix.

        If this matrix represents an affine transformation, such as translation, rotation, scaling and shearing, and thus its last row is equal to (0, 0, 0, 1), then Matrix4fc.determinantAffine() can be used instead of this method.

        Specified by:
        determinant in interface Matrix4fc
        Returns:
        the determinant
        See Also:
        Matrix4fc.determinantAffine()
      • determinant3x3

        public float determinant3x3()
        Description copied from interface: Matrix4fc
        Return the determinant of the upper left 3x3 submatrix of this matrix.
        Specified by:
        determinant3x3 in interface Matrix4fc
        Returns:
        the determinant
      • determinantAffine

        public float determinantAffine()
        Description copied from interface: Matrix4fc
        Return the determinant of this matrix by assuming that it represents an affine transformation and thus its last row is equal to (0, 0, 0, 1).
        Specified by:
        determinantAffine in interface Matrix4fc
        Returns:
        the determinant
      • invert

        public Matrix4f invert()
        Invert this matrix.

        If this matrix represents an affine transformation, such as translation, rotation, scaling and shearing, and thus its last row is equal to (0, 0, 0, 1), then invertAffine() can be used instead of this method.

        Returns:
        a matrix holding the result
        See Also:
        invertAffine()
      • invertPerspective

        public Matrix4f invertPerspective​(Matrix4f dest)
        If this is a perspective projection matrix obtained via one of the perspective() methods or via setPerspective(), that is, if this is a symmetrical perspective frustum transformation, then this method builds the inverse of this and stores it into the given dest.

        This method can be used to quickly obtain the inverse of a perspective projection matrix when being obtained via perspective().

        Specified by:
        invertPerspective in interface Matrix4fc
        Parameters:
        dest - will hold the inverse of this
        Returns:
        dest
        See Also:
        perspective(float, float, float, float)
      • invertPerspective

        public Matrix4f invertPerspective()
        If this is a perspective projection matrix obtained via one of the perspective() methods or via setPerspective(), that is, if this is a symmetrical perspective frustum transformation, then this method builds the inverse of this.

        This method can be used to quickly obtain the inverse of a perspective projection matrix when being obtained via perspective().

        Returns:
        a matrix holding the result
        See Also:
        perspective(float, float, float, float)
      • invertOrtho

        public Matrix4f invertOrtho​(Matrix4f dest)
        Description copied from interface: Matrix4fc
        Invert this orthographic projection matrix and store the result into the given dest.

        This method can be used to quickly obtain the inverse of an orthographic projection matrix.

        Specified by:
        invertOrtho in interface Matrix4fc
        Parameters:
        dest - will hold the inverse of this
        Returns:
        dest
      • invertOrtho

        public Matrix4f invertOrtho()
        Invert this orthographic projection matrix.

        This method can be used to quickly obtain the inverse of an orthographic projection matrix.

        Returns:
        a matrix holding the result
      • invertPerspectiveView

        public Matrix4f invertPerspectiveView​(Matrix4fc view,
                                              Matrix4f dest)
        If this is a perspective projection matrix obtained via one of the perspective() methods or via setPerspective(), that is, if this is a symmetrical perspective frustum transformation and the given view matrix is affine and has unit scaling (for example by being obtained via lookAt()), then this method builds the inverse of this * view and stores it into the given dest.

        This method can be used to quickly obtain the inverse of the combination of the view and projection matrices, when both were obtained via the common methods perspective() and lookAt() or other methods, that build affine matrices, such as translate and rotate(float, float, float, float), except for scale().

        For the special cases of the matrices this and view mentioned above, this method is equivalent to the following code:

         dest.set(this).mul(view).invert();
         
        Specified by:
        invertPerspectiveView in interface Matrix4fc
        Parameters:
        view - the view transformation (must be affine and have unit scaling)
        dest - will hold the inverse of this * view
        Returns:
        dest
      • invertPerspectiveView

        public Matrix4f invertPerspectiveView​(Matrix4x3fc view,
                                              Matrix4f dest)
        If this is a perspective projection matrix obtained via one of the perspective() methods or via setPerspective(), that is, if this is a symmetrical perspective frustum transformation and the given view matrix has unit scaling, then this method builds the inverse of this * view and stores it into the given dest.

        This method can be used to quickly obtain the inverse of the combination of the view and projection matrices, when both were obtained via the common methods perspective() and lookAt() or other methods, that build affine matrices, such as translate and rotate(float, float, float, float), except for scale().

        For the special cases of the matrices this and view mentioned above, this method is equivalent to the following code:

         dest.set(this).mul(view).invert();
         
        Specified by:
        invertPerspectiveView in interface Matrix4fc
        Parameters:
        view - the view transformation (must have unit scaling)
        dest - will hold the inverse of this * view
        Returns:
        dest
      • invertAffine

        public Matrix4f invertAffine​(Matrix4f dest)
        Description copied from interface: Matrix4fc
        Invert this matrix by assuming that it is an affine transformation (i.e. its last row is equal to (0, 0, 0, 1)) and write the result into dest.
        Specified by:
        invertAffine in interface Matrix4fc
        Parameters:
        dest - will hold the result
        Returns:
        dest
      • invertAffine

        public Matrix4f invertAffine()
        Invert this matrix by assuming that it is an affine transformation (i.e. its last row is equal to (0, 0, 0, 1)).
        Returns:
        a matrix holding the result
      • transpose

        public Matrix4f transpose​(Matrix4f dest)
        Description copied from interface: Matrix4fc
        Transpose this matrix and store the result in dest.
        Specified by:
        transpose in interface Matrix4fc
        Parameters:
        dest - will hold the result
        Returns:
        dest
      • transpose3x3

        public Matrix4f transpose3x3()
        Transpose only the upper left 3x3 submatrix of this matrix.

        All other matrix elements are left unchanged.

        Returns:
        a matrix holding the result
      • transpose3x3

        public Matrix4f transpose3x3​(Matrix4f dest)
        Description copied from interface: Matrix4fc
        Transpose only the upper left 3x3 submatrix of this matrix and store the result in dest.

        All other matrix elements are left unchanged.

        Specified by:
        transpose3x3 in interface Matrix4fc
        Parameters:
        dest - will hold the result
        Returns:
        dest
      • transpose3x3

        public Matrix3f transpose3x3​(Matrix3f dest)
        Description copied from interface: Matrix4fc
        Transpose only the upper left 3x3 submatrix of this matrix and store the result in dest.
        Specified by:
        transpose3x3 in interface Matrix4fc
        Parameters:
        dest - will hold the result
        Returns:
        dest
      • transpose

        public Matrix4f transpose()
        Transpose this matrix.
        Returns:
        a matrix holding the result
      • translation

        public Matrix4f translation​(float x,
                                    float y,
                                    float z)
        Set this matrix to be a simple translation matrix.

        The resulting matrix can be multiplied against another transformation matrix to obtain an additional translation.

        In order to post-multiply a translation transformation directly to a matrix, use translate() instead.

        Parameters:
        x - the offset to translate in x
        y - the offset to translate in y
        z - the offset to translate in z
        Returns:
        this
        See Also:
        translate(float, float, float)
      • translation

        public Matrix4f translation​(Vector3fc offset)
        Set this matrix to be a simple translation matrix.

        The resulting matrix can be multiplied against another transformation matrix to obtain an additional translation.

        In order to post-multiply a translation transformation directly to a matrix, use translate() instead.

        Parameters:
        offset - the offsets in x, y and z to translate
        Returns:
        this
        See Also:
        translate(float, float, float)
      • getTranslation

        public Vector3f getTranslation​(Vector3f dest)
        Description copied from interface: Matrix4fc
        Get only the translation components (m30, m31, m32) of this matrix and store them in the given vector xyz.
        Specified by:
        getTranslation in interface Matrix4fc
        Parameters:
        dest - will hold the translation components of this matrix
        Returns:
        dest
      • getScale

        public Vector3f getScale​(Vector3f dest)
        Description copied from interface: Matrix4fc
        Get the scaling factors of this matrix for the three base axes.
        Specified by:
        getScale in interface Matrix4fc
        Parameters:
        dest - will hold the scaling factors for x, y and z
        Returns:
        dest
      • toString

        public java.lang.String toString()
        Return a string representation of this matrix.

        This method creates a new DecimalFormat on every invocation with the format string "0.000E0;-".

        Overrides:
        toString in class java.lang.Object
        Returns:
        the string representation
      • toString

        public java.lang.String toString​(java.text.NumberFormat formatter)
        Return a string representation of this matrix by formatting the matrix elements with the given NumberFormat.
        Parameters:
        formatter - the NumberFormat used to format the matrix values with
        Returns:
        the string representation
      • get

        public Matrix4f get​(Matrix4f dest)
        Get the current values of this matrix and store them into dest.

        This is the reverse method of set(Matrix4fc) and allows to obtain intermediate calculation results when chaining multiple transformations.

        Specified by:
        get in interface Matrix4fc
        Parameters:
        dest - the destination matrix
        Returns:
        the passed in destination
        See Also:
        set(Matrix4fc)
      • get4x3

        public Matrix4x3f get4x3​(Matrix4x3f dest)
        Description copied from interface: Matrix4fc
        Get the current values of the upper 4x3 submatrix of this matrix and store them into dest.
        Specified by:
        get4x3 in interface Matrix4fc
        Parameters:
        dest - the destination matrix
        Returns:
        the passed in destination
        See Also:
        Matrix4x3f.set(Matrix4fc)
      • get

        public Matrix4d get​(Matrix4d dest)
        Get the current values of this matrix and store them into dest.

        This is the reverse method of set(Matrix4dc) and allows to obtain intermediate calculation results when chaining multiple transformations.

        Specified by:
        get in interface Matrix4fc
        Parameters:
        dest - the destination matrix
        Returns:
        the passed in destination
        See Also:
        set(Matrix4dc)
      • get3x3

        public Matrix3f get3x3​(Matrix3f dest)
        Description copied from interface: Matrix4fc
        Get the current values of the upper left 3x3 submatrix of this matrix and store them into dest.
        Specified by:
        get3x3 in interface Matrix4fc
        Parameters:
        dest - the destination matrix
        Returns:
        the passed in destination
        See Also:
        Matrix3f.set(Matrix4fc)
      • get3x3

        public Matrix3d get3x3​(Matrix3d dest)
        Description copied from interface: Matrix4fc
        Get the current values of the upper left 3x3 submatrix of this matrix and store them into dest.
        Specified by:
        get3x3 in interface Matrix4fc
        Parameters:
        dest - the destination matrix
        Returns:
        the passed in destination
        See Also:
        Matrix3d.set(Matrix4fc)
      • get

        public java.nio.FloatBuffer get​(java.nio.FloatBuffer buffer)
        Description copied from interface: Matrix4fc
        Store this matrix in column-major order into the supplied FloatBuffer at the current buffer position.

        This method will not increment the position of the given FloatBuffer.

        In order to specify the offset into the FloatBuffer at which the matrix is stored, use Matrix4fc.get(int, FloatBuffer), taking the absolute position as parameter.

        Specified by:
        get in interface Matrix4fc
        Parameters:
        buffer - will receive the values of this matrix in column-major order at its current position
        Returns:
        the passed in buffer
        See Also:
        Matrix4fc.get(int, FloatBuffer)
      • get

        public java.nio.FloatBuffer get​(int index,
                                        java.nio.FloatBuffer buffer)
        Description copied from interface: Matrix4fc
        Store this matrix in column-major order into the supplied FloatBuffer starting at the specified absolute buffer position/index.

        This method will not increment the position of the given FloatBuffer.

        Specified by:
        get in interface Matrix4fc
        Parameters:
        index - the absolute position into the FloatBuffer
        buffer - will receive the values of this matrix in column-major order
        Returns:
        the passed in buffer
      • get

        public java.nio.ByteBuffer get​(java.nio.ByteBuffer buffer)
        Description copied from interface: Matrix4fc
        Store this matrix in column-major order into the supplied ByteBuffer at the current buffer position.

        This method will not increment the position of the given ByteBuffer.

        In order to specify the offset into the ByteBuffer at which the matrix is stored, use Matrix4fc.get(int, ByteBuffer), taking the absolute position as parameter.

        Specified by:
        get in interface Matrix4fc
        Parameters:
        buffer - will receive the values of this matrix in column-major order at its current position
        Returns:
        the passed in buffer
        See Also:
        Matrix4fc.get(int, ByteBuffer)
      • get

        public java.nio.ByteBuffer get​(int index,
                                       java.nio.ByteBuffer buffer)
        Description copied from interface: Matrix4fc
        Store this matrix in column-major order into the supplied ByteBuffer starting at the specified absolute buffer position/index.

        This method will not increment the position of the given ByteBuffer.

        Specified by:
        get in interface Matrix4fc
        Parameters:
        index - the absolute position into the ByteBuffer
        buffer - will receive the values of this matrix in column-major order
        Returns:
        the passed in buffer
      • getTransposed

        public java.nio.FloatBuffer getTransposed​(java.nio.FloatBuffer buffer)
        Description copied from interface: Matrix4fc
        Store the transpose of this matrix in column-major order into the supplied FloatBuffer at the current buffer position.

        This method will not increment the position of the given FloatBuffer.

        In order to specify the offset into the FloatBuffer at which the matrix is stored, use Matrix4fc.getTransposed(int, FloatBuffer), taking the absolute position as parameter.

        Specified by:
        getTransposed in interface Matrix4fc
        Parameters:
        buffer - will receive the values of this matrix in column-major order at its current position
        Returns:
        the passed in buffer
        See Also:
        Matrix4fc.getTransposed(int, FloatBuffer)
      • getTransposed

        public java.nio.FloatBuffer getTransposed​(int index,
                                                  java.nio.FloatBuffer buffer)
        Description copied from interface: Matrix4fc
        Store the transpose of this matrix in column-major order into the supplied FloatBuffer starting at the specified absolute buffer position/index.

        This method will not increment the position of the given FloatBuffer.

        Specified by:
        getTransposed in interface Matrix4fc
        Parameters:
        index - the absolute position into the FloatBuffer
        buffer - will receive the values of this matrix in column-major order
        Returns:
        the passed in buffer
      • getTransposed

        public java.nio.ByteBuffer getTransposed​(java.nio.ByteBuffer buffer)
        Description copied from interface: Matrix4fc
        Store the transpose of this matrix in column-major order into the supplied ByteBuffer at the current buffer position.

        This method will not increment the position of the given ByteBuffer.

        In order to specify the offset into the ByteBuffer at which the matrix is stored, use Matrix4fc.getTransposed(int, ByteBuffer), taking the absolute position as parameter.

        Specified by:
        getTransposed in interface Matrix4fc
        Parameters:
        buffer - will receive the values of this matrix in column-major order at its current position
        Returns:
        the passed in buffer
        See Also:
        Matrix4fc.getTransposed(int, ByteBuffer)
      • getTransposed

        public java.nio.ByteBuffer getTransposed​(int index,
                                                 java.nio.ByteBuffer buffer)
        Description copied from interface: Matrix4fc
        Store the transpose of this matrix in column-major order into the supplied ByteBuffer starting at the specified absolute buffer position/index.

        This method will not increment the position of the given ByteBuffer.

        Specified by:
        getTransposed in interface Matrix4fc
        Parameters:
        index - the absolute position into the ByteBuffer
        buffer - will receive the values of this matrix in column-major order
        Returns:
        the passed in buffer
      • get4x3Transposed

        public java.nio.FloatBuffer get4x3Transposed​(java.nio.FloatBuffer buffer)
        Description copied from interface: Matrix4fc
        Store the upper 4x3 submatrix of this matrix in row-major order into the supplied FloatBuffer at the current buffer position.

        This method will not increment the position of the given FloatBuffer.

        In order to specify the offset into the FloatBuffer at which the matrix is stored, use Matrix4fc.get4x3Transposed(int, FloatBuffer), taking the absolute position as parameter.

        Specified by:
        get4x3Transposed in interface Matrix4fc
        Parameters:
        buffer - will receive the values of the upper 4x3 submatrix in row-major order at its current position
        Returns:
        the passed in buffer
        See Also:
        Matrix4fc.get4x3Transposed(int, FloatBuffer)
      • get4x3Transposed

        public java.nio.FloatBuffer get4x3Transposed​(int index,
                                                     java.nio.FloatBuffer buffer)
        Description copied from interface: Matrix4fc
        Store the upper 4x3 submatrix of this matrix in row-major order into the supplied FloatBuffer starting at the specified absolute buffer position/index.

        This method will not increment the position of the given FloatBuffer.

        Specified by:
        get4x3Transposed in interface Matrix4fc
        Parameters:
        index - the absolute position into the FloatBuffer
        buffer - will receive the values of the upper 4x3 submatrix in row-major order
        Returns:
        the passed in buffer
      • get4x3Transposed

        public java.nio.ByteBuffer get4x3Transposed​(java.nio.ByteBuffer buffer)
        Description copied from interface: Matrix4fc
        Store the upper 4x3 submatrix of this matrix in row-major order into the supplied ByteBuffer at the current buffer position.

        This method will not increment the position of the given ByteBuffer.

        In order to specify the offset into the ByteBuffer at which the matrix is stored, use Matrix4fc.get4x3Transposed(int, ByteBuffer), taking the absolute position as parameter.

        Specified by:
        get4x3Transposed in interface Matrix4fc
        Parameters:
        buffer - will receive the values of the upper 4x3 submatrix in row-major order at its current position
        Returns:
        the passed in buffer
        See Also:
        Matrix4fc.get4x3Transposed(int, ByteBuffer)
      • get4x3Transposed

        public java.nio.ByteBuffer get4x3Transposed​(int index,
                                                    java.nio.ByteBuffer buffer)
        Description copied from interface: Matrix4fc
        Store the upper 4x3 submatrix of this matrix in row-major order into the supplied ByteBuffer starting at the specified absolute buffer position/index.

        This method will not increment the position of the given ByteBuffer.

        Specified by:
        get4x3Transposed in interface Matrix4fc
        Parameters:
        index - the absolute position into the ByteBuffer
        buffer - will receive the values of the upper 4x3 submatrix in row-major order
        Returns:
        the passed in buffer
      • getToAddress

        public Matrix4fc getToAddress​(long address)
        Description copied from interface: Matrix4fc
        Store this matrix in column-major order at the given off-heap address.

        This method will throw an UnsupportedOperationException when JOML is used with `-Djoml.nounsafe`.

        This method is unsafe as it can result in a crash of the JVM process when the specified address range does not belong to this process.

        Specified by:
        getToAddress in interface Matrix4fc
        Parameters:
        address - the off-heap address where to store this matrix
        Returns:
        this
      • get

        public float[] get​(float[] arr,
                           int offset)
        Description copied from interface: Matrix4fc
        Store this matrix into the supplied float array in column-major order at the given offset.
        Specified by:
        get in interface Matrix4fc
        Parameters:
        arr - the array to write the matrix values into
        offset - the offset into the array
        Returns:
        the passed in array
      • get

        public float[] get​(float[] arr)
        Description copied from interface: Matrix4fc
        Store this matrix into the supplied float array in column-major order.

        In order to specify an explicit offset into the array, use the method Matrix4fc.get(float[], int).

        Specified by:
        get in interface Matrix4fc
        Parameters:
        arr - the array to write the matrix values into
        Returns:
        the passed in array
        See Also:
        Matrix4fc.get(float[], int)
      • zero

        public Matrix4f zero()
        Set all the values within this matrix to 0.
        Returns:
        a matrix holding the result
      • scaling

        public Matrix4f scaling​(float factor)
        Set this matrix to be a simple scale matrix, which scales all axes uniformly by the given factor.

        The resulting matrix can be multiplied against another transformation matrix to obtain an additional scaling.

        In order to post-multiply a scaling transformation directly to a matrix, use scale() instead.

        Parameters:
        factor - the scale factor in x, y and z
        Returns:
        this
        See Also:
        scale(float)
      • scaling

        public Matrix4f scaling​(float x,
                                float y,
                                float z)
        Set this matrix to be a simple scale matrix.

        The resulting matrix can be multiplied against another transformation matrix to obtain an additional scaling.

        In order to post-multiply a scaling transformation directly to a matrix, use scale() instead.

        Parameters:
        x - the scale in x
        y - the scale in y
        z - the scale in z
        Returns:
        this
        See Also:
        scale(float, float, float)
      • scaling

        public Matrix4f scaling​(Vector3fc xyz)
        Set this matrix to be a simple scale matrix which scales the base axes by xyz.x, xyz.y and xyz.z respectively.

        The resulting matrix can be multiplied against another transformation matrix to obtain an additional scaling.

        In order to post-multiply a scaling transformation directly to a matrix use scale() instead.

        Parameters:
        xyz - the scale in x, y and z respectively
        Returns:
        this
        See Also:
        scale(Vector3fc)
      • rotation

        public Matrix4f rotation​(float angle,
                                 Vector3fc axis)
        Set this matrix to a rotation matrix which rotates the given radians about a given axis.

        The axis described by the axis vector needs to be a unit vector.

        When used with a right-handed coordinate system, the produced rotation will rotate a vector counter-clockwise around the rotation axis, when viewing along the negative axis direction towards the origin. When used with a left-handed coordinate system, the rotation is clockwise.

        The resulting matrix can be multiplied against another transformation matrix to obtain an additional rotation.

        In order to post-multiply a rotation transformation directly to a matrix, use rotate() instead.

        Parameters:
        angle - the angle in radians
        axis - the axis to rotate about (needs to be normalized)
        Returns:
        this
        See Also:
        rotate(float, Vector3fc)
      • rotation

        public Matrix4f rotation​(AxisAngle4f axisAngle)
        Set this matrix to a rotation transformation using the given AxisAngle4f.

        When used with a right-handed coordinate system, the produced rotation will rotate a vector counter-clockwise around the rotation axis, when viewing along the negative axis direction towards the origin. When used with a left-handed coordinate system, the rotation is clockwise.

        The resulting matrix can be multiplied against another transformation matrix to obtain an additional rotation.

        In order to apply the rotation transformation to an existing transformation, use rotate() instead.

        Reference: http://en.wikipedia.org

        Parameters:
        axisAngle - the AxisAngle4f (needs to be normalized)
        Returns:
        this
        See Also:
        rotate(AxisAngle4f)
      • rotation

        public Matrix4f rotation​(float angle,
                                 float x,
                                 float y,
                                 float z)
        Set this matrix to a rotation matrix which rotates the given radians about a given axis.

        The axis described by the three components needs to be a unit vector.

        When used with a right-handed coordinate system, the produced rotation will rotate a vector counter-clockwise around the rotation axis, when viewing along the negative axis direction towards the origin. When used with a left-handed coordinate system, the rotation is clockwise.

        The resulting matrix can be multiplied against another transformation matrix to obtain an additional rotation.

        In order to apply the rotation transformation to an existing transformation, use rotate() instead.

        Reference: http://en.wikipedia.org

        Parameters:
        angle - the angle in radians
        x - the x-component of the rotation axis
        y - the y-component of the rotation axis
        z - the z-component of the rotation axis
        Returns:
        this
        See Also:
        rotate(float, float, float, float)
      • rotationX

        public Matrix4f rotationX​(float ang)
        Set this matrix to a rotation transformation about the X axis.

        When used with a right-handed coordinate system, the produced rotation will rotate a vector counter-clockwise around the rotation axis, when viewing along the negative axis direction towards the origin. When used with a left-handed coordinate system, the rotation is clockwise.

        Reference: http://en.wikipedia.org

        Parameters:
        ang - the angle in radians
        Returns:
        this
      • rotationY

        public Matrix4f rotationY​(float ang)
        Set this matrix to a rotation transformation about the Y axis.

        When used with a right-handed coordinate system, the produced rotation will rotate a vector counter-clockwise around the rotation axis, when viewing along the negative axis direction towards the origin. When used with a left-handed coordinate system, the rotation is clockwise.

        Reference: http://en.wikipedia.org

        Parameters:
        ang - the angle in radians
        Returns:
        this
      • rotationZ

        public Matrix4f rotationZ​(float ang)
        Set this matrix to a rotation transformation about the Z axis.

        When used with a right-handed coordinate system, the produced rotation will rotate a vector counter-clockwise around the rotation axis, when viewing along the negative axis direction towards the origin. When used with a left-handed coordinate system, the rotation is clockwise.

        Reference: http://en.wikipedia.org

        Parameters:
        ang - the angle in radians
        Returns:
        this
      • rotationTowardsXY

        public Matrix4f rotationTowardsXY​(float dirX,
                                          float dirY)
        Set this matrix to a rotation transformation about the Z axis to align the local +X towards (dirX, dirY).

        The vector (dirX, dirY) must be a unit vector.

        Parameters:
        dirX - the x component of the normalized direction
        dirY - the y component of the normalized direction
        Returns:
        this
      • rotationXYZ

        public Matrix4f rotationXYZ​(float angleX,
                                    float angleY,
                                    float angleZ)
        Set this matrix to a rotation of angleX radians about the X axis, followed by a rotation of angleY radians about the Y axis and followed by a rotation of angleZ radians about the Z axis.

        When used with a right-handed coordinate system, the produced rotation will rotate a vector counter-clockwise around the rotation axis, when viewing along the negative axis direction towards the origin. When used with a left-handed coordinate system, the rotation is clockwise.

        This method is equivalent to calling: rotationX(angleX).rotateY(angleY).rotateZ(angleZ)

        Parameters:
        angleX - the angle to rotate about X
        angleY - the angle to rotate about Y
        angleZ - the angle to rotate about Z
        Returns:
        this
      • rotationZYX

        public Matrix4f rotationZYX​(float angleZ,
                                    float angleY,
                                    float angleX)
        Set this matrix to a rotation of angleZ radians about the Z axis, followed by a rotation of angleY radians about the Y axis and followed by a rotation of angleX radians about the X axis.

        When used with a right-handed coordinate system, the produced rotation will rotate a vector counter-clockwise around the rotation axis, when viewing along the negative axis direction towards the origin. When used with a left-handed coordinate system, the rotation is clockwise.

        This method is equivalent to calling: rotationZ(angleZ).rotateY(angleY).rotateX(angleX)

        Parameters:
        angleZ - the angle to rotate about Z
        angleY - the angle to rotate about Y
        angleX - the angle to rotate about X
        Returns:
        this
      • rotationYXZ

        public Matrix4f rotationYXZ​(float angleY,
                                    float angleX,
                                    float angleZ)
        Set this matrix to a rotation of angleY radians about the Y axis, followed by a rotation of angleX radians about the X axis and followed by a rotation of angleZ radians about the Z axis.

        When used with a right-handed coordinate system, the produced rotation will rotate a vector counter-clockwise around the rotation axis, when viewing along the negative axis direction towards the origin. When used with a left-handed coordinate system, the rotation is clockwise.

        This method is equivalent to calling: rotationY(angleY).rotateX(angleX).rotateZ(angleZ)

        Parameters:
        angleY - the angle to rotate about Y
        angleX - the angle to rotate about X
        angleZ - the angle to rotate about Z
        Returns:
        this
      • setRotationXYZ

        public Matrix4f setRotationXYZ​(float angleX,
                                       float angleY,
                                       float angleZ)
        Set only the upper left 3x3 submatrix of this matrix to a rotation of angleX radians about the X axis, followed by a rotation of angleY radians about the Y axis and followed by a rotation of angleZ radians about the Z axis.

        When used with a right-handed coordinate system, the produced rotation will rotate a vector counter-clockwise around the rotation axis, when viewing along the negative axis direction towards the origin. When used with a left-handed coordinate system, the rotation is clockwise.

        Parameters:
        angleX - the angle to rotate about X
        angleY - the angle to rotate about Y
        angleZ - the angle to rotate about Z
        Returns:
        this
      • setRotationZYX

        public Matrix4f setRotationZYX​(float angleZ,
                                       float angleY,
                                       float angleX)
        Set only the upper left 3x3 submatrix of this matrix to a rotation of angleZ radians about the Z axis, followed by a rotation of angleY radians about the Y axis and followed by a rotation of angleX radians about the X axis.

