Package org.joml

Class Matrix4x3f

java.lang.Object
org.joml.Matrix4x3f
All Implemented Interfaces:
Externalizable, Serializable, Cloneable, Matrix4x3fc
Direct Known Subclasses:
Matrix4x3fStack

public class Matrix4x3f extends Object implements Externalizable, Cloneable, Matrix4x3fc
Contains the definition of an affine 4x3 matrix (4 columns, 3 rows) of floats, and associated functions to transform it. The matrix is column-major to match OpenGL's interpretation, and it looks like this:

m00 m10 m20 m30
m01 m11 m21 m31
m02 m12 m22 m32

Author:
Richard Greenlees, Kai Burjack
See Also:
Serialized Form
  • Field Summary

  • Constructor Summary

    Constructors
    Constructor
    Description
    Create a new Matrix4x3f and set it to identity.
    Matrix4x3f​(float m00, float m01, float m02, float m10, float m11, float m12, float m20, float m21, float m22, float m30, float m31, float m32)
    Create a new 4x4 matrix using the supplied float values.
    Create a new Matrix4x3f by reading its 12 float components from the given FloatBuffer at the buffer's current position.
    Create a new Matrix4x3f by setting its left 3x3 submatrix to the values of the given Matrix3fc and the rest to identity.
    Create a new Matrix4x3f and make it a copy of the given matrix.
    Matrix4x3f​(Vector3fc col0, Vector3fc col1, Vector3fc col2, Vector3fc col3)
    Create a new Matrix4x3f and initialize its four columns using the supplied vectors.
  • Method Summary

    Modifier and Type
    Method
    Description
    add​(Matrix4x3fc other)
    Component-wise add this and other.
    add​(Matrix4x3fc other, Matrix4x3f dest)
    Component-wise add this and other and store the result in dest.
    arcball​(float radius, float centerX, float centerY, float centerZ, float angleX, float angleY)
    Apply an arcball view transformation to this matrix with the given radius and center (centerX, centerY, centerZ) position of the arcball and the specified X and Y rotation angles.
    arcball​(float radius, float centerX, float centerY, float centerZ, float angleX, float angleY, Matrix4x3f dest)
    Apply an arcball view transformation to this matrix with the given radius and center (centerX, centerY, centerZ) position of the arcball and the specified X and Y rotation angles, and store the result in dest.
    arcball​(float radius, Vector3fc center, float angleX, float angleY)
    Apply an arcball view transformation to this matrix with the given radius and center position of the arcball and the specified X and Y rotation angles.
    arcball​(float radius, Vector3fc center, float angleX, float angleY, Matrix4x3f dest)
    Apply an arcball view transformation to this matrix with the given radius and center position of the arcball and the specified X and Y rotation angles, and store the result in dest.
    assume​(int properties)
    Assume the given properties about this matrix.
    billboardCylindrical​(Vector3fc objPos, Vector3fc targetPos, Vector3fc up)
    Set this matrix to a cylindrical billboard transformation that rotates the local +Z axis of a given object with position objPos towards a target position at targetPos while constraining a cylindrical rotation around the given up vector.
    billboardSpherical​(Vector3fc objPos, Vector3fc targetPos)
    Set this matrix to a spherical billboard transformation that rotates the local +Z axis of a given object with position objPos towards a target position at targetPos using a shortest arc rotation by not preserving any up vector of the object.
    billboardSpherical​(Vector3fc objPos, Vector3fc targetPos, Vector3fc up)
    Set this matrix to a spherical billboard transformation that rotates the local +Z axis of a given object with position objPos towards a target position at targetPos.
     
    Compute the cofactor matrix of the left 3x3 submatrix of this.
    Compute the cofactor matrix of the left 3x3 submatrix of this and store it into dest.
    Compute the cofactor matrix of the left 3x3 submatrix of this and store it into dest.
    float
    Return the determinant of this matrix.
    Compute and set the matrix properties returned by properties() based on the current matrix element values.
    boolean
    equals​(Object obj)
     
    boolean
    equals​(Matrix4x3fc m, float delta)
    Compare the matrix elements of this matrix with the given matrix using the given delta and return whether all of them are equal within a maximum difference of delta.
    fma​(Matrix4x3fc other, float otherFactor)
    Component-wise add this and other by first multiplying each component of other by otherFactor and adding that result to this.
    fma​(Matrix4x3fc other, float otherFactor, Matrix4x3f dest)
    Component-wise add this and other by first multiplying each component of other by otherFactor, adding that to this and storing the final result in dest.
    frustumPlane​(int which, Vector4f dest)
    Calculate a frustum plane of this matrix, which can be a projection matrix or a combined modelview-projection matrix, and store the result in the given dest.
    float[]
    get​(float[] arr)
    Store this matrix into the supplied float array in column-major order.
    float[]
    get​(float[] arr, int offset)
    Store this matrix into the supplied float array in column-major order at the given offset.
    get​(int index, ByteBuffer buffer)
    Store this matrix in column-major order into the supplied ByteBuffer starting at the specified absolute buffer position/index.
    get​(int index, FloatBuffer buffer)
    Store this matrix in column-major order into the supplied FloatBuffer starting at the specified absolute buffer position/index.
    get​(ByteBuffer buffer)
    Store this matrix in column-major order into the supplied ByteBuffer at the current buffer position.
    get​(FloatBuffer buffer)
    Store this matrix in column-major order into the supplied FloatBuffer at the current buffer position.
    get​(Matrix4d dest)
    Get the current values of this matrix and store them into the upper 4x3 submatrix of dest.
    get​(Matrix4f dest)
    Get the current values of this matrix and store them into the upper 4x3 submatrix of dest.
    get​(Matrix4x3d dest)
    Get the current values of this matrix and store them into dest.
    get​(Matrix4x3f dest)
    Get the current values of this matrix and store them into dest.
    get3x4​(int index, ByteBuffer buffer)
    Store the left 3x3 submatrix as 3x4 matrix in column-major order into the supplied ByteBuffer starting at the specified absolute buffer position/index, with the m03, m13 and m23 components being zero.
    get3x4​(int index, FloatBuffer buffer)
    Store the left 3x3 submatrix as 3x4 matrix in column-major order into the supplied FloatBuffer starting at the specified absolute buffer position/index, with the m03, m13 and m23 components being zero.
    get3x4​(ByteBuffer buffer)
    Store the left 3x3 submatrix as 3x4 matrix in column-major order into the supplied ByteBuffer at the current buffer position, with the m03, m13 and m23 components being zero.
    get3x4​(FloatBuffer buffer)
    Store the left 3x3 submatrix as 3x4 matrix in column-major order into the supplied FloatBuffer at the current buffer position, with the m03, m13 and m23 components being zero.
    float[]
    get4x4​(float[] arr)
    Store a 4x4 matrix in column-major order into the supplied array, where the upper 4x3 submatrix is this and the last row is (0, 0, 0, 1).
    float[]
    get4x4​(float[] arr, int offset)
    Store a 4x4 matrix in column-major order into the supplied array at the given offset, where the upper 4x3 submatrix is this and the last row is (0, 0, 0, 1).
    get4x4​(int index, ByteBuffer buffer)
    Store a 4x4 matrix in column-major order into the supplied ByteBuffer starting at the specified absolute buffer position/index, where the upper 4x3 submatrix is this and the last row is (0, 0, 0, 1).
    get4x4​(int index, FloatBuffer buffer)
    Store a 4x4 matrix in column-major order into the supplied FloatBuffer starting at the specified absolute buffer position/index, where the upper 4x3 submatrix is this and the last row is (0, 0, 0, 1).
    get4x4​(ByteBuffer buffer)
    Store a 4x4 matrix in column-major order into the supplied ByteBuffer at the current buffer position, where the upper 4x3 submatrix is this and the last row is (0, 0, 0, 1).
    get4x4​(FloatBuffer buffer)
    Store a 4x4 matrix in column-major order into the supplied FloatBuffer at the current buffer position, where the upper 4x3 submatrix is this and the last row is (0, 0, 0, 1).
    getColumn​(int column, Vector3f dest)
    Get the column at the given column index, starting with 0.
    Extract the Euler angles from the rotation represented by the left 3x3 submatrix of this and store the extracted Euler angles in dest.
    Get the current values of this matrix and store the represented rotation into the given Quaterniond.
    Get the current values of this matrix and store the represented rotation into the given Quaternionf.
    Get the rotational component of this matrix and store the represented rotation into the given AxisAngle4d.
    Get the rotational component of this matrix and store the represented rotation into the given AxisAngle4f.
    getRow​(int row, Vector4f dest)
    Get the row at the given row index, starting with 0.
    getScale​(Vector3f dest)
    Get the scaling factors of this matrix for the three base axes.
    getToAddress​(long address)
    Store this matrix in column-major order at the given off-heap address.
    Get only the translation components (m30, m31, m32) of this matrix and store them in the given vector xyz.
    float[]
    getTransposed​(float[] arr)
    Store this matrix into the supplied float array in row-major order.
    float[]
    getTransposed​(float[] arr, int offset)
    Store this matrix into the supplied float array in row-major order at the given offset.
    getTransposed​(int index, ByteBuffer buffer)
    Store this matrix in row-major order into the supplied ByteBuffer starting at the specified absolute buffer position/index.
    getTransposed​(int index, FloatBuffer buffer)
    Store this matrix in row-major order into the supplied FloatBuffer starting at the specified absolute buffer position/index.
    Store this matrix in row-major order into the supplied ByteBuffer at the current buffer position.
    Store this matrix in row-major order into the supplied FloatBuffer at the current buffer position.
    Get the current values of this matrix and store the represented rotation into the given Quaterniond.
    Get the current values of this matrix and store the represented rotation into the given Quaternionf.
    int
     