        When used with a right-handed coordinate system, the produced rotation will rotate a vector counter-clockwise around the rotation axis, when viewing along the negative axis direction towards the origin. When used with a left-handed coordinate system, the rotation is clockwise.

        Parameters:
        angleZ - the angle to rotate about Z
        angleY - the angle to rotate about Y
        angleX - the angle to rotate about X
        Returns:
        this
      • setRotationYXZ

        public Matrix4f setRotationYXZ​(float angleY,
                                       float angleX,
                                       float angleZ)
        Set only the upper left 3x3 submatrix of this matrix to a rotation of angleY radians about the Y axis, followed by a rotation of angleX radians about the X axis and followed by a rotation of angleZ radians about the Z axis.

        When used with a right-handed coordinate system, the produced rotation will rotate a vector counter-clockwise around the rotation axis, when viewing along the negative axis direction towards the origin. When used with a left-handed coordinate system, the rotation is clockwise.

        Parameters:
        angleY - the angle to rotate about Y
        angleX - the angle to rotate about X
        angleZ - the angle to rotate about Z
        Returns:
        this
      • rotation

        public Matrix4f rotation​(Quaternionfc quat)
        Set this matrix to the rotation transformation of the given Quaternionfc.

        When used with a right-handed coordinate system, the produced rotation will rotate a vector counter-clockwise around the rotation axis, when viewing along the negative axis direction towards the origin. When used with a left-handed coordinate system, the rotation is clockwise.

        The resulting matrix can be multiplied against another transformation matrix to obtain an additional rotation.

        In order to apply the rotation transformation to an existing transformation, use rotate() instead.

        Reference: http://en.wikipedia.org

        Parameters:
        quat - the Quaternionfc
        Returns:
        this
        See Also:
        rotate(Quaternionfc)
      • translationRotateScale

        public Matrix4f translationRotateScale​(float tx,
                                               float ty,
                                               float tz,
                                               float qx,
                                               float qy,
                                               float qz,
                                               float qw,
                                               float sx,
                                               float sy,
                                               float sz)
        Set this matrix to T * R * S, where T is a translation by the given (tx, ty, tz), R is a rotation transformation specified by the quaternion (qx, qy, qz, qw), and S is a scaling transformation which scales the three axes x, y and z by (sx, sy, sz).

        When transforming a vector by the resulting matrix the scaling transformation will be applied first, then the rotation and at last the translation.

        When used with a right-handed coordinate system, the produced rotation will rotate a vector counter-clockwise around the rotation axis, when viewing along the negative axis direction towards the origin. When used with a left-handed coordinate system, the rotation is clockwise.

        This method is equivalent to calling: translation(tx, ty, tz).rotate(quat).scale(sx, sy, sz)

        Parameters:
        tx - the number of units by which to translate the x-component
        ty - the number of units by which to translate the y-component
        tz - the number of units by which to translate the z-component
        qx - the x-coordinate of the vector part of the quaternion
        qy - the y-coordinate of the vector part of the quaternion
        qz - the z-coordinate of the vector part of the quaternion
        qw - the scalar part of the quaternion
        sx - the scaling factor for the x-axis
        sy - the scaling factor for the y-axis
        sz - the scaling factor for the z-axis
        Returns:
        this
        See Also:
        translation(float, float, float), rotate(Quaternionfc), scale(float, float, float)
      • translationRotateScale

        public Matrix4f translationRotateScale​(Vector3fc translation,
                                               Quaternionfc quat,
                                               Vector3fc scale)
        Set this matrix to T * R * S, where T is the given translation, R is a rotation transformation specified by the given quaternion, and S is a scaling transformation which scales the axes by scale.

        When transforming a vector by the resulting matrix the scaling transformation will be applied first, then the rotation and at last the translation.

        When used with a right-handed coordinate system, the produced rotation will rotate a vector counter-clockwise around the rotation axis, when viewing along the negative axis direction towards the origin. When used with a left-handed coordinate system, the rotation is clockwise.

        This method is equivalent to calling: translation(translation).rotate(quat).scale(scale)

        Parameters:
        translation - the translation
        quat - the quaternion representing a rotation
        scale - the scaling factors
        Returns:
        this
        See Also:
        translation(Vector3fc), rotate(Quaternionfc), scale(Vector3fc)
      • translationRotateScale

        public Matrix4f translationRotateScale​(float tx,
                                               float ty,
                                               float tz,
                                               float qx,
                                               float qy,
                                               float qz,
                                               float qw,
                                               float scale)
        Set this matrix to T * R * S, where T is a translation by the given (tx, ty, tz), R is a rotation transformation specified by the quaternion (qx, qy, qz, qw), and S is a scaling transformation which scales all three axes by scale.

        When transforming a vector by the resulting matrix the scaling transformation will be applied first, then the rotation and at last the translation.

        When used with a right-handed coordinate system, the produced rotation will rotate a vector counter-clockwise around the rotation axis, when viewing along the negative axis direction towards the origin. When used with a left-handed coordinate system, the rotation is clockwise.

        This method is equivalent to calling: translation(tx, ty, tz).rotate(quat).scale(scale)

        Parameters:
        tx - the number of units by which to translate the x-component
        ty - the number of units by which to translate the y-component
        tz - the number of units by which to translate the z-component
        qx - the x-coordinate of the vector part of the quaternion
        qy - the y-coordinate of the vector part of the quaternion
        qz - the z-coordinate of the vector part of the quaternion
        qw - the scalar part of the quaternion
        scale - the scaling factor for all three axes
        Returns:
        this
        See Also:
        translation(float, float, float), rotate(Quaternionfc), scale(float)
      • translationRotateScale

        public Matrix4f translationRotateScale​(Vector3fc translation,
                                               Quaternionfc quat,
                                               float scale)
        Set this matrix to T * R * S, where T is the given translation, R is a rotation transformation specified by the given quaternion, and S is a scaling transformation which scales all three axes by scale.

        When transforming a vector by the resulting matrix the scaling transformation will be applied first, then the rotation and at last the translation.

        When used with a right-handed coordinate system, the produced rotation will rotate a vector counter-clockwise around the rotation axis, when viewing along the negative axis direction towards the origin. When used with a left-handed coordinate system, the rotation is clockwise.

        This method is equivalent to calling: translation(translation).rotate(quat).scale(scale)

        Parameters:
        translation - the translation
        quat - the quaternion representing a rotation
        scale - the scaling factors
        Returns:
        this
        See Also:
        translation(Vector3fc), rotate(Quaternionfc), scale(float)
      • translationRotateScaleInvert

        public Matrix4f translationRotateScaleInvert​(float tx,
                                                     float ty,
                                                     float tz,
                                                     float qx,
                                                     float qy,
                                                     float qz,
                                                     float qw,
                                                     float sx,
                                                     float sy,
                                                     float sz)
        Set this matrix to (T * R * S)-1, where T is a translation by the given (tx, ty, tz), R is a rotation transformation specified by the quaternion (qx, qy, qz, qw), and S is a scaling transformation which scales the three axes x, y and z by (sx, sy, sz).

        This method is equivalent to calling: translationRotateScale(...).invert()

        Parameters:
        tx - the number of units by which to translate the x-component
        ty - the number of units by which to translate the y-component
        tz - the number of units by which to translate the z-component
        qx - the x-coordinate of the vector part of the quaternion
        qy - the y-coordinate of the vector part of the quaternion
        qz - the z-coordinate of the vector part of the quaternion
        qw - the scalar part of the quaternion
        sx - the scaling factor for the x-axis
        sy - the scaling factor for the y-axis
        sz - the scaling factor for the z-axis
        Returns:
        this
        See Also:
        translationRotateScale(float, float, float, float, float, float, float, float, float, float), invert()
      • translationRotateScaleInvert

        public Matrix4f translationRotateScaleInvert​(Vector3fc translation,
                                                     Quaternionfc quat,
                                                     Vector3fc scale)
        Set this matrix to (T * R * S)-1, where T is the given translation, R is a rotation transformation specified by the given quaternion, and S is a scaling transformation which scales the axes by scale.

        This method is equivalent to calling: translationRotateScale(...).invert()

        Parameters:
        translation - the translation
        quat - the quaternion representing a rotation
        scale - the scaling factors
        Returns:
        this
        See Also:
        translationRotateScale(Vector3fc, Quaternionfc, Vector3fc), invert()
      • translationRotateScaleInvert

        public Matrix4f translationRotateScaleInvert​(Vector3fc translation,
                                                     Quaternionfc quat,
                                                     float scale)
        Set this matrix to (T * R * S)-1, where T is the given translation, R is a rotation transformation specified by the given quaternion, and S is a scaling transformation which scales all three axes by scale.

        This method is equivalent to calling: translationRotateScale(...).invert()

        Parameters:
        translation - the translation
        quat - the quaternion representing a rotation
        scale - the scaling factors
        Returns:
        this
        See Also:
        translationRotateScale(Vector3fc, Quaternionfc, float), invert()
      • translationRotateScaleMulAffine

        public Matrix4f translationRotateScaleMulAffine​(float tx,
                                                        float ty,
                                                        float tz,
                                                        float qx,
                                                        float qy,
                                                        float qz,
                                                        float qw,
                                                        float sx,
                                                        float sy,
                                                        float sz,
                                                        Matrix4f m)
        Set this matrix to T * R * S * M, where T is a translation by the given (tx, ty, tz), R is a rotation - and possibly scaling - transformation specified by the quaternion (qx, qy, qz, qw), S is a scaling transformation which scales the three axes x, y and z by (sx, sy, sz) and M is an affine matrix.

        When transforming a vector by the resulting matrix the transformation described by M will be applied first, then the scaling, then rotation and at last the translation.

        When used with a right-handed coordinate system, the produced rotation will rotate a vector counter-clockwise around the rotation axis, when viewing along the negative axis direction towards the origin. When used with a left-handed coordinate system, the rotation is clockwise.

        This method is equivalent to calling: translation(tx, ty, tz).rotate(quat).scale(sx, sy, sz).mulAffine(m)

        Parameters:
        tx - the number of units by which to translate the x-component
        ty - the number of units by which to translate the y-component
        tz - the number of units by which to translate the z-component
        qx - the x-coordinate of the vector part of the quaternion
        qy - the y-coordinate of the vector part of the quaternion
        qz - the z-coordinate of the vector part of the quaternion
        qw - the scalar part of the quaternion
        sx - the scaling factor for the x-axis
        sy - the scaling factor for the y-axis
        sz - the scaling factor for the z-axis
        m - the affine matrix to multiply by
        Returns:
        this
        See Also:
        translation(float, float, float), rotate(Quaternionfc), scale(float, float, float), mulAffine(Matrix4fc)
      • translationRotateScaleMulAffine

        public Matrix4f translationRotateScaleMulAffine​(Vector3fc translation,
                                                        Quaternionfc quat,
                                                        Vector3fc scale,
                                                        Matrix4f m)
        Set this matrix to T * R * S * M, where T is the given translation, R is a rotation - and possibly scaling - transformation specified by the given quaternion, S is a scaling transformation which scales the axes by scale and M is an affine matrix.

        When transforming a vector by the resulting matrix the transformation described by M will be applied first, then the scaling, then rotation and at last the translation.

        When used with a right-handed coordinate system, the produced rotation will rotate a vector counter-clockwise around the rotation axis, when viewing along the negative axis direction towards the origin. When used with a left-handed coordinate system, the rotation is clockwise.

        This method is equivalent to calling: translation(translation).rotate(quat).scale(scale).mulAffine(m)

        Parameters:
        translation - the translation
        quat - the quaternion representing a rotation
        scale - the scaling factors
        m - the affine matrix to multiply by
        Returns:
        this
        See Also:
        translation(Vector3fc), rotate(Quaternionfc), mulAffine(Matrix4fc)
      • translationRotate

        public Matrix4f translationRotate​(float tx,
                                          float ty,
                                          float tz,
                                          float qx,
                                          float qy,
                                          float qz,
                                          float qw)
        Set this matrix to T * R, where T is a translation by the given (tx, ty, tz) and R is a rotation - and possibly scaling - transformation specified by the quaternion (qx, qy, qz, qw).

        When transforming a vector by the resulting matrix the rotation - and possibly scaling - transformation will be applied first and then the translation.

        When used with a right-handed coordinate system, the produced rotation will rotate a vector counter-clockwise around the rotation axis, when viewing along the negative axis direction towards the origin. When used with a left-handed coordinate system, the rotation is clockwise.

        This method is equivalent to calling: translation(tx, ty, tz).rotate(quat)

        Parameters:
        tx - the number of units by which to translate the x-component
        ty - the number of units by which to translate the y-component
        tz - the number of units by which to translate the z-component
        qx - the x-coordinate of the vector part of the quaternion
        qy - the y-coordinate of the vector part of the quaternion
        qz - the z-coordinate of the vector part of the quaternion
        qw - the scalar part of the quaternion
        Returns:
        this
        See Also:
        translation(float, float, float), rotate(Quaternionfc)
      • translationRotate

        public Matrix4f translationRotate​(float tx,
                                          float ty,
                                          float tz,
                                          Quaternionfc quat)
        Set this matrix to T * R, where T is a translation by the given (tx, ty, tz) and R is a rotation - and possibly scaling - transformation specified by the given quaternion.

        When transforming a vector by the resulting matrix the rotation - and possibly scaling - transformation will be applied first and then the translation.

        When used with a right-handed coordinate system, the produced rotation will rotate a vector counter-clockwise around the rotation axis, when viewing along the negative axis direction towards the origin. When used with a left-handed coordinate system, the rotation is clockwise.

        This method is equivalent to calling: translation(tx, ty, tz).rotate(quat)

        Parameters:
        tx - the number of units by which to translate the x-component
        ty - the number of units by which to translate the y-component
        tz - the number of units by which to translate the z-component
        quat - the quaternion representing a rotation
        Returns:
        this
        See Also:
        translation(float, float, float), rotate(Quaternionfc)
      • set3x3

        public Matrix4f set3x3​(Matrix3fc mat)
        Set the upper left 3x3 submatrix of this Matrix4f to the given Matrix3fc and don't change the other elements.
        Parameters:
        mat - the 3x3 matrix
        Returns:
        this
      • transform

        public Vector4f transform​(Vector4f v)
        Description copied from interface: Matrix4fc
        Transform/multiply the given vector by this matrix and store the result in that vector.
        Specified by:
        transform in interface Matrix4fc
        Parameters:
        v - the vector to transform and to hold the final result
        Returns:
        v
        See Also:
        Vector4f.mul(Matrix4fc)
      • transform

        public Vector4f transform​(float x,
                                  float y,
                                  float z,
                                  float w,
                                  Vector4f dest)
        Description copied from interface: Matrix4fc
        Transform/multiply the vector (x, y, z, w) by this matrix and store the result in dest.
        Specified by:
        transform in interface Matrix4fc
        Parameters:
        x - the x coordinate of the vector to transform
        y - the y coordinate of the vector to transform
        z - the z coordinate of the vector to transform
        w - the w coordinate of the vector to transform
        dest - will contain the result
        Returns:
        dest
      • transformProject

        public Vector4f transformProject​(Vector4f v)
        Description copied from interface: Matrix4fc
        Transform/multiply the given vector by this matrix, perform perspective divide and store the result in that vector.
        Specified by:
        transformProject in interface Matrix4fc
        Parameters:
        v - the vector to transform and to hold the final result
        Returns:
        v
        See Also:
        Vector4f.mulProject(Matrix4fc)
      • transformProject

        public Vector4f transformProject​(float x,
                                         float y,
                                         float z,
                                         float w,
                                         Vector4f dest)
        Description copied from interface: Matrix4fc
        Transform/multiply the vector (x, y, z, w) by this matrix, perform perspective divide and store the result in dest.
        Specified by:
        transformProject in interface Matrix4fc
        Parameters:
        x - the x coordinate of the vector to transform
        y - the y coordinate of the vector to transform
        z - the z coordinate of the vector to transform
        w - the w coordinate of the vector to transform
        dest - will contain the result
        Returns:
        dest
      • transformProject

        public Vector3f transformProject​(Vector3f v)
        Description copied from interface: Matrix4fc
        Transform/multiply the given vector by this matrix, perform perspective divide and store the result in that vector.

        This method uses w=1.0 as the fourth vector component.

        Specified by:
        transformProject in interface Matrix4fc
        Parameters:
        v - the vector to transform and to hold the final result
        Returns:
        v
        See Also:
        Vector3f.mulProject(Matrix4fc)
      • transformProject

        public Vector3f transformProject​(float x,
                                         float y,
                                         float z,
                                         Vector3f dest)
        Description copied from interface: Matrix4fc
        Transform/multiply the vector (x, y, z) by this matrix, perform perspective divide and store the result in dest.

        This method uses w=1.0 as the fourth vector component.

        Specified by:
        transformProject in interface Matrix4fc
        Parameters:
        x - the x coordinate of the vector to transform
        y - the y coordinate of the vector to transform
        z - the z coordinate of the vector to transform
        dest - will contain the result
        Returns:
        dest
      • transformDirection

        public Vector3f transformDirection​(Vector3f v)
        Description copied from interface: Matrix4fc
        Transform/multiply the given 3D-vector, as if it was a 4D-vector with w=0, by this matrix and store the result in that vector.

        The given 3D-vector is treated as a 4D-vector with its w-component being 0.0, so it will represent a direction in 3D-space rather than a position. This method will therefore not take the translation part of the matrix into account.

        In order to store the result in another vector, use Matrix4fc.transformDirection(Vector3fc, Vector3f).

        Specified by:
        transformDirection in interface Matrix4fc
        Parameters:
        v - the vector to transform and to hold the final result
        Returns:
        v
        See Also:
        Matrix4fc.transformDirection(Vector3fc, Vector3f)
      • transformDirection

        public Vector3f transformDirection​(Vector3fc v,
                                           Vector3f dest)
        Description copied from interface: Matrix4fc
        Transform/multiply the given 3D-vector, as if it was a 4D-vector with w=0, by this matrix and store the result in dest.

        The given 3D-vector is treated as a 4D-vector with its w-component being 0.0, so it will represent a direction in 3D-space rather than a position. This method will therefore not take the translation part of the matrix into account.

        In order to store the result in the same vector, use Matrix4fc.transformDirection(Vector3f).

        Specified by:
        transformDirection in interface Matrix4fc
        Parameters:
        v - the vector to transform and to hold the final result
        dest - will hold the result
        Returns:
        dest
        See Also:
        Matrix4fc.transformDirection(Vector3f)
      • transformDirection

        public Vector3f transformDirection​(float x,
                                           float y,
                                           float z,
                                           Vector3f dest)
        Description copied from interface: Matrix4fc
        Transform/multiply the given 3D-vector (x, y, z), as if it was a 4D-vector with w=0, by this matrix and store the result in dest.

        The given 3D-vector is treated as a 4D-vector with its w-component being 0.0, so it will represent a direction in 3D-space rather than a position. This method will therefore not take the translation part of the matrix into account.

        Specified by:
        transformDirection in interface Matrix4fc
        Parameters:
        x - the x coordinate of the direction to transform
        y - the y coordinate of the direction to transform
        z - the z coordinate of the direction to transform
        dest - will hold the result
        Returns:
        dest
      • transformAffine

        public Vector4f transformAffine​(float x,
                                        float y,
                                        float z,
                                        float w,
                                        Vector4f dest)
        Description copied from interface: Matrix4fc
        Transform/multiply the 4D-vector (x, y, z, w) by assuming that this matrix represents an affine transformation (i.e. its last row is equal to (0, 0, 0, 1)) and store the result in dest.
        Specified by:
        transformAffine in interface Matrix4fc
        Parameters:
        x - the x coordinate of the direction to transform
        y - the y coordinate of the direction to transform
        z - the z coordinate of the direction to transform
        w - the w coordinate of the direction to transform
        dest - will hold the result
        Returns:
        dest
      • scale

        public Matrix4f scale​(Vector3fc xyz,
                              Matrix4f dest)
        Description copied from interface: Matrix4fc
        Apply scaling to this matrix by scaling the base axes by the given xyz.x, xyz.y and xyz.z factors, respectively and store the result in dest.

        If M is this matrix and S the scaling matrix, then the new matrix will be M * S. So when transforming a vector v with the new matrix by using M * S * v , the scaling will be applied first!

        Specified by:
        scale in interface Matrix4fc
        Parameters:
        xyz - the factors of the x, y and z component, respectively
        dest - will hold the result
        Returns:
        dest
      • scale

        public Matrix4f scale​(Vector3fc xyz)
        Apply scaling to this matrix by scaling the base axes by the given xyz.x, xyz.y and xyz.z factors, respectively.

        If M is this matrix and S the scaling matrix, then the new matrix will be M * S. So when transforming a vector v with the new matrix by using M * S * v, the scaling will be applied first!

        Parameters:
        xyz - the factors of the x, y and z component, respectively
        Returns:
        a matrix holding the result
      • scale

        public Matrix4f scale​(float xyz,
                              Matrix4f dest)
        Description copied from interface: Matrix4fc
        Apply scaling to this matrix by uniformly scaling all base axes by the given xyz factor and store the result in dest.

        If M is this matrix and S the scaling matrix, then the new matrix will be M * S. So when transforming a vector v with the new matrix by using M * S * v, the scaling will be applied first!

        Individual scaling of all three axes can be applied using Matrix4fc.scale(float, float, float, Matrix4f).

        Specified by:
        scale in interface Matrix4fc
        Parameters:
        xyz - the factor for all components
        dest - will hold the result
        Returns:
        dest
        See Also:
        Matrix4fc.scale(float, float, float, Matrix4f)
      • scale

        public Matrix4f scale​(float xyz)
        Apply scaling to this matrix by uniformly scaling all base axes by the given xyz factor.

        If M is this matrix and S the scaling matrix, then the new matrix will be M * S. So when transforming a vector v with the new matrix by using M * S * v, the scaling will be applied first!

        Individual scaling of all three axes can be applied using scale(float, float, float).

        Parameters:
        xyz - the factor for all components
        Returns:
        this
        See Also:
        scale(float, float, float)
      • scale

        public Matrix4f scale​(float x,
                              float y,
                              float z,
                              Matrix4f dest)
        Description copied from interface: Matrix4fc
        Apply scaling to this matrix by scaling the base axes by the given x, y and z factors and store the result in dest.

        If M is this matrix and S the scaling matrix, then the new matrix will be M * S. So when transforming a vector v with the new matrix by using M * S * v , the scaling will be applied first!

        Specified by:
        scale in interface Matrix4fc
        Parameters:
        x - the factor of the x component
        y - the factor of the y component
        z - the factor of the z component
        dest - will hold the result
        Returns:
        dest
      • scale

        public Matrix4f scale​(float x,
                              float y,
                              float z)
        Apply scaling to this matrix by scaling the base axes by the given sx, sy and sz factors.

        If M is this matrix and S the scaling matrix, then the new matrix will be M * S. So when transforming a vector v with the new matrix by using M * S * v, the scaling will be applied first!

        Parameters:
        x - the factor of the x component
        y - the factor of the y component
        z - the factor of the z component
        Returns:
        a matrix holding the result
      • scaleAround

        public Matrix4f scaleAround​(float sx,
                                    float sy,
                                    float sz,
                                    float ox,
                                    float oy,
                                    float oz,
                                    Matrix4f dest)
        Description copied from interface: Matrix4fc
        Apply scaling to this matrix by scaling the base axes by the given sx, sy and sz factors while using (ox, oy, oz) as the scaling origin, and store the result in dest.

        If M is this matrix and S the scaling matrix, then the new matrix will be M * S. So when transforming a vector v with the new matrix by using M * S * v , the scaling will be applied first!

        This method is equivalent to calling: translate(ox, oy, oz, dest).scale(sx, sy, sz).translate(-ox, -oy, -oz)

        Specified by:
        scaleAround in interface Matrix4fc
        Parameters:
        sx - the scaling factor of the x component
        sy - the scaling factor of the y component
        sz - the scaling factor of the z component
        ox - the x coordinate of the scaling origin
        oy - the y coordinate of the scaling origin
        oz - the z coordinate of the scaling origin
        dest - will hold the result
        Returns:
        dest
      • scaleAround

        public Matrix4f scaleAround​(float sx,
                                    float sy,
                                    float sz,
                                    float ox,
                                    float oy,
                                    float oz)
        Apply scaling to this matrix by scaling the base axes by the given sx, sy and sz factors while using (ox, oy, oz) as the scaling origin.

        If M is this matrix and S the scaling matrix, then the new matrix will be M * S. So when transforming a vector v with the new matrix by using M * S * v, the scaling will be applied first!

        This method is equivalent to calling: translate(ox, oy, oz).scale(sx, sy, sz).translate(-ox, -oy, -oz)

        Parameters:
        sx - the scaling factor of the x component
        sy - the scaling factor of the y component
        sz - the scaling factor of the z component
        ox - the x coordinate of the scaling origin
        oy - the y coordinate of the scaling origin
        oz - the z coordinate of the scaling origin
        Returns:
        a matrix holding the result
      • scaleAround

        public Matrix4f scaleAround​(float factor,
                                    float ox,
                                    float oy,
                                    float oz)
        Apply scaling to this matrix by scaling all three base axes by the given factor while using (ox, oy, oz) as the scaling origin.

        If M is this matrix and S the scaling matrix, then the new matrix will be M * S. So when transforming a vector v with the new matrix by using M * S * v, the scaling will be applied first!

        This method is equivalent to calling: translate(ox, oy, oz).scale(factor).translate(-ox, -oy, -oz)

        Parameters:
        factor - the scaling factor for all three axes
        ox - the x coordinate of the scaling origin
        oy - the y coordinate of the scaling origin
        oz - the z coordinate of the scaling origin
        Returns:
        a matrix holding the result
      • scaleAround

        public Matrix4f scaleAround​(float factor,
                                    float ox,
                                    float oy,
                                    float oz,
                                    Matrix4f dest)
        Description copied from interface: Matrix4fc
        Apply scaling to this matrix by scaling all three base axes by the given factor while using (ox, oy, oz) as the scaling origin, and store the result in dest.

        If M is this matrix and S the scaling matrix, then the new matrix will be M * S. So when transforming a vector v with the new matrix by using M * S * v, the scaling will be applied first!

        This method is equivalent to calling: translate(ox, oy, oz, dest).scale(factor).translate(-ox, -oy, -oz)

        Specified by:
        scaleAround in interface Matrix4fc
        Parameters:
        factor - the scaling factor for all three axes
        ox - the x coordinate of the scaling origin
        oy - the y coordinate of the scaling origin
        oz - the z coordinate of the scaling origin
        dest - will hold the result
        Returns:
        this
      • scaleLocal

        public Matrix4f scaleLocal​(float x,
                                   float y,
                                   float z,
                                   Matrix4f dest)
        Description copied from interface: Matrix4fc
        Pre-multiply scaling to this matrix by scaling the base axes by the given x, y and z factors and store the result in dest.

        If M is this matrix and S the scaling matrix, then the new matrix will be S * M. So when transforming a vector v with the new matrix by using S * M * v , the scaling will be applied last!

        Specified by:
        scaleLocal in interface Matrix4fc
        Parameters:
        x - the factor of the x component
        y - the factor of the y component
        z - the factor of the z component
        dest - will hold the result
        Returns:
        dest
      • scaleLocal

        public Matrix4f scaleLocal​(float xyz,
                                   Matrix4f dest)
        Description copied from interface: Matrix4fc
        Pre-multiply scaling to this matrix by scaling all base axes by the given xyz factor, and store the result in dest.

        If M is this matrix and S the scaling matrix, then the new matrix will be S * M. So when transforming a vector v with the new matrix by using S * M * v , the scaling will be applied last!

        Specified by:
        scaleLocal in interface Matrix4fc
        Parameters:
        xyz - the factor to scale all three base axes by
        dest - will hold the result
        Returns:
        dest
      • scaleLocal

        public Matrix4f scaleLocal​(float xyz)
        Pre-multiply scaling to this matrix by scaling the base axes by the given xyz factor.

        If M is this matrix and S the scaling matrix, then the new matrix will be S * M. So when transforming a vector v with the new matrix by using S * M * v, the scaling will be applied last!

        Parameters:
        xyz - the factor of the x, y and z component
        Returns:
        a matrix holding the result
      • scaleLocal

        public Matrix4f scaleLocal​(float x,
                                   float y,
                                   float z)
        Pre-multiply scaling to this matrix by scaling the base axes by the given x, y and z factors.

        If M is this matrix and S the scaling matrix, then the new matrix will be S * M. So when transforming a vector v with the new matrix by using S * M * v, the scaling will be applied last!

        Parameters:
        x - the factor of the x component
        y - the factor of the y component
        z - the factor of the z component
        Returns:
        a matrix holding the result
      • scaleAroundLocal

        public Matrix4f scaleAroundLocal​(float sx,
                                         float sy,
                                         float sz,
                                         float ox,
                                         float oy,
                                         float oz,
                                         Matrix4f dest)
        Description copied from interface: Matrix4fc
        Pre-multiply scaling to this matrix by scaling the base axes by the given sx, sy and sz factors while using the given (ox, oy, oz) as the scaling origin, and store the result in dest.

        If M is this matrix and S the scaling matrix, then the new matrix will be S * M. So when transforming a vector v with the new matrix by using S * M * v , the scaling will be applied last!

        This method is equivalent to calling: new Matrix4f().translate(ox, oy, oz).scale(sx, sy, sz).translate(-ox, -oy, -oz).mul(this, dest)

        Specified by:
        scaleAroundLocal in interface Matrix4fc
        Parameters:
        sx - the scaling factor of the x component
        sy - the scaling factor of the y component
        sz - the scaling factor of the z component
        ox - the x coordinate of the scaling origin
        oy - the y coordinate of the scaling origin
        oz - the z coordinate of the scaling origin
        dest - will hold the result
        Returns:
        dest
      • scaleAroundLocal

        public Matrix4f scaleAroundLocal​(float sx,
                                         float sy,
                                         float sz,
                                         float ox,
                                         float oy,
                                         float oz)
        Pre-multiply scaling to this matrix by scaling the base axes by the given sx, sy and sz factors while using (ox, oy, oz) as the scaling origin.

        If M is this matrix and S the scaling matrix, then the new matrix will be S * M. So when transforming a vector v with the new matrix by using S * M * v, the scaling will be applied last!

        This method is equivalent to calling: new Matrix4f().translate(ox, oy, oz).scale(sx, sy, sz).translate(-ox, -oy, -oz).mul(this, this)

        Parameters:
        sx - the scaling factor of the x component
        sy - the scaling factor of the y component
        sz - the scaling factor of the z component
        ox - the x coordinate of the scaling origin
        oy - the y coordinate of the scaling origin
        oz - the z coordinate of the scaling origin
        Returns:
        a matrix holding the result
      • scaleAroundLocal

        public Matrix4f scaleAroundLocal​(float factor,
                                         float ox,
                                         float oy,
                                         float oz)
        Pre-multiply scaling to this matrix by scaling all three base axes by the given factor while using (ox, oy, oz) as the scaling origin.

        If M is this matrix and S the scaling matrix, then the new matrix will be S * M. So when transforming a vector v with the new matrix by using S * M * v, the scaling will be applied last!

        This method is equivalent to calling: new Matrix4f().translate(ox, oy, oz).scale(factor).translate(-ox, -oy, -oz).mul(this, this)

        Parameters:
        factor - the scaling factor for all three axes
        ox - the x coordinate of the scaling origin
        oy - the y coordinate of the scaling origin
        oz - the z coordinate of the scaling origin
        Returns:
        a matrix holding the result
      • scaleAroundLocal

        public Matrix4f scaleAroundLocal​(float factor,
                                         float ox,
                                         float oy,
                                         float oz,
                                         Matrix4f dest)
        Description copied from interface: Matrix4fc
        Pre-multiply scaling to this matrix by scaling all three base axes by the given factor while using (ox, oy, oz) as the scaling origin, and store the result in dest.

        If M is this matrix and S the scaling matrix, then the new matrix will be S * M. So when transforming a vector v with the new matrix by using S * M * v, the scaling will be applied last!

        This method is equivalent to calling: new Matrix4f().translate(ox, oy, oz).scale(factor).translate(-ox, -oy, -oz).mul(this, dest)

        Specified by:
        scaleAroundLocal in interface Matrix4fc
        Parameters:
        factor - the scaling factor for all three axes
        ox - the x coordinate of the scaling origin
        oy - the y coordinate of the scaling origin
        oz - the z coordinate of the scaling origin
        dest - will hold the result
        Returns:
        this
      • rotateX

        public Matrix4f rotateX​(float ang,
                                Matrix4f dest)
        Description copied from interface: Matrix4fc
        Apply rotation about the X axis to this matrix by rotating the given amount of radians and store the result in dest.

        When used with a right-handed coordinate system, the produced rotation will rotate a vector counter-clockwise around the rotation axis, when viewing along the negative axis direction towards the origin. When used with a left-handed coordinate system, the rotation is clockwise.

        If M is this matrix and R the rotation matrix, then the new matrix will be M * R. So when transforming a vector v with the new matrix by using M * R * v, the rotation will be applied first!

        Reference: http://en.wikipedia.org

        Specified by:
        rotateX in interface Matrix4fc
        Parameters:
        ang - the angle in radians
        dest - will hold the result
        Returns:
        dest
      • rotateX

        public Matrix4f rotateX​(float ang)
        Apply rotation about the X axis to this matrix by rotating the given amount of radians.

        When used with a right-handed coordinate system, the produced rotation will rotate a vector counter-clockwise around the rotation axis, when viewing along the negative axis direction towards the origin. When used with a left-handed coordinate system, the rotation is clockwise.

        If M is this matrix and R the rotation matrix, then the new matrix will be M * R. So when transforming a vector v with the new matrix by using M * R * v, the rotation will be applied first!

        Reference: http://en.wikipedia.org

        Parameters:
        ang - the angle in radians
        Returns:
        a matrix holding the result
      • rotateY

        public Matrix4f rotateY​(float ang,
                                Matrix4f dest)
        Description copied from interface: Matrix4fc
        Apply rotation about the Y axis to this matrix by rotating the given amount of radians and store the result in dest.

        When used with a right-handed coordinate system, the produced rotation will rotate a vector counter-clockwise around the rotation axis, when viewing along the negative axis direction towards the origin. When used with a left-handed coordinate system, the rotation is clockwise.

        If M is this matrix and R the rotation matrix, then the new matrix will be M * R. So when transforming a vector v with the new matrix by using M * R * v, the rotation will be applied first!

        Reference: http://en.wikipedia.org

        Specified by:
        rotateY in interface Matrix4fc
        Parameters:
        ang - the angle in radians
        dest - will hold the result
        Returns:
        dest
      • rotateY

        public Matrix4f rotateY​(float ang)
        Apply rotation about the Y axis to this matrix by rotating the given amount of radians.

        When used with a right-handed coordinate system, the produced rotation will rotate a vector counter-clockwise around the rotation axis, when viewing along the negative axis direction towards the origin. When used with a left-handed coordinate system, the rotation is clockwise.

        If M is this matrix and R the rotation matrix, then the new matrix will be M * R. So when transforming a vector v with the new matrix by using M * R * v, the rotation will be applied first!

        Reference: http://en.wikipedia.org

        Parameters:
        ang - the angle in radians
        Returns:
        a matrix holding the result
      • rotateZ

        public Matrix4f rotateZ​(float ang,
                                Matrix4f dest)
        Description copied from interface: Matrix4fc
        Apply rotation about the Z axis to this matrix by rotating the given amount of radians and store the result in dest.

        When used with a right-handed coordinate system, the produced rotation will rotate a vector counter-clockwise around the rotation axis, when viewing along the negative axis direction towards the origin. When used with a left-handed coordinate system, the rotation is clockwise.

        If M is this matrix and R the rotation matrix, then the new matrix will be M * R. So when transforming a vector v with the new matrix by using M * R * v, the rotation will be applied first!

        Reference: http://en.wikipedia.org

        Specified by:
        rotateZ in interface Matrix4fc
        Parameters:
        ang - the angle in radians
        dest - will hold the result
        Returns:
        dest
      • rotateZ

        public Matrix4f rotateZ​(float ang)
        Apply rotation about the Z axis to this matrix by rotating the given amount of radians.

        When used with a right-handed coordinate system, the produced rotation will rotate a vector counter-clockwise around the rotation axis, when viewing along the negative axis direction towards the origin. When used with a left-handed coordinate system, the rotation is clockwise.

        If M is this matrix and R the rotation matrix, then the new matrix will be M * R. So when transforming a vector v with the new matrix by using M * R * v, the rotation will be applied first!

        Reference: http://en.wikipedia.org

        Parameters:
        ang - the angle in radians
        Returns:
        a matrix holding the result
      • rotateTowardsXY

        public Matrix4f rotateTowardsXY​(float dirX,
                                        float dirY)
        Apply rotation about the Z axis to align the local +X towards (dirX, dirY).

        If M is this matrix and R the rotation matrix, then the new matrix will be M * R. So when transforming a vector v with the new matrix by using M * R * v, the rotation will be applied first!

        The vector (dirX, dirY) must be a unit vector.

        Parameters:
        dirX - the x component of the normalized direction
        dirY - the y component of the normalized direction
        Returns:
        a matrix holding the result
      • rotateTowardsXY

        public Matrix4f rotateTowardsXY​(float dirX,
                                        float dirY,
                                        Matrix4f dest)
        Description copied from interface: Matrix4fc
        Apply rotation about the Z axis to align the local +X towards (dirX, dirY) and store the result in dest.

        If M is this matrix and R the rotation matrix, then the new matrix will be M * R. So when transforming a vector v with the new matrix by using M * R * v, the rotation will be applied first!

        The vector (dirX, dirY) must be a unit vector.

        Specified by:
        rotateTowardsXY in interface Matrix4fc
        Parameters:
        dirX - the x component of the normalized direction
        dirY - the y component of the normalized direction
        dest - will hold the result
        Returns:
        this
      • rotateXYZ

        public Matrix4f rotateXYZ​(Vector3f angles)
        Apply rotation of angles.x radians about the X axis, followed by a rotation of angles.y radians about the Y axis and followed by a rotation of angles.z radians about the Z axis.

        When used with a right-handed coordinate system, the produced rotation will rotate a vector counter-clockwise around the rotation axis, when viewing along the negative axis direction towards the origin. When used with a left-handed coordinate system, the rotation is clockwise.

        If M is this matrix and R the rotation matrix, then the new matrix will be M * R. So when transforming a vector v with the new matrix by using M * R * v, the rotation will be applied first!

        This method is equivalent to calling: rotateX(angles.x).rotateY(angles.y).rotateZ(angles.z)

        Parameters:
        angles - the Euler angles
        Returns:
        this
      • rotateXYZ

        public Matrix4f rotateXYZ​(float angleX,
                                  float angleY,
                                  float angleZ)
        Apply rotation of angleX radians about the X axis, followed by a rotation of angleY radians about the Y axis and followed by a rotation of angleZ radians about the Z axis.

        When used with a right-handed coordinate system, the produced rotation will rotate a vector counter-clockwise around the rotation axis, when viewing along the negative axis direction towards the origin. When used with a left-handed coordinate system, the rotation is clockwise.

        If M is this matrix and R the rotation matrix, then the new matrix will be M * R. So when transforming a vector v with the new matrix by using M * R * v, the rotation will be applied first!

        This method is equivalent to calling: rotateX(angleX).rotateY(angleY).rotateZ(angleZ)

        Parameters:
        angleX - the angle to rotate about X
        angleY - the angle to rotate about Y
        angleZ - the angle to rotate about Z
        Returns:
        a matrix holding the result
      • rotateXYZ

        public Matrix4f rotateXYZ​(float angleX,
                                  float angleY,
                                  float angleZ,
                                  Matrix4f dest)
        Description copied from interface: Matrix4fc
        Apply rotation of angleX radians about the X axis, followed by a rotation of angleY radians about the Y axis and followed by a rotation of angleZ radians about the Z axis and store the result in dest.

        When used with a right-handed coordinate system, the produced rotation will rotate a vector counter-clockwise around the rotation axis, when viewing along the negative axis direction towards the origin. When used with a left-handed coordinate system, the rotation is clockwise.

        If M is this matrix and R the rotation matrix, then the new matrix will be M * R. So when transforming a vector v with the new matrix by using M * R * v, the rotation will be applied first!

        This method is equivalent to calling: rotateX(angleX, dest).rotateY(angleY).rotateZ(angleZ)

        Specified by:
        rotateXYZ in interface Matrix4fc
        Parameters:
        angleX - the angle to rotate about X
        angleY - the angle to rotate about Y
        angleZ - the angle to rotate about Z
        dest - will hold the result
        Returns:
        dest
      • rotateAffineXYZ

        public Matrix4f rotateAffineXYZ​(float angleX,
                                        float angleY,
                                        float angleZ)
        Apply rotation of angleX radians about the X axis, followed by a rotation of angleY radians about the Y axis and followed by a rotation of angleZ radians about the Z axis.

        When used with a right-handed coordinate system, the produced rotation will rotate a vector counter-clockwise around the rotation axis, when viewing along the negative axis direction towards the origin. When used with a left-handed coordinate system, the rotation is clockwise.

        This method assumes that this matrix represents an affine transformation (i.e. its last row is equal to (0, 0, 0, 1)) and can be used to speed up matrix multiplication if the matrix only represents affine transformations, such as translation, rotation, scaling and shearing (in any combination).

        If M is this matrix and R the rotation matrix, then the new matrix will be M * R. So when transforming a vector v with the new matrix by using M * R * v, the rotation will be applied first!

        This method is equivalent to calling: rotateX(angleX).rotateY(angleY).rotateZ(angleZ)

        Parameters:
        angleX - the angle to rotate about X
        angleY - the angle to rotate about Y
        angleZ - the angle to rotate about Z
        Returns:
        a matrix holding the result
      • rotateAffineXYZ

        public Matrix4f rotateAffineXYZ​(float angleX,
                                        float angleY,
                                        float angleZ,
                                        Matrix4f dest)
        Description copied from interface: Matrix4fc
        Apply rotation of angleX radians about the X axis, followed by a rotation of angleY radians about the Y axis and followed by a rotation of angleZ radians about the Z axis and store the result in dest.

        When used with a right-handed coordinate system, the produced rotation will rotate a vector counter-clockwise around the rotation axis, when viewing along the negative axis direction towards the origin. When used with a left-handed coordinate system, the rotation is clockwise.

        This method assumes that this matrix represents an affine transformation (i.e. its last row is equal to (0, 0, 0, 1)) and can be used to speed up matrix multiplication if the matrix only represents affine transformations, such as translation, rotation, scaling and shearing (in any combination).

        If M is this matrix and R the rotation matrix, then the new matrix will be M * R. So when transforming a vector v with the new matrix by using M * R * v, the rotation will be applied first!

        Specified by:
        rotateAffineXYZ in interface Matrix4fc
        Parameters:
        angleX - the angle to rotate about X
        angleY - the angle to rotate about Y
        angleZ - the angle to rotate about Z
        dest - will hold the result
        Returns:
        dest
      • rotateZYX

        public Matrix4f rotateZYX​(Vector3f angles)
        Apply rotation of angles.z radians about the Z axis, followed by a rotation of angles.y radians about the Y axis and followed by a rotation of angles.x radians about the X axis.

        When used with a right-handed coordinate system, the produced rotation will rotate a vector counter-clockwise around the rotation axis, when viewing along the negative axis direction towards the origin. When used with a left-handed coordinate system, the rotation is clockwise.

        If M is this matrix and R the rotation matrix, then the new matrix will be M * R. So when transforming a vector v with the new matrix by using M * R * v, the rotation will be applied first!

        This method is equivalent to calling: rotateZ(angles.z).rotateY(angles.y).rotateX(angles.x)

        Parameters:
        angles - the Euler angles
        Returns:
        this
      • rotateZYX

        public Matrix4f rotateZYX​(float angleZ,
                                  float angleY,
                                  float angleX)
        Apply rotation of angleZ radians about the Z axis, followed by a rotation of angleY radians about the Y axis and followed by a rotation of angleX radians about the X axis.

        When used with a right-handed coordinate system, the produced rotation will rotate a vector counter-clockwise around the rotation axis, when viewing along the negative axis direction towards the origin. When used with a left-handed coordinate system, the rotation is clockwise.

        If M is this matrix and R the rotation matrix, then the new matrix will be M * R. So when transforming a vector v with the new matrix by using M * R * v, the rotation will be applied first!

        This method is equivalent to calling: rotateZ(angleZ).rotateY(angleY).rotateX(angleX)

        Parameters:
        angleZ - the angle to rotate about Z
        angleY - the angle to rotate about Y
        angleX - the angle to rotate about X
        Returns:
        a matrix holding the result
      • rotateZYX

        public Matrix4f rotateZYX​(float angleZ,
                                  float angleY,
                                  float angleX,
                                  Matrix4f dest)
        Description copied from interface: Matrix4fc
        Apply rotation of angleZ radians about the Z axis, followed by a rotation of angleY radians about the Y axis and followed by a rotation of angleX radians about the X axis and store the result in dest.

        When used with a right-handed coordinate system, the produced rotation will rotate a vector counter-clockwise around the rotation axis, when viewing along the negative axis direction towards the origin. When used with a left-handed coordinate system, the rotation is clockwise.

        If M is this matrix and R the rotation matrix, then the new matrix will be M * R. So when transforming a vector v with the new matrix by using M * R * v, the rotation will be applied first!

        This method is equivalent to calling: rotateZ(angleZ, dest).rotateY(angleY).rotateX(angleX)

        Specified by:
        rotateZYX in interface Matrix4fc
        Parameters:
        angleZ - the angle to rotate about Z
        angleY - the angle to rotate about Y
        angleX - the angle to rotate about X
        dest - will hold the result
        Returns:
        dest
      • rotateAffineZYX

        public Matrix4f rotateAffineZYX​(float angleZ,
                                        float angleY,
                                        float angleX)
        Apply rotation of angleZ radians about the Z axis, followed by a rotation of angleY radians about the Y axis and followed by a rotation of angleX radians about the X axis.

        When used with a right-handed coordinate system, the produced rotation will rotate a vector counter-clockwise around the rotation axis, when viewing along the negative axis direction towards the origin. When used with a left-handed coordinate system, the rotation is clockwise.

        This method assumes that this matrix represents an affine transformation (i.e. its last row is equal to (0, 0, 0, 1)) and can be used to speed up matrix multiplication if the matrix only represents affine transformations, such as translation, rotation, scaling and shearing (in any combination).

        If M is this matrix and R the rotation matrix, then the new matrix will be M * R. So when transforming a vector v with the new matrix by using M * R * v, the rotation will be applied first!

        Parameters:
        angleZ - the angle to rotate about Z
        angleY - the angle to rotate about Y
        angleX - the angle to rotate about X
        Returns:
        a matrix holding the result
      • rotateAffineZYX

        public Matrix4f rotateAffineZYX​(float angleZ,
                                        float angleY,
                                        float angleX,
                                        Matrix4f dest)
        Description copied from interface: Matrix4fc
        Apply rotation of angleZ radians about the Z axis, followed by a rotation of angleY radians about the Y axis and followed by a rotation of angleX radians about the X axis and store the result in dest.

        When used with a right-handed coordinate system, the produced rotation will rotate a vector counter-clockwise around the rotation axis, when viewing along the negative axis direction towards the origin. When used with a left-handed coordinate system, the rotation is clockwise.

        This method assumes that this matrix represents an affine transformation (i.e. its last row is equal to (0, 0, 0, 1)) and can be used to speed up matrix multiplication if the matrix only represents affine transformations, such as translation, rotation, scaling and shearing (in any combination).

        If M is this matrix and R the rotation matrix, then the new matrix will be M * R. So when transforming a vector v with the new matrix by using M * R * v, the rotation will be applied first!

        Specified by:
        rotateAffineZYX in interface Matrix4fc
        Parameters:
        angleZ - the angle to rotate about Z
        angleY - the angle to rotate about Y
        angleX - the angle to rotate about X
        dest - will hold the result
        Returns:
        dest
      • rotateYXZ

        public Matrix4f rotateYXZ​(Vector3f angles)
        Apply rotation of angles.y radians about the Y axis, followed by a rotation of angles.x radians about the X axis and followed by a rotation of angles.z radians about the Z axis.

        When used with a right-handed coordinate system, the produced rotation will rotate a vector counter-clockwise around the rotation axis, when viewing along the negative axis direction towards the origin. When used with a left-handed coordinate system, the rotation is clockwise.

        If M is this matrix and R the rotation matrix, then the new matrix will be M * R. So when transforming a vector v with the new matrix by using M * R * v, the rotation will be applied first!

        This method is equivalent to calling: rotateY(angles.y).rotateX(angles.x).rotateZ(angles.z)

        Parameters:
        angles - the Euler angles
        Returns:
        this
      • rotateYXZ

        public Matrix4f rotateYXZ​(float angleY,
                                  float angleX,
                                  float angleZ)
        Apply rotation of angleY radians about the Y axis, followed by a rotation of angleX radians about the X axis and followed by a rotation of angleZ radians about the Z axis.

        When used with a right-handed coordinate system, the produced rotation will rotate a vector counter-clockwise around the rotation axis, when viewing along the negative axis direction towards the origin. When used with a left-handed coordinate system, the rotation is clockwise.

        If M is this matrix and R the rotation matrix, then the new matrix will be M * R. So when transforming a vector v with the new matrix by using M * R * v, the rotation will be applied first!

        This method is equivalent to calling: rotateY(angleY).rotateX(angleX).rotateZ(angleZ)

        Parameters:
        angleY - the angle to rotate about Y
        angleX - the angle to rotate about X
        angleZ - the angle to rotate about Z
        Returns:
        a matrix holding the result
      • rotateYXZ

        public Matrix4f rotateYXZ​(float angleY,
                                  float angleX,
                                  float angleZ,
                                  Matrix4f dest)
        Description copied from interface: Matrix4fc
        Apply rotation of angleY radians about the Y axis, followed by a rotation of angleX radians about the X axis and followed by a rotation of angleZ radians about the Z axis and store the result in dest.

        When used with a right-handed coordinate system, the produced rotation will rotate a vector counter-clockwise around the rotation axis, when viewing along the negative axis direction towards the origin. When used with a left-handed coordinate system, the rotation is clockwise.

        If M is this matrix and R the rotation matrix, then the new matrix will be M * R. So when transforming a vector v with the new matrix by using M * R * v, the rotation will be applied first!

        This method is equivalent to calling: rotateY(angleY, dest).rotateX(angleX).rotateZ(angleZ)

        Specified by:
        rotateYXZ in interface Matrix4fc
        Parameters:
        angleY - the angle to rotate about Y
        angleX - the angle to rotate about X
        angleZ - the angle to rotate about Z
        dest - will hold the result
        Returns:
        dest
      • rotateAffineYXZ

        public Matrix4f rotateAffineYXZ​(float angleY,
                                        float angleX,
                                        float angleZ)
        Apply rotation of angleY radians about the Y axis, followed by a rotation of angleX radians about the X axis and followed by a rotation of angleZ radians about the Z axis.

        When used with a right-handed coordinate system, the produced rotation will rotate a vector counter-clockwise around the rotation axis, when viewing along the negative axis direction towards the origin. When used with a left-handed coordinate system, the rotation is clockwise.

        This method assumes that this matrix represents an affine transformation (i.e. its last row is equal to (0, 0, 0, 1)) and can be used to speed up matrix multiplication if the matrix only represents affine transformations, such as translation, rotation, scaling and shearing (in any combination).

        If M is this matrix and R the rotation matrix, then the new matrix will be M * R. So when transforming a vector v with the new matrix by using M * R * v, the rotation will be applied first!

        Parameters:
        angleY - the angle to rotate about Y
        angleX - the angle to rotate about X
        angleZ - the angle to rotate about Z
        Returns:
        a matrix holding the result
      • rotateAffineYXZ

        public Matrix4f rotateAffineYXZ​(float angleY,
                                        float angleX,
                                        float angleZ,
                                        Matrix4f dest)
        Description copied from interface: Matrix4fc
        Apply rotation of angleY radians about the Y axis, followed by a rotation of angleX radians about the X axis and followed by a rotation of angleZ radians about the Z axis and store the result in dest.

        When used with a right-handed coordinate system, the produced rotation will rotate a vector counter-clockwise around the rotation axis, when viewing along the negative axis direction towards the origin. When used with a left-handed coordinate system, the rotation is clockwise.

        This method assumes that this matrix represents an affine transformation (i.e. its last row is equal to (0, 0, 0, 1)) and can be used to speed up matrix multiplication if the matrix only represents affine transformations, such as translation, rotation, scaling and shearing (in any combination).

        If M is this matrix and R the rotation matrix, then the new matrix will be M * R. So when transforming a vector v with the new matrix by using M * R * v, the rotation will be applied first!

        Specified by:
        rotateAffineYXZ in interface Matrix4fc
        Parameters:
        angleY - the angle to rotate about Y
        angleX - the angle to rotate about X
        angleZ - the angle to rotate about Z
        dest - will hold the result
        Returns:
        dest
      • rotate

        public Matrix4f rotate​(float ang,
                               float x,
                               float y,
                               float z,
                               Matrix4f dest)
        Apply rotation to this matrix by rotating the given amount of radians about the specified (x, y, z) axis and store the result in dest.

        The axis described by the three components needs to be a unit vector.

        When used with a right-handed coordinate system, the produced rotation will rotate a vector counter-clockwise around the rotation axis, when viewing along the negative axis direction towards the origin. When used with a left-handed coordinate system, the rotation is clockwise.

        If M is this matrix and R the rotation matrix, then the new matrix will be M * R. So when transforming a vector v with the new matrix by using M * R * v, the rotation will be applied first!

        In order to set the matrix to a rotation matrix without post-multiplying the rotation transformation, use rotation().

        Reference: http://en.wikipedia.org

        Specified by:
        rotate in interface Matrix4fc
        Parameters:
        ang - the angle in radians
        x - the x component of the axis
        y - the y component of the axis
        z - the z component of the axis
        dest - will hold the result
        Returns:
        dest
        See Also:
        rotation(float, float, float, float)
      • rotate

        public Matrix4f rotate​(float ang,
                               float x,
                               float y,
                               float z)
        Apply rotation to this matrix by rotating the given amount of radians about the specified (x, y, z) axis.

        The axis described by the three components needs to be a unit vector.

        When used with a right-handed coordinate system, the produced rotation will rotate a vector counter-clockwise around the rotation axis, when viewing along the negative axis direction towards the origin. When used with a left-handed coordinate system, the rotation is clockwise.

        If M is this matrix and R the rotation matrix, then the new matrix will be M * R. So when transforming a vector v with the new matrix by using M * R * v, the rotation will be applied first!

        In order to set the matrix to a rotation matrix without post-multiplying the rotation transformation, use rotation().

        Reference: http://en.wikipedia.org

        Parameters:
        ang - the angle in radians
        x - the x component of the axis
        y - the y component of the axis
        z - the z component of the axis
        Returns:
        a matrix holding the result
        See Also:
        rotation(float, float, float, float)
      • rotateTranslation

        public Matrix4f rotateTranslation​(float ang,
                                          float x,
                                          float y,
                                          float z,
                                          Matrix4f dest)
        Apply rotation to this matrix, which is assumed to only contain a translation, by rotating the given amount of radians about the specified (x, y, z) axis and store the result in dest.

        This method assumes this to only contain a translation.

        The axis described by the three components needs to be a unit vector.

        When used with a right-handed coordinate system, the produced rotation will rotate a vector counter-clockwise around the rotation axis, when viewing along the negative axis direction towards the origin. When used with a left-handed coordinate system, the rotation is clockwise.

        If M is this matrix and R the rotation matrix, then the new matrix will be M * R. So when transforming a vector v with the new matrix by using M * R * v, the rotation will be applied first!

        In order to set the matrix to a rotation matrix without post-multiplying the rotation transformation, use rotation().