    Reset this matrix to the identity.
    Invert this matrix.
    invert​(Matrix4f dest)
    Invert this matrix and write the result as the top 4x3 matrix into dest and set all other values of dest to identity..
    invert​(Matrix4x3f dest)
    Invert this matrix and write the result into dest.
    Invert this orthographic projection matrix.
    Invert this orthographic projection matrix and store the result into the given dest.
    boolean
    Determine whether all matrix elements are finite floating-point values, that is, they are not NaN and not infinity.
    lerp​(Matrix4x3fc other, float t)
    Linearly interpolate this and other using the given interpolation factor t and store the result in this.
    lerp​(Matrix4x3fc other, float t, Matrix4x3f dest)
    Linearly interpolate this and other using the given interpolation factor t and store the result in dest.
    lookAlong​(float dirX, float dirY, float dirZ, float upX, float upY, float upZ)
    Apply a rotation transformation to this matrix to make -z point along dir.
    lookAlong​(float dirX, float dirY, float dirZ, float upX, float upY, float upZ, Matrix4x3f dest)
    Apply a rotation transformation to this matrix to make -z point along dir and store the result in dest.
    Apply a rotation transformation to this matrix to make -z point along dir.
    Apply a rotation transformation to this matrix to make -z point along dir and store the result in dest.
    lookAt​(float eyeX, float eyeY, float eyeZ, float centerX, float centerY, float centerZ, float upX, float upY, float upZ)
    Apply a "lookat" transformation to this matrix for a right-handed coordinate system, that aligns -z with center - eye.
    lookAt​(float eyeX, float eyeY, float eyeZ, float centerX, float centerY, float centerZ, float upX, float upY, float upZ, Matrix4x3f dest)
    Apply a "lookat" transformation to this matrix for a right-handed coordinate system, that aligns -z with center - eye and store the result in dest.
    lookAt​(Vector3fc eye, Vector3fc center, Vector3fc up)
    Apply a "lookat" transformation to this matrix for a right-handed coordinate system, that aligns -z with center - eye.
    lookAt​(Vector3fc eye, Vector3fc center, Vector3fc up, Matrix4x3f dest)
    Apply a "lookat" transformation to this matrix for a right-handed coordinate system, that aligns -z with center - eye and store the result in dest.
    lookAtLH​(float eyeX, float eyeY, float eyeZ, float centerX, float centerY, float centerZ, float upX, float upY, float upZ)
    Apply a "lookat" transformation to this matrix for a left-handed coordinate system, that aligns +z with center - eye.
    lookAtLH​(float eyeX, float eyeY, float eyeZ, float centerX, float centerY, float centerZ, float upX, float upY, float upZ, Matrix4x3f dest)
    Apply a "lookat" transformation to this matrix for a left-handed coordinate system, that aligns +z with center - eye and store the result in dest.
    lookAtLH​(Vector3fc eye, Vector3fc center, Vector3fc up)
    Apply a "lookat" transformation to this matrix for a left-handed coordinate system, that aligns +z with center - eye.
    lookAtLH​(Vector3fc eye, Vector3fc center, Vector3fc up, Matrix4x3f dest)
    Apply a "lookat" transformation to this matrix for a left-handed coordinate system, that aligns +z with center - eye and store the result in dest.
    float
    m00()
    Return the value of the matrix element at column 0 and row 0.
    m00​(float m00)
    Set the value of the matrix element at column 0 and row 0.
    float
    m01()
    Return the value of the matrix element at column 0 and row 1.
    m01​(float m01)
    Set the value of the matrix element at column 0 and row 1.
    float
    m02()
    Return the value of the matrix element at column 0 and row 2.
    m02​(float m02)
    Set the value of the matrix element at column 0 and row 2.
    float
    m10()
    Return the value of the matrix element at column 1 and row 0.
    m10​(float m10)
    Set the value of the matrix element at column 1 and row 0.
    float
    m11()
    Return the value of the matrix element at column 1 and row 1.
    m11​(float m11)
    Set the value of the matrix element at column 1 and row 1.
    float
    m12()
    Return the value of the matrix element at column 1 and row 2.
    m12​(float m12)
    Set the value of the matrix element at column 1 and row 2.
    float
    m20()
    Return the value of the matrix element at column 2 and row 0.
    m20​(float m20)
    Set the value of the matrix element at column 2 and row 0.
    float
    m21()
    Return the value of the matrix element at column 2 and row 1.
    m21​(float m21)
    Set the value of the matrix element at column 2 and row 1.
    float
    m22()
    Return the value of the matrix element at column 2 and row 2.
    m22​(float m22)
    Set the value of the matrix element at column 2 and row 2.
    float
    m30()
    Return the value of the matrix element at column 3 and row 0.
    m30​(float m30)
    Set the value of the matrix element at column 3 and row 0.
    float
    m31()
    Return the value of the matrix element at column 3 and row 1.
    m31​(float m31)
    Set the value of the matrix element at column 3 and row 1.
    float
    m32()
    Return the value of the matrix element at column 3 and row 2.
    m32​(float m32)
    Set the value of the matrix element at column 3 and row 2.
    mul​(Matrix4x3fc right)
    Multiply this matrix by the supplied right matrix and store the result in this.
    mul​(Matrix4x3fc right, Matrix4x3f dest)
    Multiply this matrix by the supplied right matrix and store the result in dest.
    Component-wise multiply this by other.
    Component-wise multiply this by other and store the result in dest.
    Multiply this orthographic projection matrix by the supplied view matrix.
    Multiply this orthographic projection matrix by the supplied view matrix and store the result in dest.
    Multiply this matrix, which is assumed to only contain a translation, by the supplied right matrix and store the result in dest.
    Compute a normal matrix from the left 3x3 submatrix of this and store it into the left 3x3 submatrix of this.
    normal​(Matrix3f dest)
    Compute a normal matrix from the left 3x3 submatrix of this and store it into dest.
    normal​(Matrix4x3f dest)
    Compute a normal matrix from the left 3x3 submatrix of this and store it into the left 3x3 submatrix of dest.
    Normalize the left 3x3 submatrix of this matrix.
    Normalize the left 3x3 submatrix of this matrix and store the result in dest.
    Normalize the left 3x3 submatrix of this matrix and store the result in dest.
    Obtain the direction of +X before the transformation represented by this orthogonal matrix is applied.
    Obtain the direction of +Y before the transformation represented by this orthogonal matrix is applied.
    Obtain the direction of +Z before the transformation represented by this orthogonal matrix is applied.
    obliqueZ​(float a, float b)
    Apply an oblique projection transformation to this matrix with the given values for a and b.
    obliqueZ​(float a, float b, Matrix4x3f dest)
    Apply an oblique projection transformation to this matrix with the given values for a and b and store the result in dest.
    origin​(Vector3f origin)
    Obtain the position that gets transformed to the origin by this matrix.
    ortho​(float left, float right, float bottom, float top, float zNear, float zFar)
    Apply an orthographic projection transformation for a right-handed coordinate system using OpenGL's NDC z range of [-1..+1] to this matrix.
    ortho​(float left, float right, float bottom, float top, float zNear, float zFar, boolean zZeroToOne)
    Apply an orthographic projection transformation for a right-handed coordinate system using the given NDC z range to this matrix.
    ortho​(float left, float right, float bottom, float top, float zNear, float zFar, boolean zZeroToOne, Matrix4x3f dest)
    Apply an orthographic projection transformation for a right-handed coordinate system using the given NDC z range to this matrix and store the result in dest.
    ortho​(float left, float right, float bottom, float top, float zNear, float zFar, Matrix4x3f dest)
    Apply an orthographic projection transformation for a right-handed coordinate system using OpenGL's NDC z range of [-1..+1] to this matrix and store the result in dest.
    ortho2D​(float left, float right, float bottom, float top)
    Apply an orthographic projection transformation for a right-handed coordinate system to this matrix.
    ortho2D​(float left, float right, float bottom, float top, Matrix4x3f dest)
    Apply an orthographic projection transformation for a right-handed coordinate system to this matrix and store the result in dest.
    ortho2DLH​(float left, float right, float bottom, float top)
    Apply an orthographic projection transformation for a left-handed coordinate system to this matrix.
    ortho2DLH​(float left, float right, float bottom, float top, Matrix4x3f dest)
    Apply an orthographic projection transformation for a left-handed coordinate system to this matrix and store the result in dest.
    orthoLH​(float left, float right, float bottom, float top, float zNear, float zFar)
    Apply an orthographic projection transformation for a left-handed coordiante system using OpenGL's NDC z range of [-1..+1] to this matrix.
    orthoLH​(float left, float right, float bottom, float top, float zNear, float zFar, boolean zZeroToOne)
    Apply an orthographic projection transformation for a left-handed coordiante system using the given NDC z range to this matrix.
    orthoLH​(float left, float right, float bottom, float top, float zNear, float zFar, boolean zZeroToOne, Matrix4x3f dest)
    Apply an orthographic projection transformation for a left-handed coordiante system using the given NDC z range to this matrix and store the result in dest.
    orthoLH​(float left, float right, float bottom, float top, float zNear, float zFar, Matrix4x3f dest)
    Apply an orthographic projection transformation for a left-handed coordiante system using OpenGL's NDC z range of [-1..+1] to this matrix and store the result in dest.
    orthoSymmetric​(float width, float height, float zNear, float zFar)
    Apply a symmetric orthographic projection transformation for a right-handed coordinate system using OpenGL's NDC z range of [-1..+1] to this matrix.
    orthoSymmetric​(float width, float height, float zNear, float zFar, boolean zZeroToOne)
    Apply a symmetric orthographic projection transformation for a right-handed coordinate system using the given NDC z range to this matrix.
    orthoSymmetric​(float width, float height, float zNear, float zFar, boolean zZeroToOne, Matrix4x3f dest)
    Apply a symmetric orthographic projection transformation for a right-handed coordinate system using the given NDC z range to this matrix and store the result in dest.
    orthoSymmetric​(float width, float height, float zNear, float zFar, Matrix4x3f dest)
    Apply a symmetric orthographic projection transformation for a right-handed coordinate system using OpenGL's NDC z range of [-1..+1] to this matrix and store the result in dest.
    orthoSymmetricLH​(float width, float height, float zNear, float zFar)
    Apply a symmetric orthographic projection transformation for a left-handed coordinate system using OpenGL's NDC z range of [-1..+1] to this matrix.
    orthoSymmetricLH​(float width, float height, float zNear, float zFar, boolean zZeroToOne)
    Apply a symmetric orthographic projection transformation for a left-handed coordinate system using the given NDC z range to this matrix.
    orthoSymmetricLH​(float width, float height, float zNear, float zFar, boolean zZeroToOne, Matrix4x3f dest)
    Apply a symmetric orthographic projection transformation for a left-handed coordinate system using the given NDC z range to this matrix and store the result in dest.
    orthoSymmetricLH​(float width, float height, float zNear, float zFar, Matrix4x3f dest)
    Apply a symmetric orthographic projection transformation for a left-handed coordinate system using OpenGL's NDC z range of [-1..+1] to this matrix and store the result in dest.
    pick​(float x, float y, float width, float height, int[] viewport)
    Apply a picking transformation to this matrix using the given window coordinates (x, y) as the pick center and the given (width, height) as the size of the picking region in window coordinates.
    pick​(float x, float y, float width, float height, int[] viewport, Matrix4x3f dest)
    Apply a picking transformation to this matrix using the given window coordinates (x, y) as the pick center and the given (width, height) as the size of the picking region in window coordinates, and store the result in dest.
    Obtain the direction of +X before the transformation represented by this matrix is applied.
    Obtain the direction of +Y before the transformation represented by this matrix is applied.
    Obtain the direction of +Z before the transformation represented by this matrix is applied.
    int
     