        Reference: http://en.wikipedia.org

        Specified by:
        rotateTranslation in interface Matrix4fc
        Parameters:
        ang - the angle in radians
        x - the x component of the axis
        y - the y component of the axis
        z - the z component of the axis
        dest - will hold the result
        Returns:
        dest
        See Also:
        rotation(float, float, float, float)
      • rotateAffine

        public Matrix4f rotateAffine​(float ang,
                                     float x,
                                     float y,
                                     float z,
                                     Matrix4f dest)
        Apply rotation to this affine matrix by rotating the given amount of radians about the specified (x, y, z) axis and store the result in dest.

        This method assumes this to be affine.

        The axis described by the three components needs to be a unit vector.

        When used with a right-handed coordinate system, the produced rotation will rotate a vector counter-clockwise around the rotation axis, when viewing along the negative axis direction towards the origin. When used with a left-handed coordinate system, the rotation is clockwise.

        If M is this matrix and R the rotation matrix, then the new matrix will be M * R. So when transforming a vector v with the new matrix by using M * R * v, the rotation will be applied first!

        In order to set the matrix to a rotation matrix without post-multiplying the rotation transformation, use rotation().

        Reference: http://en.wikipedia.org

        Specified by:
        rotateAffine in interface Matrix4fc
        Parameters:
        ang - the angle in radians
        x - the x component of the axis
        y - the y component of the axis
        z - the z component of the axis
        dest - will hold the result
        Returns:
        dest
        See Also:
        rotation(float, float, float, float)
      • rotateAffine

        public Matrix4f rotateAffine​(float ang,
                                     float x,
                                     float y,
                                     float z)
        Apply rotation to this affine matrix by rotating the given amount of radians about the specified (x, y, z) axis.

        This method assumes this to be affine.

        The axis described by the three components needs to be a unit vector.

        When used with a right-handed coordinate system, the produced rotation will rotate a vector counter-clockwise around the rotation axis, when viewing along the negative axis direction towards the origin. When used with a left-handed coordinate system, the rotation is clockwise.

        If M is this matrix and R the rotation matrix, then the new matrix will be M * R. So when transforming a vector v with the new matrix by using M * R * v, the rotation will be applied first!

        In order to set the matrix to a rotation matrix without post-multiplying the rotation transformation, use rotation().

        Reference: http://en.wikipedia.org

        Parameters:
        ang - the angle in radians
        x - the x component of the axis
        y - the y component of the axis
        z - the z component of the axis
        Returns:
        a matrix holding the result
        See Also:
        rotation(float, float, float, float)
      • rotateLocal

        public Matrix4f rotateLocal​(float ang,
                                    float x,
                                    float y,
                                    float z,
                                    Matrix4f dest)
        Pre-multiply a rotation to this matrix by rotating the given amount of radians about the specified (x, y, z) axis and store the result in dest.

        The axis described by the three components needs to be a unit vector.

        When used with a right-handed coordinate system, the produced rotation will rotate a vector counter-clockwise around the rotation axis, when viewing along the negative axis direction towards the origin. When used with a left-handed coordinate system, the rotation is clockwise.

        If M is this matrix and R the rotation matrix, then the new matrix will be R * M. So when transforming a vector v with the new matrix by using R * M * v, the rotation will be applied last!

        In order to set the matrix to a rotation matrix without pre-multiplying the rotation transformation, use rotation().

        Reference: http://en.wikipedia.org

        Specified by:
        rotateLocal in interface Matrix4fc
        Parameters:
        ang - the angle in radians
        x - the x component of the axis
        y - the y component of the axis
        z - the z component of the axis
        dest - will hold the result
        Returns:
        dest
        See Also:
        rotation(float, float, float, float)
      • rotateLocal

        public Matrix4f rotateLocal​(float ang,
                                    float x,
                                    float y,
                                    float z)
        Pre-multiply a rotation to this matrix by rotating the given amount of radians about the specified (x, y, z) axis.

        The axis described by the three components needs to be a unit vector.

        When used with a right-handed coordinate system, the produced rotation will rotate a vector counter-clockwise around the rotation axis, when viewing along the negative axis direction towards the origin. When used with a left-handed coordinate system, the rotation is clockwise.

        If M is this matrix and R the rotation matrix, then the new matrix will be R * M. So when transforming a vector v with the new matrix by using R * M * v, the rotation will be applied last!

        In order to set the matrix to a rotation matrix without pre-multiplying the rotation transformation, use rotation().

        Reference: http://en.wikipedia.org

        Parameters:
        ang - the angle in radians
        x - the x component of the axis
        y - the y component of the axis
        z - the z component of the axis
        Returns:
        a matrix holding the result
        See Also:
        rotation(float, float, float, float)
      • rotateLocalX

        public Matrix4f rotateLocalX​(float ang,
                                     Matrix4f dest)
        Pre-multiply a rotation around the X axis to this matrix by rotating the given amount of radians about the X axis and store the result in dest.

        When used with a right-handed coordinate system, the produced rotation will rotate a vector counter-clockwise around the rotation axis, when viewing along the negative axis direction towards the origin. When used with a left-handed coordinate system, the rotation is clockwise.

        If M is this matrix and R the rotation matrix, then the new matrix will be R * M. So when transforming a vector v with the new matrix by using R * M * v, the rotation will be applied last!

        In order to set the matrix to a rotation matrix without pre-multiplying the rotation transformation, use rotationX().

        Reference: http://en.wikipedia.org

        Specified by:
        rotateLocalX in interface Matrix4fc
        Parameters:
        ang - the angle in radians to rotate about the X axis
        dest - will hold the result
        Returns:
        dest
        See Also:
        rotationX(float)
      • rotateLocalX

        public Matrix4f rotateLocalX​(float ang)
        Pre-multiply a rotation to this matrix by rotating the given amount of radians about the X axis.

        When used with a right-handed coordinate system, the produced rotation will rotate a vector counter-clockwise around the rotation axis, when viewing along the negative axis direction towards the origin. When used with a left-handed coordinate system, the rotation is clockwise.

        If M is this matrix and R the rotation matrix, then the new matrix will be R * M. So when transforming a vector v with the new matrix by using R * M * v, the rotation will be applied last!

        In order to set the matrix to a rotation matrix without pre-multiplying the rotation transformation, use rotationX().

        Reference: http://en.wikipedia.org

        Parameters:
        ang - the angle in radians to rotate about the X axis
        Returns:
        a matrix holding the result
        See Also:
        rotationX(float)
      • rotateLocalY

        public Matrix4f rotateLocalY​(float ang,
                                     Matrix4f dest)
        Pre-multiply a rotation around the Y axis to this matrix by rotating the given amount of radians about the Y axis and store the result in dest.

        When used with a right-handed coordinate system, the produced rotation will rotate a vector counter-clockwise around the rotation axis, when viewing along the negative axis direction towards the origin. When used with a left-handed coordinate system, the rotation is clockwise.

        If M is this matrix and R the rotation matrix, then the new matrix will be R * M. So when transforming a vector v with the new matrix by using R * M * v, the rotation will be applied last!

        In order to set the matrix to a rotation matrix without pre-multiplying the rotation transformation, use rotationY().

        Reference: http://en.wikipedia.org

        Specified by:
        rotateLocalY in interface Matrix4fc
        Parameters:
        ang - the angle in radians to rotate about the Y axis
        dest - will hold the result
        Returns:
        dest
        See Also:
        rotationY(float)
      • rotateLocalY

        public Matrix4f rotateLocalY​(float ang)
        Pre-multiply a rotation to this matrix by rotating the given amount of radians about the Y axis.

        When used with a right-handed coordinate system, the produced rotation will rotate a vector counter-clockwise around the rotation axis, when viewing along the negative axis direction towards the origin. When used with a left-handed coordinate system, the rotation is clockwise.

        If M is this matrix and R the rotation matrix, then the new matrix will be R * M. So when transforming a vector v with the new matrix by using R * M * v, the rotation will be applied last!

        In order to set the matrix to a rotation matrix without pre-multiplying the rotation transformation, use rotationY().

        Reference: http://en.wikipedia.org

        Parameters:
        ang - the angle in radians to rotate about the Y axis
        Returns:
        a matrix holding the result
        See Also:
        rotationY(float)
      • rotateLocalZ

        public Matrix4f rotateLocalZ​(float ang,
                                     Matrix4f dest)
        Pre-multiply a rotation around the Z axis to this matrix by rotating the given amount of radians about the Z axis and store the result in dest.

        When used with a right-handed coordinate system, the produced rotation will rotate a vector counter-clockwise around the rotation axis, when viewing along the negative axis direction towards the origin. When used with a left-handed coordinate system, the rotation is clockwise.

        If M is this matrix and R the rotation matrix, then the new matrix will be R * M. So when transforming a vector v with the new matrix by using R * M * v, the rotation will be applied last!

        In order to set the matrix to a rotation matrix without pre-multiplying the rotation transformation, use rotationZ().

        Reference: http://en.wikipedia.org

        Specified by:
        rotateLocalZ in interface Matrix4fc
        Parameters:
        ang - the angle in radians to rotate about the Z axis
        dest - will hold the result
        Returns:
        dest
        See Also:
        rotationZ(float)
      • rotateLocalZ

        public Matrix4f rotateLocalZ​(float ang)
        Pre-multiply a rotation to this matrix by rotating the given amount of radians about the Z axis.

        When used with a right-handed coordinate system, the produced rotation will rotate a vector counter-clockwise around the rotation axis, when viewing along the negative axis direction towards the origin. When used with a left-handed coordinate system, the rotation is clockwise.

        If M is this matrix and R the rotation matrix, then the new matrix will be R * M. So when transforming a vector v with the new matrix by using R * M * v, the rotation will be applied last!

        In order to set the matrix to a rotation matrix without pre-multiplying the rotation transformation, use rotationY().

        Reference: http://en.wikipedia.org

        Parameters:
        ang - the angle in radians to rotate about the Z axis
        Returns:
        a matrix holding the result
        See Also:
        rotationY(float)
      • translate

        public Matrix4f translate​(Vector3fc offset)
        Apply a translation to this matrix by translating by the given number of units in x, y and z.

        If M is this matrix and T the translation matrix, then the new matrix will be M * T. So when transforming a vector v with the new matrix by using M * T * v, the translation will be applied first!

        In order to set the matrix to a translation transformation without post-multiplying it, use translation(Vector3fc).

        Parameters:
        offset - the number of units in x, y and z by which to translate
        Returns:
        this
        See Also:
        translation(Vector3fc)
      • translate

        public Matrix4f translate​(Vector3fc offset,
                                  Matrix4f dest)
        Apply a translation to this matrix by translating by the given number of units in x, y and z and store the result in dest.

        If M is this matrix and T the translation matrix, then the new matrix will be M * T. So when transforming a vector v with the new matrix by using M * T * v, the translation will be applied first!

        In order to set the matrix to a translation transformation without post-multiplying it, use translation(Vector3fc).

        Specified by:
        translate in interface Matrix4fc
        Parameters:
        offset - the number of units in x, y and z by which to translate
        dest - will hold the result
        Returns:
        dest
        See Also:
        translation(Vector3fc)
      • translate

        public Matrix4f translate​(float x,
                                  float y,
                                  float z,
                                  Matrix4f dest)
        Apply a translation to this matrix by translating by the given number of units in x, y and z and store the result in dest.

        If M is this matrix and T the translation matrix, then the new matrix will be M * T. So when transforming a vector v with the new matrix by using M * T * v, the translation will be applied first!

        In order to set the matrix to a translation transformation without post-multiplying it, use translation(float, float, float).

        Specified by:
        translate in interface Matrix4fc
        Parameters:
        x - the offset to translate in x
        y - the offset to translate in y
        z - the offset to translate in z
        dest - will hold the result
        Returns:
        dest
        See Also:
        translation(float, float, float)
      • translate

        public Matrix4f translate​(float x,
                                  float y,
                                  float z)
        Apply a translation to this matrix by translating by the given number of units in x, y and z.

        If M is this matrix and T the translation matrix, then the new matrix will be M * T. So when transforming a vector v with the new matrix by using M * T * v, the translation will be applied first!

        In order to set the matrix to a translation transformation without post-multiplying it, use translation(float, float, float).

        Parameters:
        x - the offset to translate in x
        y - the offset to translate in y
        z - the offset to translate in z
        Returns:
        this
        See Also:
        translation(float, float, float)
      • translateLocal

        public Matrix4f translateLocal​(Vector3fc offset)
        Pre-multiply a translation to this matrix by translating by the given number of units in x, y and z.

        If M is this matrix and T the translation matrix, then the new matrix will be T * M. So when transforming a vector v with the new matrix by using T * M * v, the translation will be applied last!

        In order to set the matrix to a translation transformation without pre-multiplying it, use translation(Vector3fc).

        Parameters:
        offset - the number of units in x, y and z by which to translate
        Returns:
        this
        See Also:
        translation(Vector3fc)
      • translateLocal

        public Matrix4f translateLocal​(Vector3fc offset,
                                       Matrix4f dest)
        Pre-multiply a translation to this matrix by translating by the given number of units in x, y and z and store the result in dest.

        If M is this matrix and T the translation matrix, then the new matrix will be T * M. So when transforming a vector v with the new matrix by using T * M * v, the translation will be applied last!

        In order to set the matrix to a translation transformation without pre-multiplying it, use translation(Vector3fc).

        Specified by:
        translateLocal in interface Matrix4fc
        Parameters:
        offset - the number of units in x, y and z by which to translate
        dest - will hold the result
        Returns:
        dest
        See Also:
        translation(Vector3fc)
      • translateLocal

        public Matrix4f translateLocal​(float x,
                                       float y,
                                       float z,
                                       Matrix4f dest)
        Pre-multiply a translation to this matrix by translating by the given number of units in x, y and z and store the result in dest.

        If M is this matrix and T the translation matrix, then the new matrix will be T * M. So when transforming a vector v with the new matrix by using T * M * v, the translation will be applied last!

        In order to set the matrix to a translation transformation without pre-multiplying it, use translation(float, float, float).

        Specified by:
        translateLocal in interface Matrix4fc
        Parameters:
        x - the offset to translate in x
        y - the offset to translate in y
        z - the offset to translate in z
        dest - will hold the result
        Returns:
        dest
        See Also:
        translation(float, float, float)
      • translateLocal

        public Matrix4f translateLocal​(float x,
                                       float y,
                                       float z)
        Pre-multiply a translation to this matrix by translating by the given number of units in x, y and z.

        If M is this matrix and T the translation matrix, then the new matrix will be T * M. So when transforming a vector v with the new matrix by using T * M * v, the translation will be applied last!

        In order to set the matrix to a translation transformation without pre-multiplying it, use translation(float, float, float).

        Parameters:
        x - the offset to translate in x
        y - the offset to translate in y
        z - the offset to translate in z
        Returns:
        a matrix holding the result
        See Also:
        translation(float, float, float)
      • writeExternal

        public void writeExternal​(java.io.ObjectOutput out)
                           throws java.io.IOException
        Specified by:
        writeExternal in interface java.io.Externalizable
        Throws:
        java.io.IOException
      • readExternal

        public void readExternal​(java.io.ObjectInput in)
                          throws java.io.IOException
        Specified by:
        readExternal in interface java.io.Externalizable
        Throws:
        java.io.IOException
      • ortho

        public Matrix4f ortho​(float left,
                              float right,
                              float bottom,
                              float top,
                              float zNear,
                              float zFar,
                              boolean zZeroToOne,
                              Matrix4f dest)
        Apply an orthographic projection transformation for a right-handed coordinate system using the given NDC z range to this matrix and store the result in dest.

        If M is this matrix and O the orthographic projection matrix, then the new matrix will be M * O. So when transforming a vector v with the new matrix by using M * O * v, the orthographic projection transformation will be applied first!

        In order to set the matrix to an orthographic projection without post-multiplying it, use setOrtho().

        Reference: http://www.songho.ca

        Specified by:
        ortho in interface Matrix4fc
        Parameters:
        left - the distance from the center to the left frustum edge
        right - the distance from the center to the right frustum edge
        bottom - the distance from the center to the bottom frustum edge
        top - the distance from the center to the top frustum edge
        zNear - near clipping plane distance
        zFar - far clipping plane distance
        zZeroToOne - whether to use Vulkan's and Direct3D's NDC z range of [0..+1] when true or whether to use OpenGL's NDC z range of [-1..+1] when false
        dest - will hold the result
        Returns:
        dest
        See Also:
        setOrtho(float, float, float, float, float, float, boolean)
      • ortho

        public Matrix4f ortho​(float left,
                              float right,
                              float bottom,
                              float top,
                              float zNear,
                              float zFar,
                              Matrix4f dest)
        Apply an orthographic projection transformation for a right-handed coordinate system using OpenGL's NDC z range of [-1..+1] to this matrix and store the result in dest.

        If M is this matrix and O the orthographic projection matrix, then the new matrix will be M * O. So when transforming a vector v with the new matrix by using M * O * v, the orthographic projection transformation will be applied first!

        In order to set the matrix to an orthographic projection without post-multiplying it, use setOrtho().

        Reference: http://www.songho.ca

        Specified by:
        ortho in interface Matrix4fc
        Parameters:
        left - the distance from the center to the left frustum edge
        right - the distance from the center to the right frustum edge
        bottom - the distance from the center to the bottom frustum edge
        top - the distance from the center to the top frustum edge
        zNear - near clipping plane distance
        zFar - far clipping plane distance
        dest - will hold the result
        Returns:
        dest
        See Also:
        setOrtho(float, float, float, float, float, float)
      • ortho

        public Matrix4f ortho​(float left,
                              float right,
                              float bottom,
                              float top,
                              float zNear,
                              float zFar,
                              boolean zZeroToOne)
        Apply an orthographic projection transformation for a right-handed coordinate system using the given NDC z range to this matrix.

        If M is this matrix and O the orthographic projection matrix, then the new matrix will be M * O. So when transforming a vector v with the new matrix by using M * O * v, the orthographic projection transformation will be applied first!

        In order to set the matrix to an orthographic projection without post-multiplying it, use setOrtho().

        Reference: http://www.songho.ca

        Parameters:
        left - the distance from the center to the left frustum edge
        right - the distance from the center to the right frustum edge
        bottom - the distance from the center to the bottom frustum edge
        top - the distance from the center to the top frustum edge
        zNear - near clipping plane distance
        zFar - far clipping plane distance
        zZeroToOne - whether to use Vulkan's and Direct3D's NDC z range of [0..+1] when true or whether to use OpenGL's NDC z range of [-1..+1] when false
        Returns:
        a matrix holding the result
        See Also:
        setOrtho(float, float, float, float, float, float, boolean)
      • ortho

        public Matrix4f ortho​(float left,
                              float right,
                              float bottom,
                              float top,
                              float zNear,
                              float zFar)
        Apply an orthographic projection transformation for a right-handed coordinate system using OpenGL's NDC z range of [-1..+1] to this matrix.

        If M is this matrix and O the orthographic projection matrix, then the new matrix will be M * O. So when transforming a vector v with the new matrix by using M * O * v, the orthographic projection transformation will be applied first!

        In order to set the matrix to an orthographic projection without post-multiplying it, use setOrtho().

        Reference: http://www.songho.ca

        Parameters:
        left - the distance from the center to the left frustum edge
        right - the distance from the center to the right frustum edge
        bottom - the distance from the center to the bottom frustum edge
        top - the distance from the center to the top frustum edge
        zNear - near clipping plane distance
        zFar - far clipping plane distance
        Returns:
        this
        See Also:
        setOrtho(float, float, float, float, float, float)
      • orthoLH

        public Matrix4f orthoLH​(float left,
                                float right,
                                float bottom,
                                float top,
                                float zNear,
                                float zFar,
                                boolean zZeroToOne,
                                Matrix4f dest)
        Apply an orthographic projection transformation for a left-handed coordiante system using the given NDC z range to this matrix and store the result in dest.

        If M is this matrix and O the orthographic projection matrix, then the new matrix will be M * O. So when transforming a vector v with the new matrix by using M * O * v, the orthographic projection transformation will be applied first!

        In order to set the matrix to an orthographic projection without post-multiplying it, use setOrthoLH().

        Reference: http://www.songho.ca

        Specified by:
        orthoLH in interface Matrix4fc
        Parameters:
        left - the distance from the center to the left frustum edge
        right - the distance from the center to the right frustum edge
        bottom - the distance from the center to the bottom frustum edge
        top - the distance from the center to the top frustum edge
        zNear - near clipping plane distance
        zFar - far clipping plane distance
        zZeroToOne - whether to use Vulkan's and Direct3D's NDC z range of [0..+1] when true or whether to use OpenGL's NDC z range of [-1..+1] when false
        dest - will hold the result
        Returns:
        dest
        See Also:
        setOrthoLH(float, float, float, float, float, float, boolean)
      • orthoLH

        public Matrix4f orthoLH​(float left,
                                float right,
                                float bottom,
                                float top,
                                float zNear,
                                float zFar,
                                Matrix4f dest)
        Apply an orthographic projection transformation for a left-handed coordiante system using OpenGL's NDC z range of [-1..+1] to this matrix and store the result in dest.

        If M is this matrix and O the orthographic projection matrix, then the new matrix will be M * O. So when transforming a vector v with the new matrix by using M * O * v, the orthographic projection transformation will be applied first!

        In order to set the matrix to an orthographic projection without post-multiplying it, use setOrthoLH().

        Reference: http://www.songho.ca

        Specified by:
        orthoLH in interface Matrix4fc
        Parameters:
        left - the distance from the center to the left frustum edge
        right - the distance from the center to the right frustum edge
        bottom - the distance from the center to the bottom frustum edge
        top - the distance from the center to the top frustum edge
        zNear - near clipping plane distance
        zFar - far clipping plane distance
        dest - will hold the result
        Returns:
        dest
        See Also:
        setOrthoLH(float, float, float, float, float, float)
      • orthoLH

        public Matrix4f orthoLH​(float left,
                                float right,
                                float bottom,
                                float top,
                                float zNear,
                                float zFar,
                                boolean zZeroToOne)
        Apply an orthographic projection transformation for a left-handed coordiante system using the given NDC z range to this matrix.

        If M is this matrix and O the orthographic projection matrix, then the new matrix will be M * O. So when transforming a vector v with the new matrix by using M * O * v, the orthographic projection transformation will be applied first!

        In order to set the matrix to an orthographic projection without post-multiplying it, use setOrthoLH().

        Reference: http://www.songho.ca

        Parameters:
        left - the distance from the center to the left frustum edge
        right - the distance from the center to the right frustum edge
        bottom - the distance from the center to the bottom frustum edge
        top - the distance from the center to the top frustum edge
        zNear - near clipping plane distance
        zFar - far clipping plane distance
        zZeroToOne - whether to use Vulkan's and Direct3D's NDC z range of [0..+1] when true or whether to use OpenGL's NDC z range of [-1..+1] when false
        Returns:
        a matrix holding the result
        See Also:
        setOrthoLH(float, float, float, float, float, float, boolean)
      • orthoLH

        public Matrix4f orthoLH​(float left,
                                float right,
                                float bottom,
                                float top,
                                float zNear,
                                float zFar)
        Apply an orthographic projection transformation for a left-handed coordiante system using OpenGL's NDC z range of [-1..+1] to this matrix.

        If M is this matrix and O the orthographic projection matrix, then the new matrix will be M * O. So when transforming a vector v with the new matrix by using M * O * v, the orthographic projection transformation will be applied first!

        In order to set the matrix to an orthographic projection without post-multiplying it, use setOrthoLH().

        Reference: http://www.songho.ca

        Parameters:
        left - the distance from the center to the left frustum edge
        right - the distance from the center to the right frustum edge
        bottom - the distance from the center to the bottom frustum edge
        top - the distance from the center to the top frustum edge
        zNear - near clipping plane distance
        zFar - far clipping plane distance
        Returns:
        this
        See Also:
        setOrthoLH(float, float, float, float, float, float)
      • setOrtho

        public Matrix4f setOrtho​(float left,
                                 float right,
                                 float bottom,
                                 float top,
                                 float zNear,
                                 float zFar,
                                 boolean zZeroToOne)
        Set this matrix to be an orthographic projection transformation for a right-handed coordinate system using the given NDC z range.

        In order to apply the orthographic projection to an already existing transformation, use ortho().

        Reference: http://www.songho.ca

        Parameters:
        left - the distance from the center to the left frustum edge
        right - the distance from the center to the right frustum edge
        bottom - the distance from the center to the bottom frustum edge
        top - the distance from the center to the top frustum edge
        zNear - near clipping plane distance
        zFar - far clipping plane distance
        zZeroToOne - whether to use Vulkan's and Direct3D's NDC z range of [0..+1] when true or whether to use OpenGL's NDC z range of [-1..+1] when false
        Returns:
        this
        See Also:
        ortho(float, float, float, float, float, float, boolean)
      • setOrtho

        public Matrix4f setOrtho​(float left,
                                 float right,
                                 float bottom,
                                 float top,
                                 float zNear,
                                 float zFar)
        Set this matrix to be an orthographic projection transformation for a right-handed coordinate system using OpenGL's NDC z range of [-1..+1].

        In order to apply the orthographic projection to an already existing transformation, use ortho().

        Reference: http://www.songho.ca

        Parameters:
        left - the distance from the center to the left frustum edge
        right - the distance from the center to the right frustum edge
        bottom - the distance from the center to the bottom frustum edge
        top - the distance from the center to the top frustum edge
        zNear - near clipping plane distance
        zFar - far clipping plane distance
        Returns:
        this
        See Also:
        ortho(float, float, float, float, float, float)
      • setOrthoLH

        public Matrix4f setOrthoLH​(float left,
                                   float right,
                                   float bottom,
                                   float top,
                                   float zNear,
                                   float zFar,
                                   boolean zZeroToOne)
        Set this matrix to be an orthographic projection transformation for a left-handed coordinate system using the given NDC z range.

        In order to apply the orthographic projection to an already existing transformation, use orthoLH().

        Reference: http://www.songho.ca

        Parameters:
        left - the distance from the center to the left frustum edge
        right - the distance from the center to the right frustum edge
        bottom - the distance from the center to the bottom frustum edge
        top - the distance from the center to the top frustum edge
        zNear - near clipping plane distance
        zFar - far clipping plane distance
        zZeroToOne - whether to use Vulkan's and Direct3D's NDC z range of [0..+1] when true or whether to use OpenGL's NDC z range of [-1..+1] when false
        Returns:
        this
        See Also:
        orthoLH(float, float, float, float, float, float, boolean)
      • setOrthoLH

        public Matrix4f setOrthoLH​(float left,
                                   float right,
                                   float bottom,
                                   float top,
                                   float zNear,
                                   float zFar)
        Set this matrix to be an orthographic projection transformation for a left-handed coordinate system using OpenGL's NDC z range of [-1..+1].

        In order to apply the orthographic projection to an already existing transformation, use orthoLH().

        Reference: http://www.songho.ca

        Parameters:
        left - the distance from the center to the left frustum edge
        right - the distance from the center to the right frustum edge
        bottom - the distance from the center to the bottom frustum edge
        top - the distance from the center to the top frustum edge
        zNear - near clipping plane distance
        zFar - far clipping plane distance
        Returns:
        this
        See Also:
        orthoLH(float, float, float, float, float, float)
      • orthoSymmetric

        public Matrix4f orthoSymmetric​(float width,
                                       float height,
                                       float zNear,
                                       float zFar,
                                       boolean zZeroToOne,
                                       Matrix4f dest)
        Apply a symmetric orthographic projection transformation for a right-handed coordinate system using the given NDC z range to this matrix and store the result in dest.

        This method is equivalent to calling ortho() with left=-width/2, right=+width/2, bottom=-height/2 and top=+height/2.

        If M is this matrix and O the orthographic projection matrix, then the new matrix will be M * O. So when transforming a vector v with the new matrix by using M * O * v, the orthographic projection transformation will be applied first!

        In order to set the matrix to a symmetric orthographic projection without post-multiplying it, use setOrthoSymmetric().