    void
     
    reflect​(float a, float b, float c, float d)
    Apply a mirror/reflection transformation to this matrix that reflects about the given plane specified via the equation x*a + y*b + z*c + d = 0.
    reflect​(float nx, float ny, float nz, float px, float py, float pz)
    Apply a mirror/reflection transformation to this matrix that reflects about the given plane specified via the plane normal and a point on the plane.
    reflect​(float nx, float ny, float nz, float px, float py, float pz, Matrix4x3f dest)
    Apply a mirror/reflection transformation to this matrix that reflects about the given plane specified via the plane normal and a point on the plane, and store the result in dest.
    reflect​(float a, float b, float c, float d, Matrix4x3f dest)
    Apply a mirror/reflection transformation to this matrix that reflects about the given plane specified via the equation x*a + y*b + z*c + d = 0 and store the result in dest.
    reflect​(Quaternionfc orientation, Vector3fc point)
    Apply a mirror/reflection transformation to this matrix that reflects about a plane specified via the plane orientation and a point on the plane.
    reflect​(Quaternionfc orientation, Vector3fc point, Matrix4x3f dest)
    Apply a mirror/reflection transformation to this matrix that reflects about a plane specified via the plane orientation and a point on the plane, and store the result in dest.
    reflect​(Vector3fc normal, Vector3fc point)
    Apply a mirror/reflection transformation to this matrix that reflects about the given plane specified via the plane normal and a point on the plane.
    reflect​(Vector3fc normal, Vector3fc point, Matrix4x3f dest)
    Apply a mirror/reflection transformation to this matrix that reflects about the given plane specified via the plane normal and a point on the plane, and store the result in dest.
    reflection​(float a, float b, float c, float d)
    Set this matrix to a mirror/reflection transformation that reflects about the given plane specified via the equation x*a + y*b + z*c + d = 0.
    reflection​(float nx, float ny, float nz, float px, float py, float pz)
    Set this matrix to a mirror/reflection transformation that reflects about the given plane specified via the plane normal and a point on the plane.
    reflection​(Quaternionfc orientation, Vector3fc point)
    Set this matrix to a mirror/reflection transformation that reflects about a plane specified via the plane orientation and a point on the plane.
    reflection​(Vector3fc normal, Vector3fc point)
    Set this matrix to a mirror/reflection transformation that reflects about the given plane specified via the plane normal and a point on the plane.
    rotate​(float ang, float x, float y, float z)
    Apply rotation to this matrix by rotating the given amount of radians about the specified (x, y, z) axis.
    rotate​(float ang, float x, float y, float z, Matrix4x3f dest)
    Apply rotation to this matrix by rotating the given amount of radians about the specified (x, y, z) axis and store the result in dest.
    rotate​(float angle, Vector3fc axis)
    Apply a rotation transformation, rotating the given radians about the specified axis, to this matrix.
    rotate​(float angle, Vector3fc axis, Matrix4x3f dest)
    Apply a rotation transformation, rotating the given radians about the specified axis and store the result in dest.
    rotate​(AxisAngle4f axisAngle)
    Apply a rotation transformation, rotating about the given AxisAngle4f, to this matrix.
    rotate​(AxisAngle4f axisAngle, Matrix4x3f dest)
    Apply a rotation transformation, rotating about the given AxisAngle4f and store the result in dest.
    Apply the rotation - and possibly scaling - transformation of the given Quaternionfc to this matrix.
    rotate​(Quaternionfc quat, Matrix4x3f dest)
    Apply the rotation - and possibly scaling - transformation of the given Quaternionfc to this matrix and store the result in dest.
    rotateAround​(Quaternionfc quat, float ox, float oy, float oz)
    Apply the rotation transformation of the given Quaternionfc to this matrix while using (ox, oy, oz) as the rotation origin.
    rotateAround​(Quaternionfc quat, float ox, float oy, float oz, Matrix4x3f dest)
    Apply the rotation - and possibly scaling - transformation of the given Quaternionfc to this matrix while using (ox, oy, oz) as the rotation origin, and store the result in dest.
    rotateLocal​(float ang, float x, float y, float z)
    Pre-multiply a rotation to this matrix by rotating the given amount of radians about the specified (x, y, z) axis.
    rotateLocal​(float ang, float x, float y, float z, Matrix4x3f dest)
    Pre-multiply a rotation to this matrix by rotating the given amount of radians about the specified (x, y, z) axis and store the result in dest.
    Pre-multiply the rotation - and possibly scaling - transformation of the given Quaternionfc to this matrix.
    Pre-multiply the rotation - and possibly scaling - transformation of the given Quaternionfc to this matrix and store the result in dest.
    rotateLocalX​(float ang)
    Pre-multiply a rotation to this matrix by rotating the given amount of radians about the X axis.
    rotateLocalX​(float ang, Matrix4x3f dest)
    Pre-multiply a rotation around the X axis to this matrix by rotating the given amount of radians about the X axis and store the result in dest.
    rotateLocalY​(float ang)
    Pre-multiply a rotation to this matrix by rotating the given amount of radians about the Y axis.
    rotateLocalY​(float ang, Matrix4x3f dest)
    Pre-multiply a rotation around the Y axis to this matrix by rotating the given amount of radians about the Y axis and store the result in dest.
    rotateLocalZ​(float ang)
    Pre-multiply a rotation to this matrix by rotating the given amount of radians about the Z axis.
    rotateLocalZ​(float ang, Matrix4x3f dest)
    Pre-multiply a rotation around the Z axis to this matrix by rotating the given amount of radians about the Z axis and store the result in dest.
    rotateTowards​(float dirX, float dirY, float dirZ, float upX, float upY, float upZ)
    Apply a model transformation to this matrix for a right-handed coordinate system, that aligns the local +Z axis with (dirX, dirY, dirZ).
    rotateTowards​(float dirX, float dirY, float dirZ, float upX, float upY, float upZ, Matrix4x3f dest)
    Apply a model transformation to this matrix for a right-handed coordinate system, that aligns the local +Z axis with (dirX, dirY, dirZ) and store the result in dest.
    Apply a model transformation to this matrix for a right-handed coordinate system, that aligns the local +Z axis with dir.
    Apply a model transformation to this matrix for a right-handed coordinate system, that aligns the local +Z axis with dir and store the result in dest.
    rotateTranslation​(float ang, float x, float y, float z, Matrix4x3f dest)
    Apply rotation to this matrix, which is assumed to only contain a translation, by rotating the given amount of radians about the specified (x, y, z) axis and store the result in dest.
    Apply the rotation - and possibly scaling - transformation of the given Quaternionfc to this matrix, which is assumed to only contain a translation, and store the result in dest.
    rotateX​(float ang)
    Apply rotation about the X axis to this matrix by rotating the given amount of radians.
    rotateX​(float ang, Matrix4x3f dest)
    Apply rotation about the X axis to this matrix by rotating the given amount of radians and store the result in dest.
    rotateXYZ​(float angleX, float angleY, float angleZ)
    Apply rotation of angleX radians about the X axis, followed by a rotation of angleY radians about the Y axis and followed by a rotation of angleZ radians about the Z axis.
    rotateXYZ​(float angleX, float angleY, float angleZ, Matrix4x3f dest)
    Apply rotation of angleX radians about the X axis, followed by a rotation of angleY radians about the Y axis and followed by a rotation of angleZ radians about the Z axis and store the result in dest.
    rotateXYZ​(Vector3f angles)
    Apply rotation of angles.x radians about the X axis, followed by a rotation of angles.y radians about the Y axis and followed by a rotation of angles.z radians about the Z axis.
    rotateY​(float ang)
    Apply rotation about the Y axis to this matrix by rotating the given amount of radians.
    rotateY​(float ang, Matrix4x3f dest)
    Apply rotation about the Y axis to this matrix by rotating the given amount of radians and store the result in dest.
    rotateYXZ​(float angleY, float angleX, float angleZ)
    Apply rotation of angleY radians about the Y axis, followed by a rotation of angleX radians about the X axis and followed by a rotation of angleZ radians about the Z axis.
    rotateYXZ​(float angleY, float angleX, float angleZ, Matrix4x3f dest)
    Apply rotation of angleY radians about the Y axis, followed by a rotation of angleX radians about the X axis and followed by a rotation of angleZ radians about the Z axis and store the result in dest.
    rotateYXZ​(Vector3f angles)
    Apply rotation of angles.y radians about the Y axis, followed by a rotation of angles.x radians about the X axis and followed by a rotation of angles.z radians about the Z axis.
    rotateZ​(float ang)
    Apply rotation about the Z axis to this matrix by rotating the given amount of radians.
    rotateZ​(float ang, Matrix4x3f dest)
    Apply rotation about the Z axis to this matrix by rotating the given amount of radians and store the result in dest.
    rotateZYX​(float angleZ, float angleY, float angleX)
    Apply rotation of angleZ radians about the Z axis, followed by a rotation of angleY radians about the Y axis and followed by a rotation of angleX radians about the X axis.
    rotateZYX​(float angleZ, float angleY, float angleX, Matrix4x3f dest)
    Apply rotation of angleZ radians about the Z axis, followed by a rotation of angleY radians about the Y axis and followed by a rotation of angleX radians about the X axis and store the result in dest.
    rotateZYX​(Vector3f angles)
    Apply rotation of angles.z radians about the Z axis, followed by a rotation of angles.y radians about the Y axis and followed by a rotation of angles.x radians about the X axis.
    rotation​(float angle, float x, float y, float z)
    Set this matrix to a rotation matrix which rotates the given radians about a given axis.
    rotation​(float angle, Vector3fc axis)
    Set this matrix to a rotation matrix which rotates the given radians about a given axis.
    rotation​(AxisAngle4f axisAngle)
    Set this matrix to a rotation transformation using the given AxisAngle4f.
    Set this matrix to the rotation - and possibly scaling - transformation of the given Quaternionfc.
    rotationAround​(Quaternionfc quat, float ox, float oy, float oz)
    Set this matrix to a transformation composed of a rotation of the specified Quaternionfc while using (ox, oy, oz) as the rotation origin.
    rotationTowards​(float dirX, float dirY, float dirZ, float upX, float upY, float upZ)
    Set this matrix to a model transformation for a right-handed coordinate system, that aligns the local -z axis with (dirX, dirY, dirZ).
    Set this matrix to a model transformation for a right-handed coordinate system, that aligns the local -z axis with dir.
    rotationX​(float ang)
    Set this matrix to a rotation transformation about the X axis.
    rotationXYZ​(float angleX, float angleY, float angleZ)
    Set this matrix to a rotation of angleX radians about the X axis, followed by a rotation of angleY radians about the Y axis and followed by a rotation of angleZ radians about the Z axis.
    rotationY​(float ang)
    Set this matrix to a rotation transformation about the Y axis.
    rotationYXZ​(float angleY, float angleX, float angleZ)
    Set this matrix to a rotation of angleY radians about the Y axis, followed by a rotation of angleX radians about the X axis and followed by a rotation of angleZ radians about the Z axis.
    rotationZ​(float ang)
    Set this matrix to a rotation transformation about the Z axis.
    rotationZYX​(float angleZ, float angleY, float angleX)
    Set this matrix to a rotation of angleZ radians about the Z axis, followed by a rotation of angleY radians about the Y axis and followed by a rotation of angleX radians about the X axis.
    scale​(float xyz)
    Apply scaling to this matrix by uniformly scaling all base axes by the given xyz factor.
    scale​(float x, float y, float z)
    Apply scaling to this matrix by scaling the base axes by the given x, y and z factors.
    scale​(float x, float y, float z, Matrix4x3f dest)
    Apply scaling to this matrix by scaling the base axes by the given x, y and z factors and store the result in dest.
    scale​(float xyz, Matrix4x3f dest)
    Apply scaling to this matrix by uniformly scaling all base axes by the given xyz factor and store the result in dest.
    scale​(Vector3fc xyz)
    Apply scaling to this matrix by scaling the base axes by the given xyz.x, xyz.y and xyz.z factors, respectively.
    scale​(Vector3fc xyz, Matrix4x3f dest)
    Apply scaling to this matrix by scaling the base axes by the given xyz.x, xyz.y and xyz.z factors, respectively and store the result in dest.
    scaleAround​(float factor, float ox, float oy, float oz)
    Apply scaling to this matrix by scaling all three base axes by the given factor while using (ox, oy, oz) as the scaling origin.
    scaleAround​(float sx, float sy, float sz, float ox, float oy, float oz)
    Apply scaling to this matrix by scaling the base axes by the given sx, sy and sz factors while using (ox, oy, oz) as the scaling origin.
    scaleAround​(float sx, float sy, float sz, float ox, float oy, float oz, Matrix4x3f dest)
    Apply scaling to this matrix by scaling the base axes by the given sx, sy and sz factors while using (ox, oy, oz) as the scaling origin, and store the result in dest.
    scaleAround​(float factor, float ox, float oy, float oz, Matrix4x3f dest)
    Apply scaling to this matrix by scaling all three base axes by the given factor while using (ox, oy, oz) as the scaling origin, and store the result in dest.
    scaleLocal​(float x, float y, float z)
    Pre-multiply scaling to this matrix by scaling the base axes by the given x, y and z factors.
    scaleLocal​(float x, float y, float z, Matrix4x3f dest)
    Pre-multiply scaling to this matrix by scaling the base axes by the given x, y and z factors and store the result in dest.
    scaleXY​(float x, float y)
    Apply scaling to this matrix by scaling the X axis by x and the Y axis by y.
    scaleXY​(float x, float y, Matrix4x3f dest)
    Apply scaling to this matrix by by scaling the X axis by x and the Y axis by y and store the result in dest.
    scaling​(float factor)
    Set this matrix to be a simple scale matrix, which scales all axes uniformly by the given factor.
    scaling​(float x, float y, float z)
    Set this matrix to be a simple scale matrix.
    Set this matrix to be a simple scale matrix which scales the base axes by xyz.x, xyz.y and xyz.z respectively.
    set​(float[] m)
    Set the values in the matrix using a float array that contains the matrix elements in column-major order.
    set​(float[] m, int off)
    Set the values in the matrix using a float array that contains the matrix elements in column-major order.
    set​(float m00, float m01, float m02, float m10, float m11, float m12, float m20, float m21, float m22, float m30, float m31, float m32)
    Set the values within this matrix to the supplied float values.
    set​(int index, ByteBuffer buffer)
    Set the values of this matrix by reading 12 float values from the given ByteBuffer in column-major order, starting at the specified absolute buffer position/index.
    set​(int index, FloatBuffer buffer)
    Set the values of this matrix by reading 12 float values from the given FloatBuffer in column-major order, starting at the specified absolute buffer position/index.
    set​(ByteBuffer buffer)