        Reference: http://www.songho.ca

        Specified by:
        orthoSymmetric in interface Matrix4fc
        Parameters:
        width - the distance between the right and left frustum edges
        height - the distance between the top and bottom frustum edges
        zNear - near clipping plane distance
        zFar - far clipping plane distance
        dest - will hold the result
        zZeroToOne - whether to use Vulkan's and Direct3D's NDC z range of [0..+1] when true or whether to use OpenGL's NDC z range of [-1..+1] when false
        Returns:
        dest
        See Also:
        setOrthoSymmetric(float, float, float, float, boolean)
      • orthoSymmetric

        public Matrix4f orthoSymmetric​(float width,
                                       float height,
                                       float zNear,
                                       float zFar,
                                       Matrix4f dest)
        Apply a symmetric orthographic projection transformation for a right-handed coordinate system using OpenGL's NDC z range of [-1..+1] to this matrix and store the result in dest.

        This method is equivalent to calling ortho() with left=-width/2, right=+width/2, bottom=-height/2 and top=+height/2.

        If M is this matrix and O the orthographic projection matrix, then the new matrix will be M * O. So when transforming a vector v with the new matrix by using M * O * v, the orthographic projection transformation will be applied first!

        In order to set the matrix to a symmetric orthographic projection without post-multiplying it, use setOrthoSymmetric().

        Reference: http://www.songho.ca

        Specified by:
        orthoSymmetric in interface Matrix4fc
        Parameters:
        width - the distance between the right and left frustum edges
        height - the distance between the top and bottom frustum edges
        zNear - near clipping plane distance
        zFar - far clipping plane distance
        dest - will hold the result
        Returns:
        dest
        See Also:
        setOrthoSymmetric(float, float, float, float)
      • orthoSymmetric

        public Matrix4f orthoSymmetric​(float width,
                                       float height,
                                       float zNear,
                                       float zFar,
                                       boolean zZeroToOne)
        Apply a symmetric orthographic projection transformation for a right-handed coordinate system using the given NDC z range to this matrix.

        This method is equivalent to calling ortho() with left=-width/2, right=+width/2, bottom=-height/2 and top=+height/2.

        If M is this matrix and O the orthographic projection matrix, then the new matrix will be M * O. So when transforming a vector v with the new matrix by using M * O * v, the orthographic projection transformation will be applied first!

        In order to set the matrix to a symmetric orthographic projection without post-multiplying it, use setOrthoSymmetric().

        Reference: http://www.songho.ca

        Parameters:
        width - the distance between the right and left frustum edges
        height - the distance between the top and bottom frustum edges
        zNear - near clipping plane distance
        zFar - far clipping plane distance
        zZeroToOne - whether to use Vulkan's and Direct3D's NDC z range of [0..+1] when true or whether to use OpenGL's NDC z range of [-1..+1] when false
        Returns:
        a matrix holding the result
        See Also:
        setOrthoSymmetric(float, float, float, float, boolean)
      • orthoSymmetric

        public Matrix4f orthoSymmetric​(float width,
                                       float height,
                                       float zNear,
                                       float zFar)
        Apply a symmetric orthographic projection transformation for a right-handed coordinate system using OpenGL's NDC z range of [-1..+1] to this matrix.

        This method is equivalent to calling ortho() with left=-width/2, right=+width/2, bottom=-height/2 and top=+height/2.

        If M is this matrix and O the orthographic projection matrix, then the new matrix will be M * O. So when transforming a vector v with the new matrix by using M * O * v, the orthographic projection transformation will be applied first!

        In order to set the matrix to a symmetric orthographic projection without post-multiplying it, use setOrthoSymmetric().

        Reference: http://www.songho.ca

        Parameters:
        width - the distance between the right and left frustum edges
        height - the distance between the top and bottom frustum edges
        zNear - near clipping plane distance
        zFar - far clipping plane distance
        Returns:
        a matrix holding the result
        See Also:
        setOrthoSymmetric(float, float, float, float)
      • orthoSymmetricLH

        public Matrix4f orthoSymmetricLH​(float width,
                                         float height,
                                         float zNear,
                                         float zFar,
                                         boolean zZeroToOne,
                                         Matrix4f dest)
        Apply a symmetric orthographic projection transformation for a left-handed coordinate system using the given NDC z range to this matrix and store the result in dest.

        This method is equivalent to calling orthoLH() with left=-width/2, right=+width/2, bottom=-height/2 and top=+height/2.

        If M is this matrix and O the orthographic projection matrix, then the new matrix will be M * O. So when transforming a vector v with the new matrix by using M * O * v, the orthographic projection transformation will be applied first!

        In order to set the matrix to a symmetric orthographic projection without post-multiplying it, use setOrthoSymmetricLH().

        Reference: http://www.songho.ca

        Specified by:
        orthoSymmetricLH in interface Matrix4fc
        Parameters:
        width - the distance between the right and left frustum edges
        height - the distance between the top and bottom frustum edges
        zNear - near clipping plane distance
        zFar - far clipping plane distance
        dest - will hold the result
        zZeroToOne - whether to use Vulkan's and Direct3D's NDC z range of [0..+1] when true or whether to use OpenGL's NDC z range of [-1..+1] when false
        Returns:
        dest
        See Also:
        setOrthoSymmetricLH(float, float, float, float, boolean)
      • orthoSymmetricLH

        public Matrix4f orthoSymmetricLH​(float width,
                                         float height,
                                         float zNear,
                                         float zFar,
                                         Matrix4f dest)
        Apply a symmetric orthographic projection transformation for a left-handed coordinate system using OpenGL's NDC z range of [-1..+1] to this matrix and store the result in dest.

        This method is equivalent to calling orthoLH() with left=-width/2, right=+width/2, bottom=-height/2 and top=+height/2.

        If M is this matrix and O the orthographic projection matrix, then the new matrix will be M * O. So when transforming a vector v with the new matrix by using M * O * v, the orthographic projection transformation will be applied first!

        In order to set the matrix to a symmetric orthographic projection without post-multiplying it, use setOrthoSymmetricLH().

        Reference: http://www.songho.ca

        Specified by:
        orthoSymmetricLH in interface Matrix4fc
        Parameters:
        width - the distance between the right and left frustum edges
        height - the distance between the top and bottom frustum edges
        zNear - near clipping plane distance
        zFar - far clipping plane distance
        dest - will hold the result
        Returns:
        dest
        See Also:
        setOrthoSymmetricLH(float, float, float, float)
      • orthoSymmetricLH

        public Matrix4f orthoSymmetricLH​(float width,
                                         float height,
                                         float zNear,
                                         float zFar,
                                         boolean zZeroToOne)
        Apply a symmetric orthographic projection transformation for a left-handed coordinate system using the given NDC z range to this matrix.

        This method is equivalent to calling orthoLH() with left=-width/2, right=+width/2, bottom=-height/2 and top=+height/2.

        If M is this matrix and O the orthographic projection matrix, then the new matrix will be M * O. So when transforming a vector v with the new matrix by using M * O * v, the orthographic projection transformation will be applied first!

        In order to set the matrix to a symmetric orthographic projection without post-multiplying it, use setOrthoSymmetricLH().

        Reference: http://www.songho.ca

        Parameters:
        width - the distance between the right and left frustum edges
        height - the distance between the top and bottom frustum edges
        zNear - near clipping plane distance
        zFar - far clipping plane distance
        zZeroToOne - whether to use Vulkan's and Direct3D's NDC z range of [0..+1] when true or whether to use OpenGL's NDC z range of [-1..+1] when false
        Returns:
        a matrix holding the result
        See Also:
        setOrthoSymmetricLH(float, float, float, float, boolean)
      • orthoSymmetricLH

        public Matrix4f orthoSymmetricLH​(float width,
                                         float height,
                                         float zNear,
                                         float zFar)
        Apply a symmetric orthographic projection transformation for a left-handed coordinate system using OpenGL's NDC z range of [-1..+1] to this matrix.

        This method is equivalent to calling orthoLH() with left=-width/2, right=+width/2, bottom=-height/2 and top=+height/2.

        If M is this matrix and O the orthographic projection matrix, then the new matrix will be M * O. So when transforming a vector v with the new matrix by using M * O * v, the orthographic projection transformation will be applied first!

        In order to set the matrix to a symmetric orthographic projection without post-multiplying it, use setOrthoSymmetricLH().

        Reference: http://www.songho.ca

        Parameters:
        width - the distance between the right and left frustum edges
        height - the distance between the top and bottom frustum edges
        zNear - near clipping plane distance
        zFar - far clipping plane distance
        Returns:
        a matrix holding the result
        See Also:
        setOrthoSymmetricLH(float, float, float, float)
      • setOrthoSymmetric

        public Matrix4f setOrthoSymmetric​(float width,
                                          float height,
                                          float zNear,
                                          float zFar,
                                          boolean zZeroToOne)
        Set this matrix to be a symmetric orthographic projection transformation for a right-handed coordinate system using the given NDC z range.

        This method is equivalent to calling setOrtho() with left=-width/2, right=+width/2, bottom=-height/2 and top=+height/2.

        In order to apply the symmetric orthographic projection to an already existing transformation, use orthoSymmetric().

        Reference: http://www.songho.ca

        Parameters:
        width - the distance between the right and left frustum edges
        height - the distance between the top and bottom frustum edges
        zNear - near clipping plane distance
        zFar - far clipping plane distance
        zZeroToOne - whether to use Vulkan's and Direct3D's NDC z range of [0..+1] when true or whether to use OpenGL's NDC z range of [-1..+1] when false
        Returns:
        this
        See Also:
        orthoSymmetric(float, float, float, float, boolean)
      • setOrthoSymmetric

        public Matrix4f setOrthoSymmetric​(float width,
                                          float height,
                                          float zNear,
                                          float zFar)
        Set this matrix to be a symmetric orthographic projection transformation for a right-handed coordinate system using OpenGL's NDC z range of [-1..+1].

        This method is equivalent to calling setOrtho() with left=-width/2, right=+width/2, bottom=-height/2 and top=+height/2.

        In order to apply the symmetric orthographic projection to an already existing transformation, use orthoSymmetric().

        Reference: http://www.songho.ca

        Parameters:
        width - the distance between the right and left frustum edges
        height - the distance between the top and bottom frustum edges
        zNear - near clipping plane distance
        zFar - far clipping plane distance
        Returns:
        this
        See Also:
        orthoSymmetric(float, float, float, float)
      • setOrthoSymmetricLH

        public Matrix4f setOrthoSymmetricLH​(float width,
                                            float height,
                                            float zNear,
                                            float zFar,
                                            boolean zZeroToOne)
        Set this matrix to be a symmetric orthographic projection transformation for a left-handed coordinate system using the given NDC z range.

        This method is equivalent to calling setOrtho() with left=-width/2, right=+width/2, bottom=-height/2 and top=+height/2.

        In order to apply the symmetric orthographic projection to an already existing transformation, use orthoSymmetricLH().

        Reference: http://www.songho.ca

        Parameters:
        width - the distance between the right and left frustum edges
        height - the distance between the top and bottom frustum edges
        zNear - near clipping plane distance
        zFar - far clipping plane distance
        zZeroToOne - whether to use Vulkan's and Direct3D's NDC z range of [0..+1] when true or whether to use OpenGL's NDC z range of [-1..+1] when false
        Returns:
        this
        See Also:
        orthoSymmetricLH(float, float, float, float, boolean)
      • setOrthoSymmetricLH

        public Matrix4f setOrthoSymmetricLH​(float width,
                                            float height,
                                            float zNear,
                                            float zFar)
        Set this matrix to be a symmetric orthographic projection transformation for a left-handed coordinate system using OpenGL's NDC z range of [-1..+1].

        This method is equivalent to calling setOrthoLH() with left=-width/2, right=+width/2, bottom=-height/2 and top=+height/2.

        In order to apply the symmetric orthographic projection to an already existing transformation, use orthoSymmetricLH().

        Reference: http://www.songho.ca

        Parameters:
        width - the distance between the right and left frustum edges
        height - the distance between the top and bottom frustum edges
        zNear - near clipping plane distance
        zFar - far clipping plane distance
        Returns:
        this
        See Also:
        orthoSymmetricLH(float, float, float, float)
      • ortho2D

        public Matrix4f ortho2D​(float left,
                                float right,
                                float bottom,
                                float top,
                                Matrix4f dest)
        Apply an orthographic projection transformation for a right-handed coordinate system to this matrix and store the result in dest.

        This method is equivalent to calling ortho() with zNear=-1 and zFar=+1.

        If M is this matrix and O the orthographic projection matrix, then the new matrix will be M * O. So when transforming a vector v with the new matrix by using M * O * v, the orthographic projection transformation will be applied first!

        In order to set the matrix to an orthographic projection without post-multiplying it, use setOrtho().

        Reference: http://www.songho.ca

        Specified by:
        ortho2D in interface Matrix4fc
        Parameters:
        left - the distance from the center to the left frustum edge
        right - the distance from the center to the right frustum edge
        bottom - the distance from the center to the bottom frustum edge
        top - the distance from the center to the top frustum edge
        dest - will hold the result
        Returns:
        dest
        See Also:
        ortho(float, float, float, float, float, float, Matrix4f), setOrtho2D(float, float, float, float)
      • ortho2D

        public Matrix4f ortho2D​(float left,
                                float right,
                                float bottom,
                                float top)
        Apply an orthographic projection transformation for a right-handed coordinate system to this matrix.

        This method is equivalent to calling ortho() with zNear=-1 and zFar=+1.

        If M is this matrix and O the orthographic projection matrix, then the new matrix will be M * O. So when transforming a vector v with the new matrix by using M * O * v, the orthographic projection transformation will be applied first!

        In order to set the matrix to an orthographic projection without post-multiplying it, use setOrtho2D().

        Reference: http://www.songho.ca

        Parameters:
        left - the distance from the center to the left frustum edge
        right - the distance from the center to the right frustum edge
        bottom - the distance from the center to the bottom frustum edge
        top - the distance from the center to the top frustum edge
        Returns:
        a matrix holding the result
        See Also:
        ortho(float, float, float, float, float, float), setOrtho2D(float, float, float, float)
      • ortho2DLH

        public Matrix4f ortho2DLH​(float left,
                                  float right,
                                  float bottom,
                                  float top,
                                  Matrix4f dest)
        Apply an orthographic projection transformation for a left-handed coordinate system to this matrix and store the result in dest.

        This method is equivalent to calling orthoLH() with zNear=-1 and zFar=+1.

        If M is this matrix and O the orthographic projection matrix, then the new matrix will be M * O. So when transforming a vector v with the new matrix by using M * O * v, the orthographic projection transformation will be applied first!

        In order to set the matrix to an orthographic projection without post-multiplying it, use setOrthoLH().

        Reference: http://www.songho.ca

        Specified by:
        ortho2DLH in interface Matrix4fc
        Parameters:
        left - the distance from the center to the left frustum edge
        right - the distance from the center to the right frustum edge
        bottom - the distance from the center to the bottom frustum edge
        top - the distance from the center to the top frustum edge
        dest - will hold the result
        Returns:
        dest
        See Also:
        orthoLH(float, float, float, float, float, float, Matrix4f), setOrtho2DLH(float, float, float, float)
      • ortho2DLH

        public Matrix4f ortho2DLH​(float left,
                                  float right,
                                  float bottom,
                                  float top)
        Apply an orthographic projection transformation for a left-handed coordinate system to this matrix.

        This method is equivalent to calling orthoLH() with zNear=-1 and zFar=+1.

        If M is this matrix and O the orthographic projection matrix, then the new matrix will be M * O. So when transforming a vector v with the new matrix by using M * O * v, the orthographic projection transformation will be applied first!

        In order to set the matrix to an orthographic projection without post-multiplying it, use setOrtho2DLH().

        Reference: http://www.songho.ca

        Parameters:
        left - the distance from the center to the left frustum edge
        right - the distance from the center to the right frustum edge
        bottom - the distance from the center to the bottom frustum edge
        top - the distance from the center to the top frustum edge
        Returns:
        a matrix holding the result
        See Also:
        orthoLH(float, float, float, float, float, float), setOrtho2DLH(float, float, float, float)
      • setOrtho2D

        public Matrix4f setOrtho2D​(float left,
                                   float right,
                                   float bottom,
                                   float top)
        Set this matrix to be an orthographic projection transformation for a right-handed coordinate system.

        This method is equivalent to calling setOrtho() with zNear=-1 and zFar=+1.

        In order to apply the orthographic projection to an already existing transformation, use ortho2D().

        Reference: http://www.songho.ca

        Parameters:
        left - the distance from the center to the left frustum edge
        right - the distance from the center to the right frustum edge
        bottom - the distance from the center to the bottom frustum edge
        top - the distance from the center to the top frustum edge
        Returns:
        this
        See Also:
        setOrtho(float, float, float, float, float, float), ortho2D(float, float, float, float)
      • setOrtho2DLH

        public Matrix4f setOrtho2DLH​(float left,
                                     float right,
                                     float bottom,
                                     float top)
        Set this matrix to be an orthographic projection transformation for a left-handed coordinate system.

        This method is equivalent to calling setOrthoLH() with zNear=-1 and zFar=+1.

        In order to apply the orthographic projection to an already existing transformation, use ortho2DLH().

        Reference: http://www.songho.ca

        Parameters:
        left - the distance from the center to the left frustum edge
        right - the distance from the center to the right frustum edge
        bottom - the distance from the center to the bottom frustum edge
        top - the distance from the center to the top frustum edge
        Returns:
        this
        See Also:
        setOrthoLH(float, float, float, float, float, float), ortho2DLH(float, float, float, float)
      • lookAlong

        public Matrix4f lookAlong​(float dirX,
                                  float dirY,
                                  float dirZ,
                                  float upX,
                                  float upY,
                                  float upZ,
                                  Matrix4f dest)
        Apply a rotation transformation to this matrix to make -z point along dir and store the result in dest.

        If M is this matrix and L the lookalong rotation matrix, then the new matrix will be M * L. So when transforming a vector v with the new matrix by using M * L * v, the lookalong rotation transformation will be applied first!

        This is equivalent to calling lookAt() with eye = (0, 0, 0) and center = dir.

        In order to set the matrix to a lookalong transformation without post-multiplying it, use setLookAlong()

        Specified by:
        lookAlong in interface Matrix4fc
        Parameters:
        dirX - the x-coordinate of the direction to look along
        dirY - the y-coordinate of the direction to look along
        dirZ - the z-coordinate of the direction to look along
        upX - the x-coordinate of the up vector
        upY - the y-coordinate of the up vector
        upZ - the z-coordinate of the up vector
        dest - will hold the result
        Returns:
        dest
        See Also:
        lookAt(float, float, float, float, float, float, float, float, float), setLookAlong(float, float, float, float, float, float)
      • lookAlong

        public Matrix4f lookAlong​(float dirX,
                                  float dirY,
                                  float dirZ,
                                  float upX,
                                  float upY,
                                  float upZ)
        Apply a rotation transformation to this matrix to make -z point along dir.

        If M is this matrix and L the lookalong rotation matrix, then the new matrix will be M * L. So when transforming a vector v with the new matrix by using M * L * v, the lookalong rotation transformation will be applied first!

        This is equivalent to calling lookAt() with eye = (0, 0, 0) and center = dir.

        In order to set the matrix to a lookalong transformation without post-multiplying it, use setLookAlong()

        Parameters:
        dirX - the x-coordinate of the direction to look along
        dirY - the y-coordinate of the direction to look along
        dirZ - the z-coordinate of the direction to look along
        upX - the x-coordinate of the up vector
        upY - the y-coordinate of the up vector
        upZ - the z-coordinate of the up vector
        Returns:
        a matrix holding the result
        See Also:
        lookAt(float, float, float, float, float, float, float, float, float), setLookAlong(float, float, float, float, float, float)
      • setLookAlong

        public Matrix4f setLookAlong​(float dirX,
                                     float dirY,
                                     float dirZ,
                                     float upX,
                                     float upY,
                                     float upZ)
        Set this matrix to a rotation transformation to make -z point along dir.

        This is equivalent to calling setLookAt() with eye = (0, 0, 0) and center = dir.

        In order to apply the lookalong transformation to any previous existing transformation, use lookAlong()

        Parameters:
        dirX - the x-coordinate of the direction to look along
        dirY - the y-coordinate of the direction to look along
        dirZ - the z-coordinate of the direction to look along
        upX - the x-coordinate of the up vector
        upY - the y-coordinate of the up vector
        upZ - the z-coordinate of the up vector
        Returns:
        this
        See Also:
        setLookAlong(float, float, float, float, float, float), lookAlong(float, float, float, float, float, float)
      • setLookAt

        public Matrix4f setLookAt​(float eyeX,
                                  float eyeY,
                                  float eyeZ,
                                  float centerX,
                                  float centerY,
                                  float centerZ,
                                  float upX,
                                  float upY,
                                  float upZ)
        Set this matrix to be a "lookat" transformation for a right-handed coordinate system, that aligns -z with center - eye.

        In order to apply the lookat transformation to a previous existing transformation, use lookAt.

        Parameters:
        eyeX - the x-coordinate of the eye/camera location
        eyeY - the y-coordinate of the eye/camera location
        eyeZ - the z-coordinate of the eye/camera location
        centerX - the x-coordinate of the point to look at
        centerY - the y-coordinate of the point to look at
        centerZ - the z-coordinate of the point to look at
        upX - the x-coordinate of the up vector
        upY - the y-coordinate of the up vector
        upZ - the z-coordinate of the up vector
        Returns:
        this
        See Also:
        setLookAt(Vector3fc, Vector3fc, Vector3fc), lookAt(float, float, float, float, float, float, float, float, float)
      • lookAt

        public Matrix4f lookAt​(float eyeX,
                               float eyeY,
                               float eyeZ,
                               float centerX,
                               float centerY,
                               float centerZ,
                               float upX,
                               float upY,
                               float upZ,
                               Matrix4f dest)
        Apply a "lookat" transformation to this matrix for a right-handed coordinate system, that aligns -z with center - eye and store the result in dest.

        If M is this matrix and L the lookat matrix, then the new matrix will be M * L. So when transforming a vector v with the new matrix by using M * L * v, the lookat transformation will be applied first!

        In order to set the matrix to a lookat transformation without post-multiplying it, use setLookAt().

        Specified by:
        lookAt in interface Matrix4fc
        Parameters:
        eyeX - the x-coordinate of the eye/camera location
        eyeY - the y-coordinate of the eye/camera location
        eyeZ - the z-coordinate of the eye/camera location
        centerX - the x-coordinate of the point to look at
        centerY - the y-coordinate of the point to look at
        centerZ - the z-coordinate of the point to look at
        upX - the x-coordinate of the up vector
        upY - the y-coordinate of the up vector
        upZ - the z-coordinate of the up vector
        dest - will hold the result
        Returns:
        dest
        See Also:
        lookAt(Vector3fc, Vector3fc, Vector3fc), setLookAt(float, float, float, float, float, float, float, float, float)
      • lookAtPerspective

        public Matrix4f lookAtPerspective​(float eyeX,
                                          float eyeY,
                                          float eyeZ,
                                          float centerX,
                                          float centerY,
                                          float centerZ,
                                          float upX,
                                          float upY,
                                          float upZ,
                                          Matrix4f dest)
        Apply a "lookat" transformation to this matrix for a right-handed coordinate system, that aligns -z with center - eye and store the result in dest.

        This method assumes this to be a perspective transformation, obtained via frustum() or perspective() or one of their overloads.

        If M is this matrix and L the lookat matrix, then the new matrix will be M * L. So when transforming a vector v with the new matrix by using M * L * v, the lookat transformation will be applied first!

        In order to set the matrix to a lookat transformation without post-multiplying it, use setLookAt().

        Specified by:
        lookAtPerspective in interface Matrix4fc
        Parameters:
        eyeX - the x-coordinate of the eye/camera location
        eyeY - the y-coordinate of the eye/camera location
        eyeZ - the z-coordinate of the eye/camera location
        centerX - the x-coordinate of the point to look at
        centerY - the y-coordinate of the point to look at
        centerZ - the z-coordinate of the point to look at
        upX - the x-coordinate of the up vector
        upY - the y-coordinate of the up vector
        upZ - the z-coordinate of the up vector
        dest - will hold the result
        Returns:
        dest
        See Also:
        setLookAt(float, float, float, float, float, float, float, float, float)
      • lookAt

        public Matrix4f lookAt​(float eyeX,
                               float eyeY,
                               float eyeZ,
                               float centerX,
                               float centerY,
                               float centerZ,
                               float upX,
                               float upY,
                               float upZ)
        Apply a "lookat" transformation to this matrix for a right-handed coordinate system, that aligns -z with center - eye.

        If M is this matrix and L the lookat matrix, then the new matrix will be M * L. So when transforming a vector v with the new matrix by using M * L * v, the lookat transformation will be applied first!

        In order to set the matrix to a lookat transformation without post-multiplying it, use setLookAt().

        Parameters:
        eyeX - the x-coordinate of the eye/camera location
        eyeY - the y-coordinate of the eye/camera location
        eyeZ - the z-coordinate of the eye/camera location
        centerX - the x-coordinate of the point to look at
        centerY - the y-coordinate of the point to look at
        centerZ - the z-coordinate of the point to look at
        upX - the x-coordinate of the up vector
        upY - the y-coordinate of the up vector
        upZ - the z-coordinate of the up vector
        Returns:
        a matrix holding the result
        See Also:
        lookAt(Vector3fc, Vector3fc, Vector3fc), setLookAt(float, float, float, float, float, float, float, float, float)
      • setLookAtLH

        public Matrix4f setLookAtLH​(float eyeX,
                                    float eyeY,
                                    float eyeZ,
                                    float centerX,
                                    float centerY,
                                    float centerZ,
                                    float upX,
                                    float upY,
                                    float upZ)
        Set this matrix to be a "lookat" transformation for a left-handed coordinate system, that aligns +z with center - eye.

        In order to apply the lookat transformation to a previous existing transformation, use lookAtLH.

        Parameters:
        eyeX - the x-coordinate of the eye/camera location
        eyeY - the y-coordinate of the eye/camera location
        eyeZ - the z-coordinate of the eye/camera location
        centerX - the x-coordinate of the point to look at
        centerY - the y-coordinate of the point to look at
        centerZ - the z-coordinate of the point to look at
        upX - the x-coordinate of the up vector
        upY - the y-coordinate of the up vector
        upZ - the z-coordinate of the up vector
        Returns:
        this
        See Also:
        setLookAtLH(Vector3fc, Vector3fc, Vector3fc), lookAtLH(float, float, float, float, float, float, float, float, float)
      • lookAtLH

        public Matrix4f lookAtLH​(Vector3fc eye,
                                 Vector3fc center,
                                 Vector3fc up)
        Apply a "lookat" transformation to this matrix for a left-handed coordinate system, that aligns +z with center - eye.

        If M is this matrix and L the lookat matrix, then the new matrix will be M * L. So when transforming a vector v with the new matrix by using M * L * v, the lookat transformation will be applied first!

        In order to set the matrix to a lookat transformation without post-multiplying it, use setLookAtLH(Vector3fc, Vector3fc, Vector3fc).

        Parameters:
        eye - the position of the camera
        center - the point in space to look at
        up - the direction of 'up'
        Returns:
        a matrix holding the result
        See Also:
        lookAtLH(float, float, float, float, float, float, float, float, float)
      • lookAtLH

        public Matrix4f lookAtLH​(float eyeX,
                                 float eyeY,
                                 float eyeZ,
                                 float centerX,
                                 float centerY,
                                 float centerZ,
                                 float upX,
                                 float upY,
                                 float upZ,
                                 Matrix4f dest)
        Apply a "lookat" transformation to this matrix for a left-handed coordinate system, that aligns +z with center - eye and store the result in dest.

        If M is this matrix and L the lookat matrix, then the new matrix will be M * L. So when transforming a vector v with the new matrix by using M * L * v, the lookat transformation will be applied first!

        In order to set the matrix to a lookat transformation without post-multiplying it, use setLookAtLH().