    Set the values of this matrix by reading 12 float values from the given ByteBuffer in column-major order, starting at its current position.
    set​(FloatBuffer buffer)
    Set the values of this matrix by reading 12 float values from the given FloatBuffer in column-major order, starting at its current position.
    set​(AxisAngle4d axisAngle)
    Set this matrix to be equivalent to the rotation specified by the given AxisAngle4d.
    set​(AxisAngle4f axisAngle)
    Set this matrix to be equivalent to the rotation specified by the given AxisAngle4f.
    set​(Matrix3fc mat)
    Set the left 3x3 submatrix of this Matrix4x3f to the given Matrix3fc and the rest to identity.
    set​(Matrix4fc m)
    Store the values of the upper 4x3 submatrix of m into this matrix.
    Store the values of the given matrix m into this matrix.
    Set this matrix to be equivalent to the rotation - and possibly scaling - specified by the given Quaterniondc.
    Set this matrix to be equivalent to the rotation - and possibly scaling - specified by the given Quaternionfc.
    set​(Vector3fc col0, Vector3fc col1, Vector3fc col2, Vector3fc col3)
    Set the four columns of this matrix to the supplied vectors, respectively.
    set3x3​(Matrix3fc mat)
    Set the left 3x3 submatrix of this Matrix4x3f to the given Matrix3fc and don't change the other elements.
    Set the left 3x3 submatrix of this Matrix4x3f to that of the given Matrix4x3fc and don't change the other elements.
    setColumn​(int column, Vector3fc src)
    Set the column at the given column index, starting with 0.
    setFromAddress​(long address)
    Set the values of this matrix by reading 12 float values from off-heap memory in column-major order, starting at the given address.
    setLookAlong​(float dirX, float dirY, float dirZ, float upX, float upY, float upZ)
    Set this matrix to a rotation transformation to make -z point along dir.
    Set this matrix to a rotation transformation to make -z point along dir.
    setLookAt​(float eyeX, float eyeY, float eyeZ, float centerX, float centerY, float centerZ, float upX, float upY, float upZ)
    Set this matrix to be a "lookat" transformation for a right-handed coordinate system, that aligns -z with center - eye.
    setLookAt​(Vector3fc eye, Vector3fc center, Vector3fc up)
    Set this matrix to be a "lookat" transformation for a right-handed coordinate system, that aligns -z with center - eye.
    setLookAtLH​(float eyeX, float eyeY, float eyeZ, float centerX, float centerY, float centerZ, float upX, float upY, float upZ)
    Set this matrix to be a "lookat" transformation for a left-handed coordinate system, that aligns +z with center - eye.
    setLookAtLH​(Vector3fc eye, Vector3fc center, Vector3fc up)
    Set this matrix to be a "lookat" transformation for a left-handed coordinate system, that aligns +z with center - eye.
    setOrtho​(float left, float right, float bottom, float top, float zNear, float zFar)
    Set this matrix to be an orthographic projection transformation for a right-handed coordinate system using OpenGL's NDC z range of [-1..+1].
    setOrtho​(float left, float right, float bottom, float top, float zNear, float zFar, boolean zZeroToOne)
    Set this matrix to be an orthographic projection transformation for a right-handed coordinate system using the given NDC z range.
    setOrtho2D​(float left, float right, float bottom, float top)
    Set this matrix to be an orthographic projection transformation for a right-handed coordinate system.
    setOrtho2DLH​(float left, float right, float bottom, float top)
    Set this matrix to be an orthographic projection transformation for a left-handed coordinate system.
    setOrthoLH​(float left, float right, float bottom, float top, float zNear, float zFar)
    Set this matrix to be an orthographic projection transformation for a left-handed coordinate system using OpenGL's NDC z range of [-1..+1].
    setOrthoLH​(float left, float right, float bottom, float top, float zNear, float zFar, boolean zZeroToOne)
    Set this matrix to be an orthographic projection transformation for a left-handed coordinate system using the given NDC z range.
    setOrthoSymmetric​(float width, float height, float zNear, float zFar)
    Set this matrix to be a symmetric orthographic projection transformation for a right-handed coordinate system using OpenGL's NDC z range of [-1..+1].
    setOrthoSymmetric​(float width, float height, float zNear, float zFar, boolean zZeroToOne)
    Set this matrix to be a symmetric orthographic projection transformation for a right-handed coordinate system using the given NDC z range.
    setOrthoSymmetricLH​(float width, float height, float zNear, float zFar)
    Set this matrix to be a symmetric orthographic projection transformation for a left-handed coordinate system using OpenGL's NDC z range of [-1..+1].
    setOrthoSymmetricLH​(float width, float height, float zNear, float zFar, boolean zZeroToOne)
    Set this matrix to be a symmetric orthographic projection transformation for a left-handed coordinate system using the given NDC z range.
    setRotationXYZ​(float angleX, float angleY, float angleZ)
    Set only the left 3x3 submatrix of this matrix to a rotation of angleX radians about the X axis, followed by a rotation of angleY radians about the Y axis and followed by a rotation of angleZ radians about the Z axis.
    setRotationYXZ​(float angleY, float angleX, float angleZ)
    Set only the left 3x3 submatrix of this matrix to a rotation of angleY radians about the Y axis, followed by a rotation of angleX radians about the X axis and followed by a rotation of angleZ radians about the Z axis.
    setRotationZYX​(float angleZ, float angleY, float angleX)
    Set only the left 3x3 submatrix of this matrix to a rotation of angleZ radians about the Z axis, followed by a rotation of angleY radians about the Y axis and followed by a rotation of angleX radians about the X axis.
    setRow​(int row, Vector4fc src)
    Set the row at the given row index, starting with 0.
    setTranslation​(float x, float y, float z)
    Set only the translation components (m30, m31, m32) of this matrix to the given values (x, y, z).
    Set only the translation components (m30, m31, m32) of this matrix to the values (xyz.x, xyz.y, xyz.z).
    shadow​(float lightX, float lightY, float lightZ, float lightW, float a, float b, float c, float d)
    Apply a projection transformation to this matrix that projects onto the plane specified via the general plane equation x*a + y*b + z*c + d = 0 as if casting a shadow from a given light position/direction (lightX, lightY, lightZ, lightW).
    shadow​(float lightX, float lightY, float lightZ, float lightW, float a, float b, float c, float d, Matrix4x3f dest)
    Apply a projection transformation to this matrix that projects onto the plane specified via the general plane equation x*a + y*b + z*c + d = 0 as if casting a shadow from a given light position/direction (lightX, lightY, lightZ, lightW) and store the result in dest.
    shadow​(float lightX, float lightY, float lightZ, float lightW, Matrix4x3f planeTransform)
    Apply a projection transformation to this matrix that projects onto the plane with the general plane equation y = 0 as if casting a shadow from a given light position/direction (lightX, lightY, lightZ, lightW).
    shadow​(float lightX, float lightY, float lightZ, float lightW, Matrix4x3fc planeTransform, Matrix4x3f dest)
    Apply a projection transformation to this matrix that projects onto the plane with the general plane equation y = 0 as if casting a shadow from a given light position/direction (lightX, lightY, lightZ, lightW) and store the result in dest.
    shadow​(Vector4fc light, float a, float b, float c, float d)
    Apply a projection transformation to this matrix that projects onto the plane specified via the general plane equation x*a + y*b + z*c + d = 0 as if casting a shadow from a given light position/direction light.
    shadow​(Vector4fc light, float a, float b, float c, float d, Matrix4x3f dest)
    Apply a projection transformation to this matrix that projects onto the plane specified via the general plane equation x*a + y*b + z*c + d = 0 as if casting a shadow from a given light position/direction light and store the result in dest.
    shadow​(Vector4fc light, Matrix4x3fc planeTransform)
    Apply a projection transformation to this matrix that projects onto the plane with the general plane equation y = 0 as if casting a shadow from a given light position/direction light.
    shadow​(Vector4fc light, Matrix4x3fc planeTransform, Matrix4x3f dest)
    Apply a projection transformation to this matrix that projects onto the plane with the general plane equation y = 0 as if casting a shadow from a given light position/direction light and store the result in dest.
    sub​(Matrix4x3fc subtrahend)
    Component-wise subtract subtrahend from this.
    sub​(Matrix4x3fc subtrahend, Matrix4x3f dest)
    Component-wise subtract subtrahend from this and store the result in dest.
    swap​(Matrix4x3f other)
    Exchange the values of this matrix with the given other matrix.
    Return a string representation of this matrix.
    toString​(NumberFormat formatter)
    Return a string representation of this matrix by formatting the matrix elements with the given NumberFormat.
    Transform/multiply the given vector by this matrix and store the result in that vector.
    Transform/multiply the given vector by this matrix and store the result in dest.
    transformAab​(float minX, float minY, float minZ, float maxX, float maxY, float maxZ, Vector3f outMin, Vector3f outMax)
    Transform the axis-aligned box given as the minimum corner (minX, minY, minZ) and maximum corner (maxX, maxY, maxZ) by this matrix and compute the axis-aligned box of the result whose minimum corner is stored in outMin and maximum corner stored in outMax.
    transformAab​(Vector3fc min, Vector3fc max, Vector3f outMin, Vector3f outMax)
    Transform the axis-aligned box given as the minimum corner min and maximum corner max by this matrix and compute the axis-aligned box of the result whose minimum corner is stored in outMin and maximum corner stored in outMax.
    Transform/multiply the given 3D-vector, as if it was a 4D-vector with w=0, by this matrix and store the result in that vector.
    Transform/multiply the given 3D-vector, as if it was a 4D-vector with w=0, by this matrix and store the result in dest.
    Transform/multiply the given 3D-vector, as if it was a 4D-vector with w=1, by this matrix and store the result in that vector.
    Transform/multiply the given 3D-vector, as if it was a 4D-vector with w=1, by this matrix and store the result in dest.
    translate​(float x, float y, float z)
    Apply a translation to this matrix by translating by the given number of units in x, y and z.
    translate​(float x, float y, float z, Matrix4x3f dest)
    Apply a translation to this matrix by translating by the given number of units in x, y and z and store the result in dest.
    translate​(Vector3fc offset)
    Apply a translation to this matrix by translating by the given number of units in x, y and z.
    translate​(Vector3fc offset, Matrix4x3f dest)
    Apply a translation to this matrix by translating by the given number of units in x, y and z and store the result in dest.
    translateLocal​(float x, float y, float z)
    Pre-multiply a translation to this matrix by translating by the given number of units in x, y and z.
    translateLocal​(float x, float y, float z, Matrix4x3f dest)
    Pre-multiply a translation to this matrix by translating by the given number of units in x, y and z and store the result in dest.
    Pre-multiply a translation to this matrix by translating by the given number of units in x, y and z.
    Pre-multiply a translation to this matrix by translating by the given number of units in x, y and z and store the result in dest.
    translation​(float x, float y, float z)
    Set this matrix to be a simple translation matrix.
    Set this matrix to be a simple translation matrix.
    translationRotate​(float tx, float ty, float tz, Quaternionfc quat)
    Set this matrix to T * R, where T is a translation by the given (tx, ty, tz) and R is a rotation transformation specified by the given quaternion.
    translationRotateMul​(float tx, float ty, float tz, float qx, float qy, float qz, float qw, Matrix4x3fc mat)
    Set this matrix to T * R * M, where T is a translation by the given (tx, ty, tz), R is a rotation - and possibly scaling - transformation specified by the quaternion (qx, qy, qz, qw) and M is the given matrix mat
    translationRotateMul​(float tx, float ty, float tz, Quaternionfc quat, Matrix4x3fc mat)
    Set this matrix to T * R * M, where T is a translation by the given (tx, ty, tz), R is a rotation - and possibly scaling - transformation specified by the given quaternion and M is the given matrix mat.
    translationRotateScale​(float tx, float ty, float tz, float qx, float qy, float qz, float qw, float sx, float sy, float sz)
    Set this matrix to T * R * S, where T is a translation by the given (tx, ty, tz), R is a rotation transformation specified by the quaternion (qx, qy, qz, qw), and S is a scaling transformation which scales the three axes x, y and z by (sx, sy, sz).
    translationRotateScale​(Vector3fc translation, Quaternionfc quat, Vector3fc scale)
    Set this matrix to T * R * S, where T is the given translation, R is a rotation transformation specified by the given quaternion, and S is a scaling transformation which scales the axes by scale.
    translationRotateScaleMul​(float tx, float ty, float tz, float qx, float qy, float qz, float qw, float sx, float sy, float sz, Matrix4x3f m)
    Set this matrix to T * R * S * M, where T is a translation by the given (tx, ty, tz), R is a rotation transformation specified by the quaternion (qx, qy, qz, qw), S is a scaling transformation which scales the three axes x, y and z by (sx, sy, sz).
    Set this matrix to T * R * S * M, where T is the given translation, R is a rotation transformation specified by the given quaternion, S is a scaling transformation which scales the axes by scale.
    translationRotateTowards​(float posX, float posY, float posZ, float dirX, float dirY, float dirZ, float upX, float upY, float upZ)
    Set this matrix to a model transformation for a right-handed coordinate system, that translates to the given (posX, posY, posZ) and aligns the local -z axis with (dirX, dirY, dirZ).
    Set this matrix to a model transformation for a right-handed coordinate system, that translates to the given pos and aligns the local -z axis with dir.
    Transpose only the left 3x3 submatrix of this matrix and set the rest of the matrix elements to identity.
    Transpose only the left 3x3 submatrix of this matrix and store the result in dest.
    Transpose only the left 3x3 submatrix of this matrix and store the result in dest.
    withLookAtUp​(float upX, float upY, float upZ)
    Apply a transformation to this matrix to ensure that the local Y axis (as obtained by positiveY(Vector3f)) will be coplanar to the plane spanned by the local Z axis (as obtained by positiveZ(Vector3f)) and the given vector (upX, upY, upZ).
    withLookAtUp​(float upX, float upY, float upZ, Matrix4x3f dest)
    Apply a transformation to this matrix to ensure that the local Y axis (as obtained by Matrix4x3fc.positiveY(Vector3f)) will be coplanar to the plane spanned by the local Z axis (as obtained by Matrix4x3fc.positiveZ(Vector3f)) and the given vector (upX, upY, upZ), and store the result in dest.
    Apply a transformation to this matrix to ensure that the local Y axis (as obtained by positiveY(Vector3f)) will be coplanar to the plane spanned by the local Z axis (as obtained by positiveZ(Vector3f)) and the given vector up.
    Apply a transformation to this matrix to ensure that the local Y axis (as obtained by Matrix4x3fc.positiveY(Vector3f)) will be coplanar to the plane spanned by the local Z axis (as obtained by Matrix4x3fc.positiveZ(Vector3f)) and the given vector up, and store the result in dest.
    void
     