        Specified by:
        lookAtLH in interface Matrix4fc
        Parameters:
        eyeX - the x-coordinate of the eye/camera location
        eyeY - the y-coordinate of the eye/camera location
        eyeZ - the z-coordinate of the eye/camera location
        centerX - the x-coordinate of the point to look at
        centerY - the y-coordinate of the point to look at
        centerZ - the z-coordinate of the point to look at
        upX - the x-coordinate of the up vector
        upY - the y-coordinate of the up vector
        upZ - the z-coordinate of the up vector
        dest - will hold the result
        Returns:
        dest
        See Also:
        lookAtLH(Vector3fc, Vector3fc, Vector3fc), setLookAtLH(float, float, float, float, float, float, float, float, float)
      • lookAtLH

        public Matrix4f lookAtLH​(float eyeX,
                                 float eyeY,
                                 float eyeZ,
                                 float centerX,
                                 float centerY,
                                 float centerZ,
                                 float upX,
                                 float upY,
                                 float upZ)
        Apply a "lookat" transformation to this matrix for a left-handed coordinate system, that aligns +z with center - eye.

        If M is this matrix and L the lookat matrix, then the new matrix will be M * L. So when transforming a vector v with the new matrix by using M * L * v, the lookat transformation will be applied first!

        In order to set the matrix to a lookat transformation without post-multiplying it, use setLookAtLH().

        Parameters:
        eyeX - the x-coordinate of the eye/camera location
        eyeY - the y-coordinate of the eye/camera location
        eyeZ - the z-coordinate of the eye/camera location
        centerX - the x-coordinate of the point to look at
        centerY - the y-coordinate of the point to look at
        centerZ - the z-coordinate of the point to look at
        upX - the x-coordinate of the up vector
        upY - the y-coordinate of the up vector
        upZ - the z-coordinate of the up vector
        Returns:
        a matrix holding the result
        See Also:
        lookAtLH(Vector3fc, Vector3fc, Vector3fc), setLookAtLH(float, float, float, float, float, float, float, float, float)
      • lookAtPerspectiveLH

        public Matrix4f lookAtPerspectiveLH​(float eyeX,
                                            float eyeY,
                                            float eyeZ,
                                            float centerX,
                                            float centerY,
                                            float centerZ,
                                            float upX,
                                            float upY,
                                            float upZ,
                                            Matrix4f dest)
        Apply a "lookat" transformation to this matrix for a left-handed coordinate system, that aligns +z with center - eye and store the result in dest.

        This method assumes this to be a perspective transformation, obtained via frustumLH() or perspectiveLH() or one of their overloads.

        If M is this matrix and L the lookat matrix, then the new matrix will be M * L. So when transforming a vector v with the new matrix by using M * L * v, the lookat transformation will be applied first!

        In order to set the matrix to a lookat transformation without post-multiplying it, use setLookAtLH().

        Specified by:
        lookAtPerspectiveLH in interface Matrix4fc
        Parameters:
        eyeX - the x-coordinate of the eye/camera location
        eyeY - the y-coordinate of the eye/camera location
        eyeZ - the z-coordinate of the eye/camera location
        centerX - the x-coordinate of the point to look at
        centerY - the y-coordinate of the point to look at
        centerZ - the z-coordinate of the point to look at
        upX - the x-coordinate of the up vector
        upY - the y-coordinate of the up vector
        upZ - the z-coordinate of the up vector
        dest - will hold the result
        Returns:
        dest
        See Also:
        setLookAtLH(float, float, float, float, float, float, float, float, float)
      • perspective

        public Matrix4f perspective​(float fovy,
                                    float aspect,
                                    float zNear,
                                    float zFar,
                                    boolean zZeroToOne,
                                    Matrix4f dest)
        Apply a symmetric perspective projection frustum transformation for a right-handed coordinate system using the given NDC z range to this matrix and store the result in dest.

        If M is this matrix and P the perspective projection matrix, then the new matrix will be M * P. So when transforming a vector v with the new matrix by using M * P * v, the perspective projection will be applied first!

        In order to set the matrix to a perspective frustum transformation without post-multiplying, use setPerspective.

        Specified by:
        perspective in interface Matrix4fc
        Parameters:
        fovy - the vertical field of view in radians (must be greater than zero and less than PI)
        aspect - the aspect ratio (i.e. width / height; must be greater than zero)
        zNear - near clipping plane distance. If the special value Float.POSITIVE_INFINITY is used, the near clipping plane will be at positive infinity. In that case, zFar may not also be Float.POSITIVE_INFINITY.
        zFar - far clipping plane distance. If the special value Float.POSITIVE_INFINITY is used, the far clipping plane will be at positive infinity. In that case, zNear may not also be Float.POSITIVE_INFINITY.
        dest - will hold the result
        zZeroToOne - whether to use Vulkan's and Direct3D's NDC z range of [0..+1] when true or whether to use OpenGL's NDC z range of [-1..+1] when false
        Returns:
        dest
        See Also:
        setPerspective(float, float, float, float, boolean)
      • perspective

        public Matrix4f perspective​(float fovy,
                                    float aspect,
                                    float zNear,
                                    float zFar,
                                    Matrix4f dest)
        Apply a symmetric perspective projection frustum transformation for a right-handed coordinate system using OpenGL's NDC z range of [-1..+1] to this matrix and store the result in dest.

        If M is this matrix and P the perspective projection matrix, then the new matrix will be M * P. So when transforming a vector v with the new matrix by using M * P * v, the perspective projection will be applied first!

        In order to set the matrix to a perspective frustum transformation without post-multiplying, use setPerspective.

        Specified by:
        perspective in interface Matrix4fc
        Parameters:
        fovy - the vertical field of view in radians (must be greater than zero and less than PI)
        aspect - the aspect ratio (i.e. width / height; must be greater than zero)
        zNear - near clipping plane distance. If the special value Float.POSITIVE_INFINITY is used, the near clipping plane will be at positive infinity. In that case, zFar may not also be Float.POSITIVE_INFINITY.
        zFar - far clipping plane distance. If the special value Float.POSITIVE_INFINITY is used, the far clipping plane will be at positive infinity. In that case, zNear may not also be Float.POSITIVE_INFINITY.
        dest - will hold the result
        Returns:
        dest
        See Also:
        setPerspective(float, float, float, float)
      • perspective

        public Matrix4f perspective​(float fovy,
                                    float aspect,
                                    float zNear,
                                    float zFar,
                                    boolean zZeroToOne)
        Apply a symmetric perspective projection frustum transformation using for a right-handed coordinate system the given NDC z range to this matrix.

        If M is this matrix and P the perspective projection matrix, then the new matrix will be M * P. So when transforming a vector v with the new matrix by using M * P * v, the perspective projection will be applied first!

        In order to set the matrix to a perspective frustum transformation without post-multiplying, use setPerspective.

        Parameters:
        fovy - the vertical field of view in radians (must be greater than zero and less than PI)
        aspect - the aspect ratio (i.e. width / height; must be greater than zero)
        zNear - near clipping plane distance. If the special value Float.POSITIVE_INFINITY is used, the near clipping plane will be at positive infinity. In that case, zFar may not also be Float.POSITIVE_INFINITY.
        zFar - far clipping plane distance. If the special value Float.POSITIVE_INFINITY is used, the far clipping plane will be at positive infinity. In that case, zNear may not also be Float.POSITIVE_INFINITY.
        zZeroToOne - whether to use Vulkan's and Direct3D's NDC z range of [0..+1] when true or whether to use OpenGL's NDC z range of [-1..+1] when false
        Returns:
        a matrix holding the result
        See Also:
        setPerspective(float, float, float, float, boolean)
      • perspective

        public Matrix4f perspective​(float fovy,
                                    float aspect,
                                    float zNear,
                                    float zFar)
        Apply a symmetric perspective projection frustum transformation for a right-handed coordinate system using OpenGL's NDC z range of [-1..+1] to this matrix.

        If M is this matrix and P the perspective projection matrix, then the new matrix will be M * P. So when transforming a vector v with the new matrix by using M * P * v, the perspective projection will be applied first!

        In order to set the matrix to a perspective frustum transformation without post-multiplying, use setPerspective.

        Parameters:
        fovy - the vertical field of view in radians (must be greater than zero and less than PI)
        aspect - the aspect ratio (i.e. width / height; must be greater than zero)
        zNear - near clipping plane distance. If the special value Float.POSITIVE_INFINITY is used, the near clipping plane will be at positive infinity. In that case, zFar may not also be Float.POSITIVE_INFINITY.
        zFar - far clipping plane distance. If the special value Float.POSITIVE_INFINITY is used, the far clipping plane will be at positive infinity. In that case, zNear may not also be Float.POSITIVE_INFINITY.
        Returns:
        a matrix holding the result
        See Also:
        setPerspective(float, float, float, float)
      • setPerspective

        public Matrix4f setPerspective​(float fovy,
                                       float aspect,
                                       float zNear,
                                       float zFar,
                                       boolean zZeroToOne)
        Set this matrix to be a symmetric perspective projection frustum transformation for a right-handed coordinate system using the given NDC z range.

        In order to apply the perspective projection transformation to an existing transformation, use perspective().

        Parameters:
        fovy - the vertical field of view in radians (must be greater than zero and less than PI)
        aspect - the aspect ratio (i.e. width / height; must be greater than zero)
        zNear - near clipping plane distance. If the special value Float.POSITIVE_INFINITY is used, the near clipping plane will be at positive infinity. In that case, zFar may not also be Float.POSITIVE_INFINITY.
        zFar - far clipping plane distance. If the special value Float.POSITIVE_INFINITY is used, the far clipping plane will be at positive infinity. In that case, zNear may not also be Float.POSITIVE_INFINITY.
        zZeroToOne - whether to use Vulkan's and Direct3D's NDC z range of [0..+1] when true or whether to use OpenGL's NDC z range of [-1..+1] when false
        Returns:
        this
        See Also:
        perspective(float, float, float, float, boolean)
      • setPerspective

        public Matrix4f setPerspective​(float fovy,
                                       float aspect,
                                       float zNear,
                                       float zFar)
        Set this matrix to be a symmetric perspective projection frustum transformation for a right-handed coordinate system using OpenGL's NDC z range of [-1..+1].

        In order to apply the perspective projection transformation to an existing transformation, use perspective().

        Parameters:
        fovy - the vertical field of view in radians (must be greater than zero and less than PI)
        aspect - the aspect ratio (i.e. width / height; must be greater than zero)
        zNear - near clipping plane distance. If the special value Float.POSITIVE_INFINITY is used, the near clipping plane will be at positive infinity. In that case, zFar may not also be Float.POSITIVE_INFINITY.
        zFar - far clipping plane distance. If the special value Float.POSITIVE_INFINITY is used, the far clipping plane will be at positive infinity. In that case, zNear may not also be Float.POSITIVE_INFINITY.
        Returns:
        this
        See Also:
        perspective(float, float, float, float)
      • perspectiveLH

        public Matrix4f perspectiveLH​(float fovy,
                                      float aspect,
                                      float zNear,
                                      float zFar,
                                      boolean zZeroToOne,
                                      Matrix4f dest)
        Apply a symmetric perspective projection frustum transformation for a left-handed coordinate system using the given NDC z range to this matrix and store the result in dest.

        If M is this matrix and P the perspective projection matrix, then the new matrix will be M * P. So when transforming a vector v with the new matrix by using M * P * v, the perspective projection will be applied first!

        In order to set the matrix to a perspective frustum transformation without post-multiplying, use setPerspectiveLH.

        Specified by:
        perspectiveLH in interface Matrix4fc
        Parameters:
        fovy - the vertical field of view in radians (must be greater than zero and less than PI)
        aspect - the aspect ratio (i.e. width / height; must be greater than zero)
        zNear - near clipping plane distance. If the special value Float.POSITIVE_INFINITY is used, the near clipping plane will be at positive infinity. In that case, zFar may not also be Float.POSITIVE_INFINITY.
        zFar - far clipping plane distance. If the special value Float.POSITIVE_INFINITY is used, the far clipping plane will be at positive infinity. In that case, zNear may not also be Float.POSITIVE_INFINITY.
        zZeroToOne - whether to use Vulkan's and Direct3D's NDC z range of [0..+1] when true or whether to use OpenGL's NDC z range of [-1..+1] when false
        dest - will hold the result
        Returns:
        dest
        See Also:
        setPerspectiveLH(float, float, float, float, boolean)
      • perspectiveLH

        public Matrix4f perspectiveLH​(float fovy,
                                      float aspect,
                                      float zNear,
                                      float zFar,
                                      boolean zZeroToOne)
        Apply a symmetric perspective projection frustum transformation for a left-handed coordinate system using the given NDC z range to this matrix.

        If M is this matrix and P the perspective projection matrix, then the new matrix will be M * P. So when transforming a vector v with the new matrix by using M * P * v, the perspective projection will be applied first!

        In order to set the matrix to a perspective frustum transformation without post-multiplying, use setPerspectiveLH.

        Parameters:
        fovy - the vertical field of view in radians (must be greater than zero and less than PI)
        aspect - the aspect ratio (i.e. width / height; must be greater than zero)
        zNear - near clipping plane distance. If the special value Float.POSITIVE_INFINITY is used, the near clipping plane will be at positive infinity. In that case, zFar may not also be Float.POSITIVE_INFINITY.
        zFar - far clipping plane distance. If the special value Float.POSITIVE_INFINITY is used, the far clipping plane will be at positive infinity. In that case, zNear may not also be Float.POSITIVE_INFINITY.
        zZeroToOne - whether to use Vulkan's and Direct3D's NDC z range of [0..+1] when true or whether to use OpenGL's NDC z range of [-1..+1] when false
        Returns:
        a matrix holding the result
        See Also:
        setPerspectiveLH(float, float, float, float, boolean)
      • perspectiveLH

        public Matrix4f perspectiveLH​(float fovy,
                                      float aspect,
                                      float zNear,
                                      float zFar,
                                      Matrix4f dest)
        Apply a symmetric perspective projection frustum transformation for a left-handed coordinate system using OpenGL's NDC z range of [-1..+1] to this matrix and store the result in dest.

        If M is this matrix and P the perspective projection matrix, then the new matrix will be M * P. So when transforming a vector v with the new matrix by using M * P * v, the perspective projection will be applied first!

        In order to set the matrix to a perspective frustum transformation without post-multiplying, use setPerspectiveLH.

        Specified by:
        perspectiveLH in interface Matrix4fc
        Parameters:
        fovy - the vertical field of view in radians (must be greater than zero and less than PI)
        aspect - the aspect ratio (i.e. width / height; must be greater than zero)
        zNear - near clipping plane distance. If the special value Float.POSITIVE_INFINITY is used, the near clipping plane will be at positive infinity. In that case, zFar may not also be Float.POSITIVE_INFINITY.
        zFar - far clipping plane distance. If the special value Float.POSITIVE_INFINITY is used, the far clipping plane will be at positive infinity. In that case, zNear may not also be Float.POSITIVE_INFINITY.
        dest - will hold the result
        Returns:
        dest
        See Also:
        setPerspectiveLH(float, float, float, float)
      • perspectiveLH

        public Matrix4f perspectiveLH​(float fovy,
                                      float aspect,
                                      float zNear,
                                      float zFar)
        Apply a symmetric perspective projection frustum transformation for a left-handed coordinate system using OpenGL's NDC z range of [-1..+1] to this matrix.

        If M is this matrix and P the perspective projection matrix, then the new matrix will be M * P. So when transforming a vector v with the new matrix by using M * P * v, the perspective projection will be applied first!

        In order to set the matrix to a perspective frustum transformation without post-multiplying, use setPerspectiveLH.

        Parameters:
        fovy - the vertical field of view in radians (must be greater than zero and less than PI)
        aspect - the aspect ratio (i.e. width / height; must be greater than zero)
        zNear - near clipping plane distance. If the special value Float.POSITIVE_INFINITY is used, the near clipping plane will be at positive infinity. In that case, zFar may not also be Float.POSITIVE_INFINITY.
        zFar - far clipping plane distance. If the special value Float.POSITIVE_INFINITY is used, the far clipping plane will be at positive infinity. In that case, zNear may not also be Float.POSITIVE_INFINITY.
        Returns:
        a matrix holding the result
        See Also:
        setPerspectiveLH(float, float, float, float)
      • setPerspectiveLH

        public Matrix4f setPerspectiveLH​(float fovy,
                                         float aspect,
                                         float zNear,
                                         float zFar,
                                         boolean zZeroToOne)
        Set this matrix to be a symmetric perspective projection frustum transformation for a left-handed coordinate system using the given NDC z range of [-1..+1].

        In order to apply the perspective projection transformation to an existing transformation, use perspectiveLH().

        Parameters:
        fovy - the vertical field of view in radians (must be greater than zero and less than PI)
        aspect - the aspect ratio (i.e. width / height; must be greater than zero)
        zNear - near clipping plane distance. If the special value Float.POSITIVE_INFINITY is used, the near clipping plane will be at positive infinity. In that case, zFar may not also be Float.POSITIVE_INFINITY.
        zFar - far clipping plane distance. If the special value Float.POSITIVE_INFINITY is used, the far clipping plane will be at positive infinity. In that case, zNear may not also be Float.POSITIVE_INFINITY.
        zZeroToOne - whether to use Vulkan's and Direct3D's NDC z range of [0..+1] when true or whether to use OpenGL's NDC z range of [-1..+1] when false
        Returns:
        this
        See Also:
        perspectiveLH(float, float, float, float, boolean)
      • setPerspectiveLH

        public Matrix4f setPerspectiveLH​(float fovy,
                                         float aspect,
                                         float zNear,
                                         float zFar)
        Set this matrix to be a symmetric perspective projection frustum transformation for a left-handed coordinate system using OpenGL's NDC z range of [-1..+1].

        In order to apply the perspective projection transformation to an existing transformation, use perspectiveLH().

        Parameters:
        fovy - the vertical field of view in radians (must be greater than zero and less than PI)
        aspect - the aspect ratio (i.e. width / height; must be greater than zero)
        zNear - near clipping plane distance. If the special value Float.POSITIVE_INFINITY is used, the near clipping plane will be at positive infinity. In that case, zFar may not also be Float.POSITIVE_INFINITY.
        zFar - far clipping plane distance. If the special value Float.POSITIVE_INFINITY is used, the far clipping plane will be at positive infinity. In that case, zNear may not also be Float.POSITIVE_INFINITY.
        Returns:
        this
        See Also:
        perspectiveLH(float, float, float, float)
      • frustum

        public Matrix4f frustum​(float left,
                                float right,
                                float bottom,
                                float top,
                                float zNear,
                                float zFar,
                                boolean zZeroToOne,
                                Matrix4f dest)
        Apply an arbitrary perspective projection frustum transformation for a right-handed coordinate system using the given NDC z range to this matrix and store the result in dest.

        If M is this matrix and F the frustum matrix, then the new matrix will be M * F. So when transforming a vector v with the new matrix by using M * F * v, the frustum transformation will be applied first!

        In order to set the matrix to a perspective frustum transformation without post-multiplying, use setFrustum().

        Reference: http://www.songho.ca

        Specified by:
        frustum in interface Matrix4fc
        Parameters:
        left - the distance along the x-axis to the left frustum edge
        right - the distance along the x-axis to the right frustum edge
        bottom - the distance along the y-axis to the bottom frustum edge
        top - the distance along the y-axis to the top frustum edge
        zNear - near clipping plane distance. If the special value Float.POSITIVE_INFINITY is used, the near clipping plane will be at positive infinity. In that case, zFar may not also be Float.POSITIVE_INFINITY.
        zFar - far clipping plane distance. If the special value Float.POSITIVE_INFINITY is used, the far clipping plane will be at positive infinity. In that case, zNear may not also be Float.POSITIVE_INFINITY.
        zZeroToOne - whether to use Vulkan's and Direct3D's NDC z range of [0..+1] when true or whether to use OpenGL's NDC z range of [-1..+1] when false
        dest - will hold the result
        Returns:
        dest
        See Also:
        setFrustum(float, float, float, float, float, float, boolean)
      • frustum

        public Matrix4f frustum​(float left,
                                float right,
                                float bottom,
                                float top,
                                float zNear,
                                float zFar,
                                Matrix4f dest)
        Apply an arbitrary perspective projection frustum transformation for a right-handed coordinate system using OpenGL's NDC z range of [-1..+1] to this matrix and store the result in dest.

        If M is this matrix and F the frustum matrix, then the new matrix will be M * F. So when transforming a vector v with the new matrix by using M * F * v, the frustum transformation will be applied first!

        In order to set the matrix to a perspective frustum transformation without post-multiplying, use setFrustum().

        Reference: http://www.songho.ca

        Specified by:
        frustum in interface Matrix4fc
        Parameters:
        left - the distance along the x-axis to the left frustum edge
        right - the distance along the x-axis to the right frustum edge
        bottom - the distance along the y-axis to the bottom frustum edge
        top - the distance along the y-axis to the top frustum edge
        zNear - near clipping plane distance. If the special value Float.POSITIVE_INFINITY is used, the near clipping plane will be at positive infinity. In that case, zFar may not also be Float.POSITIVE_INFINITY.
        zFar - far clipping plane distance. If the special value Float.POSITIVE_INFINITY is used, the far clipping plane will be at positive infinity. In that case, zNear may not also be Float.POSITIVE_INFINITY.
        dest - will hold the result
        Returns:
        dest
        See Also:
        setFrustum(float, float, float, float, float, float)
      • frustum

        public Matrix4f frustum​(float left,
                                float right,
                                float bottom,
                                float top,
                                float zNear,
                                float zFar,
                                boolean zZeroToOne)
        Apply an arbitrary perspective projection frustum transformation for a right-handed coordinate system using the given NDC z range to this matrix.

        If M is this matrix and F the frustum matrix, then the new matrix will be M * F. So when transforming a vector v with the new matrix by using M * F * v, the frustum transformation will be applied first!

        In order to set the matrix to a perspective frustum transformation without post-multiplying, use setFrustum().

        Reference: http://www.songho.ca

        Parameters:
        left - the distance along the x-axis to the left frustum edge
        right - the distance along the x-axis to the right frustum edge
        bottom - the distance along the y-axis to the bottom frustum edge
        top - the distance along the y-axis to the top frustum edge
        zNear - near clipping plane distance. If the special value Float.POSITIVE_INFINITY is used, the near clipping plane will be at positive infinity. In that case, zFar may not also be Float.POSITIVE_INFINITY.
        zFar - far clipping plane distance. If the special value Float.POSITIVE_INFINITY is used, the far clipping plane will be at positive infinity. In that case, zNear may not also be Float.POSITIVE_INFINITY.
        zZeroToOne - whether to use Vulkan's and Direct3D's NDC z range of [0..+1] when true or whether to use OpenGL's NDC z range of [-1..+1] when false
        Returns:
        a matrix holding the result
        See Also:
        setFrustum(float, float, float, float, float, float, boolean)
      • frustum

        public Matrix4f frustum​(float left,
                                float right,
                                float bottom,
                                float top,
                                float zNear,
                                float zFar)
        Apply an arbitrary perspective projection frustum transformation for a right-handed coordinate system using OpenGL's NDC z range of [-1..+1] to this matrix.

        If M is this matrix and F the frustum matrix, then the new matrix will be M * F. So when transforming a vector v with the new matrix by using M * F * v, the frustum transformation will be applied first!

        In order to set the matrix to a perspective frustum transformation without post-multiplying, use setFrustum().

        Reference: http://www.songho.ca

        Parameters:
        left - the distance along the x-axis to the left frustum edge
        right - the distance along the x-axis to the right frustum edge
        bottom - the distance along the y-axis to the bottom frustum edge
        top - the distance along the y-axis to the top frustum edge
        zNear - near clipping plane distance. If the special value Float.POSITIVE_INFINITY is used, the near clipping plane will be at positive infinity. In that case, zFar may not also be Float.POSITIVE_INFINITY.
        zFar - far clipping plane distance. If the special value Float.POSITIVE_INFINITY is used, the far clipping plane will be at positive infinity. In that case, zNear may not also be Float.POSITIVE_INFINITY.
        Returns:
        a matrix holding the result
        See Also:
        setFrustum(float, float, float, float, float, float)
      • setFrustum

        public Matrix4f setFrustum​(float left,
                                   float right,
                                   float bottom,
                                   float top,
                                   float zNear,
                                   float zFar,
                                   boolean zZeroToOne)
        Set this matrix to be an arbitrary perspective projection frustum transformation for a right-handed coordinate system using the given NDC z range.

        In order to apply the perspective frustum transformation to an existing transformation, use frustum().

        Reference: http://www.songho.ca

        Parameters:
        left - the distance along the x-axis to the left frustum edge
        right - the distance along the x-axis to the right frustum edge
        bottom - the distance along the y-axis to the bottom frustum edge
        top - the distance along the y-axis to the top frustum edge
        zNear - near clipping plane distance. If the special value Float.POSITIVE_INFINITY is used, the near clipping plane will be at positive infinity. In that case, zFar may not also be Float.POSITIVE_INFINITY.
        zFar - far clipping plane distance. If the special value Float.POSITIVE_INFINITY is used, the far clipping plane will be at positive infinity. In that case, zNear may not also be Float.POSITIVE_INFINITY.
        zZeroToOne - whether to use Vulkan's and Direct3D's NDC z range of [0..+1] when true or whether to use OpenGL's NDC z range of [-1..+1] when false
        Returns:
        this
        See Also:
        frustum(float, float, float, float, float, float, boolean)
      • setFrustum

        public Matrix4f setFrustum​(float left,
                                   float right,
                                   float bottom,
                                   float top,
                                   float zNear,
                                   float zFar)
        Set this matrix to be an arbitrary perspective projection frustum transformation for a right-handed coordinate system using OpenGL's NDC z range of [-1..+1].

        In order to apply the perspective frustum transformation to an existing transformation, use frustum().

        Reference: http://www.songho.ca

        Parameters:
        left - the distance along the x-axis to the left frustum edge
        right - the distance along the x-axis to the right frustum edge
        bottom - the distance along the y-axis to the bottom frustum edge
        top - the distance along the y-axis to the top frustum edge
        zNear - near clipping plane distance. If the special value Float.POSITIVE_INFINITY is used, the near clipping plane will be at positive infinity. In that case, zFar may not also be Float.POSITIVE_INFINITY.
        zFar - far clipping plane distance. If the special value Float.POSITIVE_INFINITY is used, the far clipping plane will be at positive infinity. In that case, zNear may not also be Float.POSITIVE_INFINITY.
        Returns:
        this
        See Also:
        frustum(float, float, float, float, float, float)
      • frustumLH

        public Matrix4f frustumLH​(float left,
                                  float right,
                                  float bottom,
                                  float top,
                                  float zNear,
                                  float zFar,
                                  boolean zZeroToOne,
                                  Matrix4f dest)
        Apply an arbitrary perspective projection frustum transformation for a left-handed coordinate system using the given NDC z range to this matrix and store the result in dest.

        If M is this matrix and F the frustum matrix, then the new matrix will be M * F. So when transforming a vector v with the new matrix by using M * F * v, the frustum transformation will be applied first!

        In order to set the matrix to a perspective frustum transformation without post-multiplying, use setFrustumLH().

        Reference: http://www.songho.ca

        Specified by:
        frustumLH in interface Matrix4fc
        Parameters:
        left - the distance along the x-axis to the left frustum edge
        right - the distance along the x-axis to the right frustum edge
        bottom - the distance along the y-axis to the bottom frustum edge
        top - the distance along the y-axis to the top frustum edge
        zNear - near clipping plane distance. If the special value Float.POSITIVE_INFINITY is used, the near clipping plane will be at positive infinity. In that case, zFar may not also be Float.POSITIVE_INFINITY.
        zFar - far clipping plane distance. If the special value Float.POSITIVE_INFINITY is used, the far clipping plane will be at positive infinity. In that case, zNear may not also be Float.POSITIVE_INFINITY.
        zZeroToOne - whether to use Vulkan's and Direct3D's NDC z range of [0..+1] when true or whether to use OpenGL's NDC z range of [-1..+1] when false
        dest - will hold the result
        Returns:
        dest
        See Also:
        setFrustumLH(float, float, float, float, float, float, boolean)
      • frustumLH

        public Matrix4f frustumLH​(float left,
                                  float right,
                                  float bottom,
                                  float top,
                                  float zNear,
                                  float zFar,
                                  boolean zZeroToOne)
        Apply an arbitrary perspective projection frustum transformation for a left-handed coordinate system using the given NDC z range to this matrix.