    Set all the values within this matrix to 0.

    Methods inherited from class java.lang.Object

    finalize, getClass, notify, notifyAll, wait, wait, wait
  • Constructor Details

    • Matrix4x3f

      public Matrix4x3f()
      Create a new Matrix4x3f and set it to identity.
    • Matrix4x3f

      public Matrix4x3f(Matrix3fc mat)
      Create a new Matrix4x3f by setting its left 3x3 submatrix to the values of the given Matrix3fc and the rest to identity.
      Parameters:
      mat - the Matrix3fc
    • Matrix4x3f

      public Matrix4x3f(Matrix4x3fc mat)
      Create a new Matrix4x3f and make it a copy of the given matrix.
      Parameters:
      mat - the Matrix4x3fc to copy the values from
    • Matrix4x3f

      public Matrix4x3f(float m00, float m01, float m02, float m10, float m11, float m12, float m20, float m21, float m22, float m30, float m31, float m32)
      Create a new 4x4 matrix using the supplied float values.
      Parameters:
      m00 - the value of m00
      m01 - the value of m01
      m02 - the value of m02
      m10 - the value of m10
      m11 - the value of m11
      m12 - the value of m12
      m20 - the value of m20
      m21 - the value of m21
      m22 - the value of m22
      m30 - the value of m30
      m31 - the value of m31
      m32 - the value of m32
    • Matrix4x3f

      public Matrix4x3f(FloatBuffer buffer)
      Create a new Matrix4x3f by reading its 12 float components from the given FloatBuffer at the buffer's current position.

      That FloatBuffer is expected to hold the values in column-major order.

      The buffer's position will not be changed by this method.

      Parameters:
      buffer - the FloatBuffer to read the matrix values from
    • Matrix4x3f

      public Matrix4x3f(Vector3fc col0, Vector3fc col1, Vector3fc col2, Vector3fc col3)
      Create a new Matrix4x3f and initialize its four columns using the supplied vectors.
      Parameters:
      col0 - the first column
      col1 - the second column
      col2 - the third column
      col3 - the fourth column
  • Method Details

    • assume

      public Matrix4x3f assume(int properties)
      Assume the given properties about this matrix.

      Use one or multiple of 0, Matrix4x3fc.PROPERTY_IDENTITY, Matrix4x3fc.PROPERTY_TRANSLATION, Matrix4x3fc.PROPERTY_ORTHONORMAL.

      Parameters:
      properties - bitset of the properties to assume about this matrix
      Returns:
      this
    • determineProperties

      public Matrix4x3f determineProperties()
      Compute and set the matrix properties returned by properties() based on the current matrix element values.
      Returns:
      this
    • properties

      public int properties()
      Specified by:
      properties in interface Matrix4x3fc
      Returns:
      the properties of the matrix
    • m00

      public float m00()
      Description copied from interface: Matrix4x3fc
      Return the value of the matrix element at column 0 and row 0.
      Specified by:
      m00 in interface Matrix4x3fc
      Returns:
      the value of the matrix element
    • m01

      public float m01()
      Description copied from interface: Matrix4x3fc
      Return the value of the matrix element at column 0 and row 1.
      Specified by:
      m01 in interface Matrix4x3fc
      Returns:
      the value of the matrix element
    • m02

      public float m02()
      Description copied from interface: Matrix4x3fc
      Return the value of the matrix element at column 0 and row 2.
      Specified by:
      m02 in interface Matrix4x3fc
      Returns:
      the value of the matrix element
    • m10

      public float m10()
      Description copied from interface: Matrix4x3fc
      Return the value of the matrix element at column 1 and row 0.
      Specified by:
      m10 in interface Matrix4x3fc
      Returns:
      the value of the matrix element
    • m11

      public float m11()
      Description copied from interface: Matrix4x3fc
      Return the value of the matrix element at column 1 and row 1.
      Specified by:
      m11 in interface Matrix4x3fc
      Returns:
      the value of the matrix element
    • m12

      public float m12()
      Description copied from interface: Matrix4x3fc
      Return the value of the matrix element at column 1 and row 2.
      Specified by:
      m12 in interface Matrix4x3fc
      Returns:
      the value of the matrix element
    • m20

      public float m20()
      Description copied from interface: Matrix4x3fc
      Return the value of the matrix element at column 2 and row 0.
      Specified by:
      m20 in interface Matrix4x3fc
      Returns:
      the value of the matrix element
    • m21

      public float m21()
      Description copied from interface: Matrix4x3fc
      Return the value of the matrix element at column 2 and row 1.
      Specified by:
      m21 in interface Matrix4x3fc
      Returns:
      the value of the matrix element
    • m22

      public float m22()
      Description copied from interface: Matrix4x3fc
      Return the value of the matrix element at column 2 and row 2.
      Specified by:
      m22 in interface Matrix4x3fc
      Returns:
      the value of the matrix element
    • m30

      public float m30()
      Description copied from interface: Matrix4x3fc
      Return the value of the matrix element at column 3 and row 0.
      Specified by:
      m30 in interface Matrix4x3fc
      Returns:
      the value of the matrix element
    • m31

      public float m31()
      Description copied from interface: Matrix4x3fc
      Return the value of the matrix element at column 3 and row 1.
      Specified by:
      m31 in interface Matrix4x3fc
      Returns:
      the value of the matrix element
    • m32

      public float m32()
      Description copied from interface: Matrix4x3fc
      Return the value of the matrix element at column 3 and row 2.
      Specified by:
      m32 in interface Matrix4x3fc
      Returns:
      the value of the matrix element
    • m00

      public Matrix4x3f m00(float m00)
      Set the value of the matrix element at column 0 and row 0.
      Parameters:
      m00 - the new value
      Returns:
      this
    • m01

      public Matrix4x3f m01(float m01)
      Set the value of the matrix element at column 0 and row 1.
      Parameters:
      m01 - the new value
      Returns:
      this
    • m02

      public Matrix4x3f m02(float m02)
      Set the value of the matrix element at column 0 and row 2.
      Parameters:
      m02 - the new value
      Returns:
      this
    • m10

      public Matrix4x3f m10(float m10)
      Set the value of the matrix element at column 1 and row 0.
      Parameters:
      m10 - the new value
      Returns:
      this
    • m11

      public Matrix4x3f m11(float m11)
      Set the value of the matrix element at column 1 and row 1.
      Parameters:
      m11 - the new value
      Returns:
      this
    • m12

      public Matrix4x3f m12(float m12)
      Set the value of the matrix element at column 1 and row 2.
      Parameters:
      m12 - the new value
      Returns:
      this
    • m20

      public Matrix4x3f m20(float m20)
      Set the value of the matrix element at column 2 and row 0.
      Parameters:
      m20 - the new value
      Returns:
      this
    • m21

      public Matrix4x3f m21(float m21)
      Set the value of the matrix element at column 2 and row 1.
      Parameters:
      m21 - the new value
      Returns:
      this
    • m22

      public Matrix4x3f m22(float m22)
      Set the value of the matrix element at column 2 and row 2.
      Parameters:
      m22 - the new value
      Returns:
      this
    • m30

      public Matrix4x3f m30(float m30)
      Set the value of the matrix element at column 3 and row 0.
      Parameters:
      m30 - the new value
      Returns:
      this
    • m31

      public Matrix4x3f m31(float m31)
      Set the value of the matrix element at column 3 and row 1.
      Parameters:
      m31 - the new value
      Returns:
      this
    • m32

      public Matrix4x3f m32(float m32)
      Set the value of the matrix element at column 3 and row 2.
      Parameters:
      m32 - the new value
      Returns:
      this
    • identity

      public Matrix4x3f identity()
      Reset this matrix to the identity.

      Please note that if a call to identity() is immediately followed by a call to: translate, rotate, scale, ortho, ortho2D, lookAt, lookAlong, or any of their overloads, then the call to identity() can be omitted and the subsequent call replaced with: translation, rotation, scaling, setOrtho, setOrtho2D, setLookAt, setLookAlong, or any of their overloads.