        If M is this matrix and F the frustum matrix, then the new matrix will be M * F. So when transforming a vector v with the new matrix by using M * F * v, the frustum transformation will be applied first!

        In order to set the matrix to a perspective frustum transformation without post-multiplying, use setFrustumLH().

        Reference: http://www.songho.ca

        Parameters:
        left - the distance along the x-axis to the left frustum edge
        right - the distance along the x-axis to the right frustum edge
        bottom - the distance along the y-axis to the bottom frustum edge
        top - the distance along the y-axis to the top frustum edge
        zNear - near clipping plane distance. If the special value Float.POSITIVE_INFINITY is used, the near clipping plane will be at positive infinity. In that case, zFar may not also be Float.POSITIVE_INFINITY.
        zFar - far clipping plane distance. If the special value Float.POSITIVE_INFINITY is used, the far clipping plane will be at positive infinity. In that case, zNear may not also be Float.POSITIVE_INFINITY.
        zZeroToOne - whether to use Vulkan's and Direct3D's NDC z range of [0..+1] when true or whether to use OpenGL's NDC z range of [-1..+1] when false
        Returns:
        a matrix holding the result
        See Also:
        setFrustumLH(float, float, float, float, float, float, boolean)
      • frustumLH

        public Matrix4f frustumLH​(float left,
                                  float right,
                                  float bottom,
                                  float top,
                                  float zNear,
                                  float zFar,
                                  Matrix4f dest)
        Apply an arbitrary perspective projection frustum transformation for a left-handed coordinate system using OpenGL's NDC z range of [-1..+1] to this matrix and store the result in dest.

        If M is this matrix and F the frustum matrix, then the new matrix will be M * F. So when transforming a vector v with the new matrix by using M * F * v, the frustum transformation will be applied first!

        In order to set the matrix to a perspective frustum transformation without post-multiplying, use setFrustumLH().

        Reference: http://www.songho.ca

        Specified by:
        frustumLH in interface Matrix4fc
        Parameters:
        left - the distance along the x-axis to the left frustum edge
        right - the distance along the x-axis to the right frustum edge
        bottom - the distance along the y-axis to the bottom frustum edge
        top - the distance along the y-axis to the top frustum edge
        zNear - near clipping plane distance. If the special value Float.POSITIVE_INFINITY is used, the near clipping plane will be at positive infinity. In that case, zFar may not also be Float.POSITIVE_INFINITY.
        zFar - far clipping plane distance. If the special value Float.POSITIVE_INFINITY is used, the far clipping plane will be at positive infinity. In that case, zNear may not also be Float.POSITIVE_INFINITY.
        dest - will hold the result
        Returns:
        dest
        See Also:
        setFrustumLH(float, float, float, float, float, float)
      • frustumLH

        public Matrix4f frustumLH​(float left,
                                  float right,
                                  float bottom,
                                  float top,
                                  float zNear,
                                  float zFar)
        Apply an arbitrary perspective projection frustum transformation for a left-handed coordinate system using the given NDC z range to this matrix.

        If M is this matrix and F the frustum matrix, then the new matrix will be M * F. So when transforming a vector v with the new matrix by using M * F * v, the frustum transformation will be applied first!

        In order to set the matrix to a perspective frustum transformation without post-multiplying, use setFrustumLH().

        Reference: http://www.songho.ca

        Parameters:
        left - the distance along the x-axis to the left frustum edge
        right - the distance along the x-axis to the right frustum edge
        bottom - the distance along the y-axis to the bottom frustum edge
        top - the distance along the y-axis to the top frustum edge
        zNear - near clipping plane distance. If the special value Float.POSITIVE_INFINITY is used, the near clipping plane will be at positive infinity. In that case, zFar may not also be Float.POSITIVE_INFINITY.
        zFar - far clipping plane distance. If the special value Float.POSITIVE_INFINITY is used, the far clipping plane will be at positive infinity. In that case, zNear may not also be Float.POSITIVE_INFINITY.
        Returns:
        a matrix holding the result
        See Also:
        setFrustumLH(float, float, float, float, float, float)
      • setFrustumLH

        public Matrix4f setFrustumLH​(float left,
                                     float right,
                                     float bottom,
                                     float top,
                                     float zNear,
                                     float zFar,
                                     boolean zZeroToOne)
        Set this matrix to be an arbitrary perspective projection frustum transformation for a left-handed coordinate system using OpenGL's NDC z range of [-1..+1].

        In order to apply the perspective frustum transformation to an existing transformation, use frustumLH().

        Reference: http://www.songho.ca

        Parameters:
        left - the distance along the x-axis to the left frustum edge
        right - the distance along the x-axis to the right frustum edge
        bottom - the distance along the y-axis to the bottom frustum edge
        top - the distance along the y-axis to the top frustum edge
        zNear - near clipping plane distance. If the special value Float.POSITIVE_INFINITY is used, the near clipping plane will be at positive infinity. In that case, zFar may not also be Float.POSITIVE_INFINITY.
        zFar - far clipping plane distance. If the special value Float.POSITIVE_INFINITY is used, the far clipping plane will be at positive infinity. In that case, zNear may not also be Float.POSITIVE_INFINITY.
        zZeroToOne - whether to use Vulkan's and Direct3D's NDC z range of [0..+1] when true or whether to use OpenGL's NDC z range of [-1..+1] when false
        Returns:
        this
        See Also:
        frustumLH(float, float, float, float, float, float, boolean)
      • setFrustumLH

        public Matrix4f setFrustumLH​(float left,
                                     float right,
                                     float bottom,
                                     float top,
                                     float zNear,
                                     float zFar)
        Set this matrix to be an arbitrary perspective projection frustum transformation for a left-handed coordinate system using OpenGL's NDC z range of [-1..+1].

        In order to apply the perspective frustum transformation to an existing transformation, use frustumLH().

        Reference: http://www.songho.ca

        Parameters:
        left - the distance along the x-axis to the left frustum edge
        right - the distance along the x-axis to the right frustum edge
        bottom - the distance along the y-axis to the bottom frustum edge
        top - the distance along the y-axis to the top frustum edge
        zNear - near clipping plane distance. If the special value Float.POSITIVE_INFINITY is used, the near clipping plane will be at positive infinity. In that case, zFar may not also be Float.POSITIVE_INFINITY.
        zFar - far clipping plane distance. If the special value Float.POSITIVE_INFINITY is used, the far clipping plane will be at positive infinity. In that case, zNear may not also be Float.POSITIVE_INFINITY.
        Returns:
        this
        See Also:
        frustumLH(float, float, float, float, float, float)
      • setFromIntrinsic

        public Matrix4f setFromIntrinsic​(float alphaX,
                                         float alphaY,
                                         float gamma,
                                         float u0,
                                         float v0,
                                         int imgWidth,
                                         int imgHeight,
                                         float near,
                                         float far)
        Set this matrix to represent a perspective projection equivalent to the given intrinsic camera calibration parameters. The resulting matrix will be suited for a right-handed coordinate system using OpenGL's NDC z range of [-1..+1].

        See: https://en.wikipedia.org/

        Reference: http://ksimek.github.io/

        Parameters:
        alphaX - specifies the focal length and scale along the X axis
        alphaY - specifies the focal length and scale along the Y axis
        gamma - the skew coefficient between the X and Y axis (may be 0)
        u0 - the X coordinate of the principal point in image/sensor units
        v0 - the Y coordinate of the principal point in image/sensor units
        imgWidth - the width of the sensor/image image/sensor units
        imgHeight - the height of the sensor/image image/sensor units
        near - the distance to the near plane
        far - the distance to the far plane
        Returns:
        this
      • rotate

        public Matrix4f rotate​(Quaternionfc quat,
                               Matrix4f dest)
        Apply the rotation transformation of the given Quaternionfc to this matrix and store the result in dest.

        When used with a right-handed coordinate system, the produced rotation will rotate a vector counter-clockwise around the rotation axis, when viewing along the negative axis direction towards the origin. When used with a left-handed coordinate system, the rotation is clockwise.

        If M is this matrix and Q the rotation matrix obtained from the given quaternion, then the new matrix will be M * Q. So when transforming a vector v with the new matrix by using M * Q * v, the quaternion rotation will be applied first!

        In order to set the matrix to a rotation transformation without post-multiplying, use rotation(Quaternionfc).

        Reference: http://en.wikipedia.org

        Specified by:
        rotate in interface Matrix4fc
        Parameters:
        quat - the Quaternionfc
        dest - will hold the result
        Returns:
        dest
        See Also:
        rotation(Quaternionfc)
      • rotate

        public Matrix4f rotate​(Quaternionfc quat)
        Apply the rotation transformation of the given Quaternionfc to this matrix.

        When used with a right-handed coordinate system, the produced rotation will rotate a vector counter-clockwise around the rotation axis, when viewing along the negative axis direction towards the origin. When used with a left-handed coordinate system, the rotation is clockwise.

        If M is this matrix and Q the rotation matrix obtained from the given quaternion, then the new matrix will be M * Q. So when transforming a vector v with the new matrix by using M * Q * v, the quaternion rotation will be applied first!

        In order to set the matrix to a rotation transformation without post-multiplying, use rotation(Quaternionfc).

        Reference: http://en.wikipedia.org

        Parameters:
        quat - the Quaternionfc
        Returns:
        a matrix holding the result
        See Also:
        rotation(Quaternionfc)
      • rotateAffine

        public Matrix4f rotateAffine​(Quaternionfc quat,
                                     Matrix4f dest)
        Apply the rotation transformation of the given Quaternionfc to this affine matrix and store the result in dest.

        This method assumes this to be affine.

        When used with a right-handed coordinate system, the produced rotation will rotate a vector counter-clockwise around the rotation axis, when viewing along the negative axis direction towards the origin. When used with a left-handed coordinate system, the rotation is clockwise.

        If M is this matrix and Q the rotation matrix obtained from the given quaternion, then the new matrix will be M * Q. So when transforming a vector v with the new matrix by using M * Q * v, the quaternion rotation will be applied first!

        In order to set the matrix to a rotation transformation without post-multiplying, use rotation(Quaternionfc).

        Reference: http://en.wikipedia.org

        Specified by:
        rotateAffine in interface Matrix4fc
        Parameters:
        quat - the Quaternionfc
        dest - will hold the result
        Returns:
        dest
        See Also:
        rotation(Quaternionfc)
      • rotateAffine

        public Matrix4f rotateAffine​(Quaternionfc quat)
        Apply the rotation transformation of the given Quaternionfc to this matrix.

        This method assumes this to be affine.

        When used with a right-handed coordinate system, the produced rotation will rotate a vector counter-clockwise around the rotation axis, when viewing along the negative axis direction towards the origin. When used with a left-handed coordinate system, the rotation is clockwise.

        If M is this matrix and Q the rotation matrix obtained from the given quaternion, then the new matrix will be M * Q. So when transforming a vector v with the new matrix by using M * Q * v, the quaternion rotation will be applied first!

        In order to set the matrix to a rotation transformation without post-multiplying, use rotation(Quaternionfc).

        Reference: http://en.wikipedia.org

        Parameters:
        quat - the Quaternionfc
        Returns:
        a matrix holding the result
        See Also:
        rotation(Quaternionfc)
      • rotateTranslation

        public Matrix4f rotateTranslation​(Quaternionfc quat,
                                          Matrix4f dest)
        Apply the rotation transformation of the given Quaternionfc to this matrix, which is assumed to only contain a translation, and store the result in dest.

        This method assumes this to only contain a translation.

        When used with a right-handed coordinate system, the produced rotation will rotate a vector counter-clockwise around the rotation axis, when viewing along the negative axis direction towards the origin. When used with a left-handed coordinate system, the rotation is clockwise.

        If M is this matrix and Q the rotation matrix obtained from the given quaternion, then the new matrix will be M * Q. So when transforming a vector v with the new matrix by using M * Q * v, the quaternion rotation will be applied first!

        In order to set the matrix to a rotation transformation without post-multiplying, use rotation(Quaternionfc).

        Reference: http://en.wikipedia.org

        Specified by:
        rotateTranslation in interface Matrix4fc
        Parameters:
        quat - the Quaternionfc
        dest - will hold the result
        Returns:
        dest
        See Also:
        rotation(Quaternionfc)
      • rotateAround

        public Matrix4f rotateAround​(Quaternionfc quat,
                                     float ox,
                                     float oy,
                                     float oz)
        Apply the rotation transformation of the given Quaternionfc to this matrix while using (ox, oy, oz) as the rotation origin.

        When used with a right-handed coordinate system, the produced rotation will rotate a vector counter-clockwise around the rotation axis, when viewing along the negative axis direction towards the origin. When used with a left-handed coordinate system, the rotation is clockwise.

        If M is this matrix and Q the rotation matrix obtained from the given quaternion, then the new matrix will be M * Q. So when transforming a vector v with the new matrix by using M * Q * v, the quaternion rotation will be applied first!

        This method is equivalent to calling: translate(ox, oy, oz).rotate(quat).translate(-ox, -oy, -oz)

        Reference: http://en.wikipedia.org

        Parameters:
        quat - the Quaternionfc
        ox - the x coordinate of the rotation origin
        oy - the y coordinate of the rotation origin
        oz - the z coordinate of the rotation origin
        Returns:
        a matrix holding the result
      • rotateAround

        public Matrix4f rotateAround​(Quaternionfc quat,
                                     float ox,
                                     float oy,
                                     float oz,
                                     Matrix4f dest)
        Description copied from interface: Matrix4fc
        Apply the rotation - and possibly scaling - transformation of the given Quaternionfc to this matrix while using (ox, oy, oz) as the rotation origin, and store the result in dest.

        When used with a right-handed coordinate system, the produced rotation will rotate a vector counter-clockwise around the rotation axis, when viewing along the negative axis direction towards the origin. When used with a left-handed coordinate system, the rotation is clockwise.

        If M is this matrix and Q the rotation matrix obtained from the given quaternion, then the new matrix will be M * Q. So when transforming a vector v with the new matrix by using M * Q * v, the quaternion rotation will be applied first!

        This method is equivalent to calling: translate(ox, oy, oz, dest).rotate(quat).translate(-ox, -oy, -oz)

        Reference: http://en.wikipedia.org

        Specified by:
        rotateAround in interface Matrix4fc
        Parameters:
        quat - the Quaternionfc
        ox - the x coordinate of the rotation origin
        oy - the y coordinate of the rotation origin
        oz - the z coordinate of the rotation origin
        dest - will hold the result
        Returns:
        dest
      • rotateLocal

        public Matrix4f rotateLocal​(Quaternionfc quat,
                                    Matrix4f dest)
        Pre-multiply the rotation transformation of the given Quaternionfc to this matrix and store the result in dest.

        When used with a right-handed coordinate system, the produced rotation will rotate a vector counter-clockwise around the rotation axis, when viewing along the negative axis direction towards the origin. When used with a left-handed coordinate system, the rotation is clockwise.

        If M is this matrix and Q the rotation matrix obtained from the given quaternion, then the new matrix will be Q * M. So when transforming a vector v with the new matrix by using Q * M * v, the quaternion rotation will be applied last!

        In order to set the matrix to a rotation transformation without pre-multiplying, use rotation(Quaternionfc).

        Reference: http://en.wikipedia.org

        Specified by:
        rotateLocal in interface Matrix4fc
        Parameters:
        quat - the Quaternionfc
        dest - will hold the result
        Returns:
        dest
        See Also:
        rotation(Quaternionfc)
      • rotateLocal

        public Matrix4f rotateLocal​(Quaternionfc quat)
        Pre-multiply the rotation transformation of the given Quaternionfc to this matrix.

        When used with a right-handed coordinate system, the produced rotation will rotate a vector counter-clockwise around the rotation axis, when viewing along the negative axis direction towards the origin. When used with a left-handed coordinate system, the rotation is clockwise.

        If M is this matrix and Q the rotation matrix obtained from the given quaternion, then the new matrix will be Q * M. So when transforming a vector v with the new matrix by using Q * M * v, the quaternion rotation will be applied last!

        In order to set the matrix to a rotation transformation without pre-multiplying, use rotation(Quaternionfc).

        Reference: http://en.wikipedia.org

        Parameters:
        quat - the Quaternionfc
        Returns:
        a matrix holding the result
        See Also:
        rotation(Quaternionfc)
      • rotateAroundLocal

        public Matrix4f rotateAroundLocal​(Quaternionfc quat,
                                          float ox,
                                          float oy,
                                          float oz,
                                          Matrix4f dest)
        Description copied from interface: Matrix4fc
        Pre-multiply the rotation - and possibly scaling - transformation of the given Quaternionfc to this matrix while using (ox, oy, oz) as the rotation origin, and store the result in dest.

        When used with a right-handed coordinate system, the produced rotation will rotate a vector counter-clockwise around the rotation axis, when viewing along the negative axis direction towards the origin. When used with a left-handed coordinate system, the rotation is clockwise.

        If M is this matrix and Q the rotation matrix obtained from the given quaternion, then the new matrix will be Q * M. So when transforming a vector v with the new matrix by using Q * M * v, the quaternion rotation will be applied last!

        This method is equivalent to calling: translateLocal(-ox, -oy, -oz, dest).rotateLocal(quat).translateLocal(ox, oy, oz)

        Reference: http://en.wikipedia.org

        Specified by:
        rotateAroundLocal in interface Matrix4fc
        Parameters:
        quat - the Quaternionfc
        ox - the x coordinate of the rotation origin
        oy - the y coordinate of the rotation origin
        oz - the z coordinate of the rotation origin
        dest - will hold the result
        Returns:
        dest
      • rotateAroundLocal

        public Matrix4f rotateAroundLocal​(Quaternionfc quat,
                                          float ox,
                                          float oy,
                                          float oz)
        Pre-multiply the rotation transformation of the given Quaternionfc to this matrix while using (ox, oy, oz) as the rotation origin.

        When used with a right-handed coordinate system, the produced rotation will rotate a vector counter-clockwise around the rotation axis, when viewing along the negative axis direction towards the origin. When used with a left-handed coordinate system, the rotation is clockwise.

        If M is this matrix and Q the rotation matrix obtained from the given quaternion, then the new matrix will be Q * M. So when transforming a vector v with the new matrix by using Q * M * v, the quaternion rotation will be applied last!

        This method is equivalent to calling: translateLocal(-ox, -oy, -oz).rotateLocal(quat).translateLocal(ox, oy, oz)

        Reference: http://en.wikipedia.org

        Parameters:
        quat - the Quaternionfc
        ox - the x coordinate of the rotation origin
        oy - the y coordinate of the rotation origin
        oz - the z coordinate of the rotation origin
        Returns:
        a matrix holding the result
      • rotate

        public Matrix4f rotate​(AxisAngle4f axisAngle)
        Apply a rotation transformation, rotating about the given AxisAngle4f, to this matrix.

        When used with a right-handed coordinate system, the produced rotation will rotate a vector counter-clockwise around the rotation axis, when viewing along the negative axis direction towards the origin. When used with a left-handed coordinate system, the rotation is clockwise.

        If M is this matrix and A the rotation matrix obtained from the given AxisAngle4f, then the new matrix will be M * A. So when transforming a vector v with the new matrix by using M * A * v, the AxisAngle4f rotation will be applied first!

        In order to set the matrix to a rotation transformation without post-multiplying, use rotation(AxisAngle4f).

        Reference: http://en.wikipedia.org

        Parameters:
        axisAngle - the AxisAngle4f (needs to be normalized)
        Returns:
        this
        See Also:
        rotate(float, float, float, float), rotation(AxisAngle4f)
      • rotate

        public Matrix4f rotate​(AxisAngle4f axisAngle,
                               Matrix4f dest)
        Apply a rotation transformation, rotating about the given AxisAngle4f and store the result in dest.

        When used with a right-handed coordinate system, the produced rotation will rotate a vector counter-clockwise around the rotation axis, when viewing along the negative axis direction towards the origin. When used with a left-handed coordinate system, the rotation is clockwise.

        If M is this matrix and A the rotation matrix obtained from the given AxisAngle4f, then the new matrix will be M * A. So when transforming a vector v with the new matrix by using M * A * v, the AxisAngle4f rotation will be applied first!

        In order to set the matrix to a rotation transformation without post-multiplying, use rotation(AxisAngle4f).

        Reference: http://en.wikipedia.org

        Specified by:
        rotate in interface Matrix4fc
        Parameters:
        axisAngle - the AxisAngle4f (needs to be normalized)
        dest - will hold the result
        Returns:
        dest
        See Also:
        rotate(float, float, float, float), rotation(AxisAngle4f)
      • rotate

        public Matrix4f rotate​(float angle,
                               Vector3fc axis)
        Apply a rotation transformation, rotating the given radians about the specified axis, to this matrix.

        The axis described by the axis vector needs to be a unit vector.

        When used with a right-handed coordinate system, the produced rotation will rotate a vector counter-clockwise around the rotation axis, when viewing along the negative axis direction towards the origin. When used with a left-handed coordinate system, the rotation is clockwise.

        If M is this matrix and A the rotation matrix obtained from the given axis-angle, then the new matrix will be M * A. So when transforming a vector v with the new matrix by using M * A * v, the axis-angle rotation will be applied first!

        In order to set the matrix to a rotation transformation without post-multiplying, use rotation(float, Vector3fc).

        Reference: http://en.wikipedia.org

        Parameters:
        angle - the angle in radians
        axis - the rotation axis (needs to be normalized)
        Returns:
        this
        See Also:
        rotate(float, float, float, float), rotation(float, Vector3fc)
      • rotate

        public Matrix4f rotate​(float angle,
                               Vector3fc axis,
                               Matrix4f dest)
        Apply a rotation transformation, rotating the given radians about the specified axis and store the result in dest.

        The axis described by the axis vector needs to be a unit vector.

        When used with a right-handed coordinate system, the produced rotation will rotate a vector counter-clockwise around the rotation axis, when viewing along the negative axis direction towards the origin. When used with a left-handed coordinate system, the rotation is clockwise.

        If M is this matrix and A the rotation matrix obtained from the given axis-angle, then the new matrix will be M * A. So when transforming a vector v with the new matrix by using M * A * v, the axis-angle rotation will be applied first!

        In order to set the matrix to a rotation transformation without post-multiplying, use rotation(float, Vector3fc).

        Reference: http://en.wikipedia.org

        Specified by:
        rotate in interface Matrix4fc
        Parameters:
        angle - the angle in radians
        axis - the rotation axis (needs to be normalized)
        dest - will hold the result
        Returns:
        dest
        See Also:
        rotate(float, float, float, float), rotation(float, Vector3fc)
      • unproject

        public Vector4f unproject​(float winX,
                                  float winY,
                                  float winZ,
                                  int[] viewport,
                                  Vector4f dest)
        Description copied from interface: Matrix4fc
        Unproject the given window coordinates (winX, winY, winZ) by this matrix using the specified viewport.

        This method first converts the given window coordinates to normalized device coordinates in the range [-1..1] and then transforms those NDC coordinates by the inverse of this matrix.

        The depth range of winZ is assumed to be [0..1], which is also the OpenGL default.

        As a necessary computation step for unprojecting, this method computes the inverse of this matrix. In order to avoid computing the matrix inverse with every invocation, the inverse of this matrix can be built once outside using Matrix4fc.invert(Matrix4f) and then the method unprojectInv() can be invoked on it.

        Specified by:
        unproject in interface Matrix4fc
        Parameters:
        winX - the x-coordinate in window coordinates (pixels)
        winY - the y-coordinate in window coordinates (pixels)
        winZ - the z-coordinate, which is the depth value in [0..1]
        viewport - the viewport described by [x, y, width, height]
        dest - will hold the unprojected position
        Returns:
        dest
        See Also:
        Matrix4fc.unprojectInv(float, float, float, int[], Vector4f), Matrix4fc.invert(Matrix4f)
      • unproject

        public Vector3f unproject​(float winX,
                                  float winY,
                                  float winZ,
                                  int[] viewport,
                                  Vector3f dest)
        Description copied from interface: Matrix4fc
        Unproject the given window coordinates (winX, winY, winZ) by this matrix using the specified viewport.

        This method first converts the given window coordinates to normalized device coordinates in the range [-1..1] and then transforms those NDC coordinates by the inverse of this matrix.

        The depth range of winZ is assumed to be [0..1], which is also the OpenGL default.

        As a necessary computation step for unprojecting, this method computes the inverse of this matrix. In order to avoid computing the matrix inverse with every invocation, the inverse of this matrix can be built once outside using Matrix4fc.invert(Matrix4f) and then the method unprojectInv() can be invoked on it.

        Specified by:
        unproject in interface Matrix4fc
        Parameters:
        winX - the x-coordinate in window coordinates (pixels)
        winY - the y-coordinate in window coordinates (pixels)
        winZ - the z-coordinate, which is the depth value in [0..1]
        viewport - the viewport described by [x, y, width, height]
        dest - will hold the unprojected position
        Returns:
        dest
        See Also:
        Matrix4fc.unprojectInv(float, float, float, int[], Vector3f), Matrix4fc.invert(Matrix4f)
      • unproject

        public Vector4f unproject​(Vector3fc winCoords,
                                  int[] viewport,
                                  Vector4f dest)
        Description copied from interface: Matrix4fc
        Unproject the given window coordinates winCoords by this matrix using the specified viewport.

        This method first converts the given window coordinates to normalized device coordinates in the range [-1..1] and then transforms those NDC coordinates by the inverse of this matrix.

        The depth range of winCoords.z is assumed to be [0..1], which is also the OpenGL default.

        As a necessary computation step for unprojecting, this method computes the inverse of this matrix. In order to avoid computing the matrix inverse with every invocation, the inverse of this matrix can be built once outside using Matrix4fc.invert(Matrix4f) and then the method unprojectInv() can be invoked on it.

        Specified by:
        unproject in interface Matrix4fc
        Parameters:
        winCoords - the window coordinates to unproject
        viewport - the viewport described by [x, y, width, height]
        dest - will hold the unprojected position
        Returns:
        dest
        See Also:
        Matrix4fc.unprojectInv(float, float, float, int[], Vector4f), Matrix4fc.unproject(float, float, float, int[], Vector4f), Matrix4fc.invert(Matrix4f)
      • unproject

        public Vector3f unproject​(Vector3fc winCoords,
                                  int[] viewport,
                                  Vector3f dest)
        Description copied from interface: Matrix4fc
        Unproject the given window coordinates winCoords by this matrix using the specified viewport.

        This method first converts the given window coordinates to normalized device coordinates in the range [-1..1] and then transforms those NDC coordinates by the inverse of this matrix.

        The depth range of winCoords.z is assumed to be [0..1], which is also the OpenGL default.

        As a necessary computation step for unprojecting, this method computes the inverse of this matrix. In order to avoid computing the matrix inverse with every invocation, the inverse of this matrix can be built once outside using Matrix4fc.invert(Matrix4f) and then the method unprojectInv() can be invoked on it.

        Specified by:
        unproject in interface Matrix4fc
        Parameters:
        winCoords - the window coordinates to unproject
        viewport - the viewport described by [x, y, width, height]
        dest - will hold the unprojected position
        Returns:
        dest
        See Also:
        Matrix4fc.unprojectInv(float, float, float, int[], Vector3f), Matrix4fc.unproject(float, float, float, int[], Vector3f), Matrix4fc.invert(Matrix4f)
      • unprojectRay

        public Matrix4f unprojectRay​(float winX,
                                     float winY,
                                     int[] viewport,
                                     Vector3f originDest,
                                     Vector3f dirDest)
        Description copied from interface: Matrix4fc
        Unproject the given 2D window coordinates (winX, winY) by this matrix using the specified viewport and compute the origin and the direction of the resulting ray which starts at NDC z = -1.0 and goes through NDC z = +1.0.

        This method first converts the given window coordinates to normalized device coordinates in the range [-1..1] and then transforms those NDC coordinates by the inverse of this matrix.

        As a necessary computation step for unprojecting, this method computes the inverse of this matrix. In order to avoid computing the matrix inverse with every invocation, the inverse of this matrix can be built once outside using Matrix4fc.invert(Matrix4f) and then the method unprojectInvRay() can be invoked on it.

        Specified by:
        unprojectRay in interface Matrix4fc
        Parameters:
        winX - the x-coordinate in window coordinates (pixels)
        winY - the y-coordinate in window coordinates (pixels)
        viewport - the viewport described by [x, y, width, height]
        originDest - will hold the ray origin
        dirDest - will hold the (unnormalized) ray direction
        Returns:
        this
        See Also:
        Matrix4fc.unprojectInvRay(float, float, int[], Vector3f, Vector3f), Matrix4fc.invert(Matrix4f)
      • unprojectRay

        public Matrix4f unprojectRay​(Vector2fc winCoords,
                                     int[] viewport,
                                     Vector3f originDest,
                                     Vector3f dirDest)
        Description copied from interface: Matrix4fc
        Unproject the given 2D window coordinates winCoords by this matrix using the specified viewport and compute the origin and the direction of the resulting ray which starts at NDC z = -1.0 and goes through NDC z = +1.0.

        This method first converts the given window coordinates to normalized device coordinates in the range [-1..1] and then transforms those NDC coordinates by the inverse of this matrix.

        As a necessary computation step for unprojecting, this method computes the inverse of this matrix. In order to avoid computing the matrix inverse with every invocation, the inverse of this matrix can be built once outside using Matrix4fc.invert(Matrix4f) and then the method unprojectInvRay() can be invoked on it.

        Specified by:
        unprojectRay in interface Matrix4fc
        Parameters:
        winCoords - the window coordinates to unproject
        viewport - the viewport described by [x, y, width, height]
        originDest - will hold the ray origin
        dirDest - will hold the (unnormalized) ray direction
        Returns:
        this
        See Also:
        Matrix4fc.unprojectInvRay(float, float, int[], Vector3f, Vector3f), Matrix4fc.unprojectRay(float, float, int[], Vector3f, Vector3f), Matrix4fc.invert(Matrix4f)
      • unprojectInv

        public Vector4f unprojectInv​(Vector3fc winCoords,
                                     int[] viewport,
                                     Vector4f dest)
        Description copied from interface: Matrix4fc
        Unproject the given window coordinates winCoords by this matrix using the specified viewport.

        This method differs from unproject() in that it assumes that this is already the inverse matrix of the original projection matrix. It exists to avoid recomputing the matrix inverse with every invocation.

        The depth range of winCoords.z is assumed to be [0..1], which is also the OpenGL default.

        This method reads the four viewport parameters from the given int[].

        Specified by:
        unprojectInv in interface Matrix4fc
        Parameters:
        winCoords - the window coordinates to unproject
        viewport - the viewport described by [x, y, width, height]
        dest - will hold the unprojected position
        Returns:
        dest
        See Also:
        Matrix4fc.unproject(Vector3fc, int[], Vector4f)
      • unprojectInv

        public Vector4f unprojectInv​(float winX,
                                     float winY,
                                     float winZ,
                                     int[] viewport,
                                     Vector4f dest)
        Description copied from interface: Matrix4fc
        Unproject the given window coordinates (winX, winY, winZ) by this matrix using the specified viewport.

        This method differs from unproject() in that it assumes that this is already the inverse matrix of the original projection matrix. It exists to avoid recomputing the matrix inverse with every invocation.

        The depth range of winZ is assumed to be [0..1], which is also the OpenGL default.

        Specified by:
        unprojectInv in interface Matrix4fc
        Parameters:
        winX - the x-coordinate in window coordinates (pixels)
        winY - the y-coordinate in window coordinates (pixels)
        winZ - the z-coordinate, which is the depth value in [0..1]
        viewport - the viewport described by [x, y, width, height]
        dest - will hold the unprojected position
        Returns:
        dest
        See Also:
        Matrix4fc.unproject(float, float, float, int[], Vector4f)
      • unprojectInvRay

        public Matrix4f unprojectInvRay​(Vector2fc winCoords,
                                        int[] viewport,
                                        Vector3f originDest,
                                        Vector3f dirDest)
        Description copied from interface: Matrix4fc
        Unproject the given window coordinates winCoords by this matrix using the specified viewport and compute the origin and the direction of the resulting ray which starts at NDC z = -1.0 and goes through NDC z = +1.0.

        This method differs from unprojectRay() in that it assumes that this is already the inverse matrix of the original projection matrix. It exists to avoid recomputing the matrix inverse with every invocation.

        Specified by:
        unprojectInvRay in interface Matrix4fc
        Parameters:
        winCoords - the window coordinates to unproject
        viewport - the viewport described by [x, y, width, height]
        originDest - will hold the ray origin
        dirDest - will hold the (unnormalized) ray direction
        Returns:
        this
        See Also:
        Matrix4fc.unprojectRay(Vector2fc, int[], Vector3f, Vector3f)
      • unprojectInvRay

        public Matrix4f unprojectInvRay​(float winX,
                                        float winY,
                                        int[] viewport,
                                        Vector3f originDest,
                                        Vector3f dirDest)
        Description copied from interface: Matrix4fc
        Unproject the given 2D window coordinates (winX, winY) by this matrix using the specified viewport and compute the origin and the direction of the resulting ray which starts at NDC z = -1.0 and goes through NDC z = +1.0.

        This method differs from unprojectRay() in that it assumes that this is already the inverse matrix of the original projection matrix. It exists to avoid recomputing the matrix inverse with every invocation.

        Specified by:
        unprojectInvRay in interface Matrix4fc
        Parameters:
        winX - the x-coordinate in window coordinates (pixels)
        winY - the y-coordinate in window coordinates (pixels)
        viewport - the viewport described by [x, y, width, height]
        originDest - will hold the ray origin
        dirDest - will hold the (unnormalized) ray direction
        Returns:
        this
        See Also:
        Matrix4fc.unprojectRay(float, float, int[], Vector3f, Vector3f)
      • unprojectInv

        public Vector3f unprojectInv​(Vector3fc winCoords,
                                     int[] viewport,
                                     Vector3f dest)
        Description copied from interface: Matrix4fc
        Unproject the given window coordinates winCoords by this matrix using the specified viewport.

        This method differs from unproject() in that it assumes that this is already the inverse matrix of the original projection matrix. It exists to avoid recomputing the matrix inverse with every invocation.

        The depth range of winCoords.z is assumed to be [0..1], which is also the OpenGL default.

        Specified by:
        unprojectInv in interface Matrix4fc
        Parameters:
        winCoords - the window coordinates to unproject
        viewport - the viewport described by [x, y, width, height]
        dest - will hold the unprojected position
        Returns:
        dest
        See Also:
        Matrix4fc.unproject(Vector3fc, int[], Vector3f)
      • unprojectInv

        public Vector3f unprojectInv​(float winX,
                                     float winY,
                                     float winZ,
                                     int[] viewport,
                                     Vector3f dest)
        Description copied from interface: Matrix4fc
        Unproject the given window coordinates (winX, winY, winZ) by this matrix using the specified viewport.

        This method differs from unproject() in that it assumes that this is already the inverse matrix of the original projection matrix. It exists to avoid recomputing the matrix inverse with every invocation.

        The depth range of winZ is assumed to be [0..1], which is also the OpenGL default.

        Specified by:
        unprojectInv in interface Matrix4fc
        Parameters:
        winX - the x-coordinate in window coordinates (pixels)
        winY - the y-coordinate in window coordinates (pixels)
        winZ - the z-coordinate, which is the depth value in [0..1]
        viewport - the viewport described by [x, y, width, height]
        dest - will hold the unprojected position
        Returns:
        dest
        See Also:
        Matrix4fc.unproject(float, float, float, int[], Vector3f)
      • project

        public Vector4f project​(float x,
                                float y,
                                float z,
                                int[] viewport,
                                Vector4f winCoordsDest)
        Description copied from interface: Matrix4fc
        Project the given (x, y, z) position via this matrix using the specified viewport and store the resulting window coordinates in winCoordsDest.

        This method transforms the given coordinates by this matrix including perspective division to obtain normalized device coordinates, and then translates these into window coordinates by using the given viewport settings [x, y, width, height].

        The depth range of the returned winCoordsDest.z will be [0..1], which is also the OpenGL default.

        Specified by:
        project in interface Matrix4fc
        Parameters:
        x - the x-coordinate of the position to project
        y - the y-coordinate of the position to project
        z - the z-coordinate of the position to project
        viewport - the viewport described by [x, y, width, height]
        winCoordsDest - will hold the projected window coordinates
        Returns:
        winCoordsDest
      • project

        public Vector3f project​(float x,
                                float y,
                                float z,
                                int[] viewport,
                                Vector3f winCoordsDest)
        Description copied from interface: Matrix4fc
        Project the given (x, y, z) position via this matrix using the specified viewport and store the resulting window coordinates in winCoordsDest.

        This method transforms the given coordinates by this matrix including perspective division to obtain normalized device coordinates, and then translates these into window coordinates by using the given viewport settings [x, y, width, height].

        The depth range of the returned winCoordsDest.z will be [0..1], which is also the OpenGL default.

        Specified by:
        project in interface Matrix4fc
        Parameters:
        x - the x-coordinate of the position to project
        y - the y-coordinate of the position to project
        z - the z-coordinate of the position to project
        viewport - the viewport described by [x, y, width, height]
        winCoordsDest - will hold the projected window coordinates
        Returns:
        winCoordsDest
      • project

        public Vector4f project​(Vector3fc position,
                                int[] viewport,
                                Vector4f winCoordsDest)
        Description copied from interface: Matrix4fc
        Project the given position via this matrix using the specified viewport and store the resulting window coordinates in winCoordsDest.

        This method transforms the given coordinates by this matrix including perspective division to obtain normalized device coordinates, and then translates these into window coordinates by using the given viewport settings [x, y, width, height].

        The depth range of the returned winCoordsDest.z will be [0..1], which is also the OpenGL default.

        Specified by:
        project in interface Matrix4fc
        Parameters:
        position - the position to project into window coordinates
        viewport - the viewport described by [x, y, width, height]
        winCoordsDest - will hold the projected window coordinates
        Returns:
        winCoordsDest
        See Also:
        Matrix4fc.project(float, float, float, int[], Vector4f)
      • project

        public Vector3f project​(Vector3fc position,
                                int[] viewport,
                                Vector3f winCoordsDest)
        Description copied from interface: Matrix4fc
        Project the given position via this matrix using the specified viewport and store the resulting window coordinates in winCoordsDest.

        This method transforms the given coordinates by this matrix including perspective division to obtain normalized device coordinates, and then translates these into window coordinates by using the given viewport settings [x, y, width, height].

        The depth range of the returned winCoordsDest.z will be [0..1], which is also the OpenGL default.

        Specified by:
        project in interface Matrix4fc
        Parameters:
        position - the position to project into window coordinates
        viewport - the viewport described by [x, y, width, height]
        winCoordsDest - will hold the projected window coordinates
        Returns:
        winCoordsDest
        See Also:
        Matrix4fc.project(float, float, float, int[], Vector4f)
      • reflect

        public Matrix4f reflect​(float a,
                                float b,
                                float c,
                                float d,
                                Matrix4f dest)
        Description copied from interface: Matrix4fc
        Apply a mirror/reflection transformation to this matrix that reflects about the given plane specified via the equation x*a + y*b + z*c + d = 0 and store the result in dest.

        The vector (a, b, c) must be a unit vector.

        If M is this matrix and R the reflection matrix, then the new matrix will be M * R. So when transforming a vector v with the new matrix by using M * R * v, the reflection will be applied first!

        Reference: msdn.microsoft.com

        Specified by:
        reflect in interface Matrix4fc
        Parameters:
        a - the x factor in the plane equation
        b - the y factor in the plane equation
        c - the z factor in the plane equation
        d - the constant in the plane equation
        dest - will hold the result
        Returns:
        dest
      • reflect

        public Matrix4f reflect​(float a,
                                float b,
                                float c,
                                float d)
        Apply a mirror/reflection transformation to this matrix that reflects about the given plane specified via the equation x*a + y*b + z*c + d = 0.

        The vector (a, b, c) must be a unit vector.

        If M is this matrix and R the reflection matrix, then the new matrix will be M * R. So when transforming a vector v with the new matrix by using M * R * v, the reflection will be applied first!

        Reference: msdn.microsoft.com

        Parameters:
        a - the x factor in the plane equation
        b - the y factor in the plane equation
        c - the z factor in the plane equation
        d - the constant in the plane equation
        Returns:
        a matrix holding the result
      • reflect

        public Matrix4f reflect​(float nx,
                                float ny,
                                float nz,
                                float px,
                                float py,
                                float pz)
        Apply a mirror/reflection transformation to this matrix that reflects about the given plane specified via the plane normal and a point on the plane.

        If M is this matrix and R the reflection matrix, then the new matrix will be M * R. So when transforming a vector v with the new matrix by using M * R * v, the reflection will be applied first!

        Parameters:
        nx - the x-coordinate of the plane normal
        ny - the y-coordinate of the plane normal
        nz - the z-coordinate of the plane normal
        px - the x-coordinate of a point on the plane
        py - the y-coordinate of a point on the plane
        pz - the z-coordinate of a point on the plane
        Returns:
        a matrix holding the result
      • reflect

        public Matrix4f reflect​(float nx,
                                float ny,
                                float nz,
                                float px,
                                float py,
                                float pz,
                                Matrix4f dest)
        Description copied from interface: Matrix4fc
        Apply a mirror/reflection transformation to this matrix that reflects about the given plane specified via the plane normal and a point on the plane, and store the result in dest.

        If M is this matrix and R the reflection matrix, then the new matrix will be M * R. So when transforming a vector v with the new matrix by using M * R * v, the reflection will be applied first!

        Specified by:
        reflect in interface Matrix4fc
        Parameters:
        nx - the x-coordinate of the plane normal
        ny - the y-coordinate of the plane normal
        nz - the z-coordinate of the plane normal
        px - the x-coordinate of a point on the plane
        py - the y-coordinate of a point on the plane
        pz - the z-coordinate of a point on the plane
        dest - will hold the result
        Returns:
        dest
      • reflect

        public Matrix4f reflect​(Vector3fc normal,
                                Vector3fc point)
        Apply a mirror/reflection transformation to this matrix that reflects about the given plane specified via the plane normal and a point on the plane.

        If M is this matrix and R the reflection matrix, then the new matrix will be M * R. So when transforming a vector v with the new matrix by using M * R * v, the reflection will be applied first!

        Parameters:
        normal - the plane normal
        point - a point on the plane
        Returns:
        this
      • reflect

        public Matrix4f reflect​(Quaternionfc orientation,
                                Vector3fc point)
        Apply a mirror/reflection transformation to this matrix that reflects about a plane specified via the plane orientation and a point on the plane.

        This method can be used to build a reflection transformation based on the orientation of a mirror object in the scene. It is assumed that the default mirror plane's normal is (0, 0, 1). So, if the given Quaternionfc is the identity (does not apply any additional rotation), the reflection plane will be z=0, offset by the given point.

        If M is this matrix and R the reflection matrix, then the new matrix will be M * R. So when transforming a vector v with the new matrix by using M * R * v, the reflection will be applied first!

        Parameters:
        orientation - the plane orientation
        point - a point on the plane
        Returns:
        a matrix holding the result
      • reflect

        public Matrix4f reflect​(Quaternionfc orientation,
                                Vector3fc point,
                                Matrix4f dest)
        Description copied from interface: Matrix4fc
        Apply a mirror/reflection transformation to this matrix that reflects about a plane specified via the plane orientation and a point on the plane, and store the result in dest.

        This method can be used to build a reflection transformation based on the orientation of a mirror object in the scene. It is assumed that the default mirror plane's normal is (0, 0, 1). So, if the given Quaternionfc is the identity (does not apply any additional rotation), the reflection plane will be z=0, offset by the given point.

        If M is this matrix and R the reflection matrix, then the new matrix will be M * R. So when transforming a vector v with the new matrix by using M * R * v, the reflection will be applied first!

        Specified by:
        reflect in interface Matrix4fc
        Parameters:
        orientation - the plane orientation relative to an implied normal vector of (0, 0, 1)
        point - a point on the plane
        dest - will hold the result
        Returns:
        dest
      • reflect

        public Matrix4f reflect​(Vector3fc normal,
                                Vector3fc point,
                                Matrix4f dest)
        Description copied from interface: Matrix4fc
        Apply a mirror/reflection transformation to this matrix that reflects about the given plane specified via the plane normal and a point on the plane, and store the result in dest.

        If M is this matrix and R the reflection matrix, then the new matrix will be M * R. So when transforming a vector v with the new matrix by using M * R * v, the reflection will be applied first!

        Specified by:
        reflect in interface Matrix4fc
        Parameters:
        normal - the plane normal
        point - a point on the plane
        dest - will hold the result
        Returns:
        dest
      • reflection

        public Matrix4f reflection​(float a,
                                   float b,
                                   float c,
                                   float d)
        Set this matrix to a mirror/reflection transformation that reflects about the given plane specified via the equation x*a + y*b + z*c + d = 0.

        The vector (a, b, c) must be a unit vector.

        Reference: msdn.microsoft.com

        Parameters:
        a - the x factor in the plane equation
        b - the y factor in the plane equation
        c - the z factor in the plane equation
        d - the constant in the plane equation
        Returns:
        this
      • reflection

        public Matrix4f reflection​(float nx,
                                   float ny,
                                   float nz,
                                   float px,
                                   float py,
                                   float pz)
        Set this matrix to a mirror/reflection transformation that reflects about the given plane specified via the plane normal and a point on the plane.
        Parameters:
        nx - the x-coordinate of the plane normal
        ny - the y-coordinate of the plane normal
        nz - the z-coordinate of the plane normal
        px - the x-coordinate of a point on the plane
        py - the y-coordinate of a point on the plane
        pz - the z-coordinate of a point on the plane
        Returns:
        this
      • reflection

        public Matrix4f reflection​(Vector3fc normal,
                                   Vector3fc point)
        Set this matrix to a mirror/reflection transformation that reflects about the given plane specified via the plane normal and a point on the plane.
        Parameters:
        normal - the plane normal
        point - a point on the plane
        Returns:
        this
      • reflection

        public Matrix4f reflection​(Quaternionfc orientation,
                                   Vector3fc point)
        Set this matrix to a mirror/reflection transformation that reflects about a plane specified via the plane orientation and a point on the plane.

        This method can be used to build a reflection transformation based on the orientation of a mirror object in the scene. It is assumed that the default mirror plane's normal is (0, 0, 1). So, if the given Quaternionfc is the identity (does not apply any additional rotation), the reflection plane will be z=0, offset by the given point.

        Parameters:
        orientation - the plane orientation
        point - a point on the plane
        Returns:
        this
      • getRow

        public Vector4f getRow​(int row,
                               Vector4f dest)
                        throws java.lang.IndexOutOfBoundsException
        Description copied from interface: Matrix4fc
        Get the row at the given row index, starting with 0.
        Specified by:
        getRow in interface Matrix4fc
        Parameters:
        row - the row index in [0..3]
        dest - will hold the row components
        Returns:
        the passed in destination
        Throws:
        java.lang.IndexOutOfBoundsException - if row is not in [0..3]
      • getRow

        public Vector3f getRow​(int row,
                               Vector3f dest)
                        throws java.lang.IndexOutOfBoundsException
        Description copied from interface: Matrix4fc
        Get the first three components of the row at the given row index, starting with 0.
        Specified by:
        getRow in interface Matrix4fc
        Parameters:
        row - the row index in [0..3]
        dest - will hold the first three row components
        Returns:
        the passed in destination
        Throws:
        java.lang.IndexOutOfBoundsException - if row is not in [0..3]
      • setRow

        public Matrix4f setRow​(int row,
                               Vector4fc src)
                        throws java.lang.IndexOutOfBoundsException
        Set the row at the given row index, starting with 0.
        Parameters:
        row - the row index in [0..3]
        src - the row components to set
        Returns:
        this
        Throws:
        java.lang.IndexOutOfBoundsException - if row is not in [0..3]
      • getColumn

        public Vector4f getColumn​(int column,
                                  Vector4f dest)
                           throws java.lang.IndexOutOfBoundsException
        Description copied from interface: Matrix4fc
        Get the column at the given column index, starting with 0.
        Specified by:
        getColumn in interface Matrix4fc
        Parameters:
        column - the column index in [0..3]
        dest - will hold the column components
        Returns:
        the passed in destination
        Throws:
        java.lang.IndexOutOfBoundsException - if column is not in [0..3]
      • getColumn

        public Vector3f getColumn​(int column,
                                  Vector3f dest)
                           throws java.lang.IndexOutOfBoundsException
        Description copied from interface: Matrix4fc
        Get the first three components of the column at the given column index, starting with 0.
        Specified by:
        getColumn in interface Matrix4fc
        Parameters:
        column - the column index in [0..3]
        dest - will hold the first three column components
        Returns:
        the passed in destination
        Throws:
        java.lang.IndexOutOfBoundsException - if column is not in [0..3]
      • setColumn

        public Matrix4f setColumn​(int column,
                                  Vector4fc src)
                           throws java.lang.IndexOutOfBoundsException
        Set the column at the given column index, starting with 0.
        Parameters:
        column - the column index in [0..3]
        src - the column components to set
        Returns:
        this
        Throws:
        java.lang.IndexOutOfBoundsException - if column is not in [0..3]
      • normal

        public Matrix4f normal()
        Compute a normal matrix from the upper left 3x3 submatrix of this and store it into the upper left 3x3 submatrix of this. All other values of this will be set to identity.

        The normal matrix of m is the transpose of the inverse of m.

        Please note that, if this is an orthogonal matrix or a matrix whose columns are orthogonal vectors, then this method need not be invoked, since in that case this itself is its normal matrix. In that case, use set3x3(Matrix4f) to set a given Matrix4f to only the upper left 3x3 submatrix of this matrix.

        Returns:
        a matrix holding the result
        See Also:
        set3x3(Matrix4f)
      • normal

        public Matrix4f normal​(Matrix4f dest)
        Compute a normal matrix from the upper left 3x3 submatrix of this and store it into the upper left 3x3 submatrix of dest. All other values of dest will be set to identity.

        The normal matrix of m is the transpose of the inverse of m.

        Please note that, if this is an orthogonal matrix or a matrix whose columns are orthogonal vectors, then this method need not be invoked, since in that case this itself is its normal matrix. In that case, use set3x3(Matrix4f) to set a given Matrix4f to only the upper left 3x3 submatrix of this matrix.

        Specified by:
        normal in interface Matrix4fc
        Parameters:
        dest - will hold the result
        Returns:
        dest
        See Also:
        set3x3(Matrix4f)
      • normal

        public Matrix3f normal​(Matrix3f dest)
        Compute a normal matrix from the upper left 3x3 submatrix of this and store it into dest.

        The normal matrix of m is the transpose of the inverse of m.

        Please note that, if this is an orthogonal matrix or a matrix whose columns are orthogonal vectors, then this method need not be invoked, since in that case this itself is its normal matrix. In that case, use Matrix3f.set(Matrix4fc) to set a given Matrix3f to only the upper left 3x3 submatrix of this matrix.

        Specified by:
        normal in interface Matrix4fc
        Parameters:
        dest - will hold the result
        Returns:
        dest
        See Also:
        Matrix3f.set(Matrix4fc), get3x3(Matrix3f)
      • normalize3x3

        public Matrix4f normalize3x3()
        Normalize the upper left 3x3 submatrix of this matrix.

        The resulting matrix will map unit vectors to unit vectors, though a pair of orthogonal input unit vectors need not be mapped to a pair of orthogonal output vectors if the original matrix was not orthogonal itself (i.e. had skewing).

        Returns:
        a matrix holding the result
      • normalize3x3

        public Matrix4f normalize3x3​(Matrix4f dest)
        Description copied from interface: Matrix4fc
        Normalize the upper left 3x3 submatrix of this matrix and store the result in dest.

        The resulting matrix will map unit vectors to unit vectors, though a pair of orthogonal input unit vectors need not be mapped to a pair of orthogonal output vectors if the original matrix was not orthogonal itself (i.e. had skewing).

        Specified by:
        normalize3x3 in interface Matrix4fc
        Parameters:
        dest - will hold the result
        Returns:
        dest
      • normalize3x3

        public Matrix3f normalize3x3​(Matrix3f dest)
        Description copied from interface: Matrix4fc
        Normalize the upper left 3x3 submatrix of this matrix and store the result in dest.

        The resulting matrix will map unit vectors to unit vectors, though a pair of orthogonal input unit vectors need not be mapped to a pair of orthogonal output vectors if the original matrix was not orthogonal itself (i.e. had skewing).

        Specified by:
        normalize3x3 in interface Matrix4fc
        Parameters:
        dest - will hold the result
        Returns:
        dest
      • frustumPlane

        public Vector4f frustumPlane​(int plane,
                                     Vector4f planeEquation)
        Description copied from interface: Matrix4fc
        Calculate a frustum plane of this matrix, which can be a projection matrix or a combined modelview-projection matrix, and store the result in the given planeEquation.

        Generally, this method computes the frustum plane in the local frame of any coordinate system that existed before this transformation was applied to it in order to yield homogeneous clipping space.

        The frustum plane will be given in the form of a general plane equation: a*x + b*y + c*z + d = 0, where the given Vector4f components will hold the (a, b, c, d) values of the equation.

        The plane normal, which is (a, b, c), is directed "inwards" of the frustum. Any plane/point test using a*x + b*y + c*z + d therefore will yield a result greater than zero if the point is within the frustum (i.e. at the positive side of the frustum plane).

        For performing frustum culling, the class FrustumIntersection should be used instead of manually obtaining the frustum planes and testing them against points, spheres or axis-aligned boxes.

        Reference: Fast Extraction of Viewing Frustum Planes from the World-View-Projection Matrix

        Specified by:
        frustumPlane in interface Matrix4fc
        Parameters:
        plane - one of the six possible planes, given as numeric constants Matrix4fc.PLANE_NX, Matrix4fc.PLANE_PX, Matrix4fc.PLANE_NY, Matrix4fc.PLANE_PY, Matrix4fc.PLANE_NZ and Matrix4fc.PLANE_PZ
        planeEquation - will hold the computed plane equation. The plane equation will be normalized, meaning that (a, b, c) will be a unit vector
        Returns:
        planeEquation
      • frustumPlane

        public Planef frustumPlane​(int which,
                                   Planef plane)
        Description copied from interface: Matrix4fc
        Calculate a frustum plane of this matrix, which can be a projection matrix or a combined modelview-projection matrix, and store the result in the given plane.

        Generally, this method computes the frustum plane in the local frame of any coordinate system that existed before this transformation was applied to it in order to yield homogeneous clipping space.

        The plane normal, which is (a, b, c), is directed "inwards" of the frustum. Any plane/point test using a*x + b*y + c*z + d therefore will yield a result greater than zero if the point is within the frustum (i.e. at the positive side of the frustum plane).

        For performing frustum culling, the class FrustumIntersection should be used instead of manually obtaining the frustum planes and testing them against points, spheres or axis-aligned boxes.

        Reference: Fast Extraction of Viewing Frustum Planes from the World-View-Projection Matrix

        Specified by:
        frustumPlane in interface Matrix4fc
        Parameters:
        which - one of the six possible planes, given as numeric constants Matrix4fc.PLANE_NX, Matrix4fc.PLANE_PX, Matrix4fc.PLANE_NY, Matrix4fc.PLANE_PY, Matrix4fc.PLANE_NZ and Matrix4fc.PLANE_PZ
        plane - will hold the computed plane equation. The plane equation will be normalized, meaning that (a, b, c) will be a unit vector
        Returns:
        planeEquation