      Returns:
      this
    • set

      public Matrix4x3f set(Matrix4x3fc m)
      Store the values of the given matrix m into this matrix.
      Parameters:
      m - the matrix to copy the values from
      Returns:
      this
      See Also:
      Matrix4x3f(Matrix4x3fc), get(Matrix4x3f)
    • set

      public Matrix4x3f set(Matrix4fc m)
      Store the values of the upper 4x3 submatrix of m into this matrix.
      Parameters:
      m - the matrix to copy the values from
      Returns:
      this
      See Also:
      Matrix4fc.get4x3(Matrix4x3f)
    • get

      public Matrix4f get(Matrix4f dest)
      Description copied from interface: Matrix4x3fc
      Get the current values of this matrix and store them into the upper 4x3 submatrix of dest.

      The other elements of dest will not be modified.

      Specified by:
      get in interface Matrix4x3fc
      Parameters:
      dest - the destination matrix
      Returns:
      dest
      See Also:
      Matrix4f.set4x3(Matrix4x3fc)
    • get

      public Matrix4d get(Matrix4d dest)
      Description copied from interface: Matrix4x3fc
      Get the current values of this matrix and store them into the upper 4x3 submatrix of dest.

      The other elements of dest will not be modified.

      Specified by:
      get in interface Matrix4x3fc
      Parameters:
      dest - the destination matrix
      Returns:
      dest
      See Also:
      Matrix4d.set4x3(Matrix4x3fc)
    • set

      public Matrix4x3f set(Matrix3fc mat)
      Set the left 3x3 submatrix of this Matrix4x3f to the given Matrix3fc and the rest to identity.
      Parameters:
      mat - the Matrix3fc
      Returns:
      this
      See Also:
      Matrix4x3f(Matrix3fc)
    • set

      public Matrix4x3f set(AxisAngle4f axisAngle)
      Set this matrix to be equivalent to the rotation specified by the given AxisAngle4f.
      Parameters:
      axisAngle - the AxisAngle4f
      Returns:
      this
    • set

      public Matrix4x3f set(AxisAngle4d axisAngle)
      Set this matrix to be equivalent to the rotation specified by the given AxisAngle4d.
      Parameters:
      axisAngle - the AxisAngle4d
      Returns:
      this
    • set

      public Matrix4x3f set(Quaternionfc q)
      Set this matrix to be equivalent to the rotation - and possibly scaling - specified by the given Quaternionfc.

      This method is equivalent to calling: rotation(q)

      Parameters:
      q - the Quaternionfc
      Returns:
      this
      See Also:
      rotation(Quaternionfc)
    • set

      public Matrix4x3f set(Quaterniondc q)
      Set this matrix to be equivalent to the rotation - and possibly scaling - specified by the given Quaterniondc.

      This method is equivalent to calling: rotation(q)

      Parameters:
      q - the Quaterniondc
      Returns:
      this
    • set

      public Matrix4x3f set(Vector3fc col0, Vector3fc col1, Vector3fc col2, Vector3fc col3)
      Set the four columns of this matrix to the supplied vectors, respectively.
      Parameters:
      col0 - the first column
      col1 - the second column
      col2 - the third column
      col3 - the fourth column
      Returns:
      this
    • set3x3

      public Matrix4x3f set3x3(Matrix4x3fc mat)
      Set the left 3x3 submatrix of this Matrix4x3f to that of the given Matrix4x3fc and don't change the other elements.
      Parameters:
      mat - the Matrix4x3fc
      Returns:
      this
    • mul

      public Matrix4x3f mul(Matrix4x3fc right)
      Multiply this matrix by the supplied right matrix and store the result in this.

      If M is this matrix and R the right matrix, then the new matrix will be M * R. So when transforming a vector v with the new matrix by using M * R * v, the transformation of the right matrix will be applied first!

      Parameters:
      right - the right operand of the matrix multiplication
      Returns:
      this
    • mul

      public Matrix4x3f mul(Matrix4x3fc right, Matrix4x3f dest)
      Description copied from interface: Matrix4x3fc
      Multiply this matrix by the supplied right matrix and store the result in dest.

      If M is this matrix and R the right matrix, then the new matrix will be M * R. So when transforming a vector v with the new matrix by using M * R * v, the transformation of the right matrix will be applied first!

      Specified by:
      mul in interface Matrix4x3fc
      Parameters:
      right - the right operand of the matrix multiplication
      dest - the destination matrix, which will hold the result
      Returns:
      dest
    • mulTranslation

      public Matrix4x3f mulTranslation(Matrix4x3fc right, Matrix4x3f dest)
      Description copied from interface: Matrix4x3fc
      Multiply this matrix, which is assumed to only contain a translation, by the supplied right matrix and store the result in dest.

      This method assumes that this matrix only contains a translation.

      This method will not modify either the last row of this or the last row of right.

      If M is this matrix and R the right matrix, then the new matrix will be M * R. So when transforming a vector v with the new matrix by using M * R * v, the transformation of the right matrix will be applied first!

      Specified by:
      mulTranslation in interface Matrix4x3fc
      Parameters:
      right - the right operand of the matrix multiplication
      dest - the destination matrix, which will hold the result
      Returns:
      dest
    • mulOrtho

      public Matrix4x3f mulOrtho(Matrix4x3fc view)
      Multiply this orthographic projection matrix by the supplied view matrix.

      If M is this matrix and V the view matrix, then the new matrix will be M * V. So when transforming a vector v with the new matrix by using M * V * v, the transformation of the view matrix will be applied first!

      Parameters:
      view - the matrix which to multiply this with
      Returns:
      this
    • mulOrtho

      public Matrix4x3f mulOrtho(Matrix4x3fc view, Matrix4x3f dest)
      Description copied from interface: Matrix4x3fc
      Multiply this orthographic projection matrix by the supplied view matrix and store the result in dest.

      If M is this matrix and V the view matrix, then the new matrix will be M * V. So when transforming a vector v with the new matrix by using M * V * v, the transformation of the view matrix will be applied first!

      Specified by:
      mulOrtho in interface Matrix4x3fc
      Parameters:
      view - the matrix which to multiply this with
      dest - the destination matrix, which will hold the result
      Returns:
      dest
    • fma

      public Matrix4x3f fma(Matrix4x3fc other, float otherFactor)
      Component-wise add this and other by first multiplying each component of other by otherFactor and adding that result to this.

      The matrix other will not be changed.

      Parameters:
      other - the other matrix
      otherFactor - the factor to multiply each of the other matrix's components
      Returns:
      this
    • fma

      public Matrix4x3f fma(Matrix4x3fc other, float otherFactor, Matrix4x3f dest)
      Description copied from interface: Matrix4x3fc
      Component-wise add this and other by first multiplying each component of other by otherFactor, adding that to this and storing the final result in dest.

      The other components of dest will be set to the ones of this.

      The matrices this and other will not be changed.

      Specified by:
      fma in interface Matrix4x3fc
      Parameters:
      other - the other matrix
      otherFactor - the factor to multiply each of the other matrix's components
      dest - will hold the result
      Returns:
      dest
    • add

      public Matrix4x3f add(Matrix4x3fc other)
      Component-wise add this and other.
      Parameters:
      other - the other addend
      Returns:
      this
    • add

      public Matrix4x3f add(Matrix4x3fc other, Matrix4x3f dest)
      Description copied from interface: Matrix4x3fc
      Component-wise add this and other and store the result in dest.
      Specified by:
      add in interface Matrix4x3fc
      Parameters:
      other - the other addend
      dest - will hold the result
      Returns:
      dest
    • sub

      public Matrix4x3f sub(Matrix4x3fc subtrahend)
      Component-wise subtract subtrahend from this.
      Parameters:
      subtrahend - the subtrahend
      Returns:
      this
    • sub

      public Matrix4x3f sub(Matrix4x3fc subtrahend, Matrix4x3f dest)
      Description copied from interface: Matrix4x3fc
      Component-wise subtract subtrahend from this and store the result in dest.
      Specified by:
      sub in interface Matrix4x3fc
      Parameters:
      subtrahend - the subtrahend
      dest - will hold the result
      Returns:
      dest
    • mulComponentWise

      public Matrix4x3f mulComponentWise(Matrix4x3fc other)
      Component-wise multiply this by other.
      Parameters:
      other - the other matrix
      Returns:
      this
    • mulComponentWise

      public Matrix4x3f mulComponentWise(Matrix4x3fc other, Matrix4x3f dest)
      Description copied from interface: Matrix4x3fc
      Component-wise multiply this by other and store the result in dest.
      Specified by:
      mulComponentWise in interface Matrix4x3fc
      Parameters:
      other - the other matrix
      dest - will hold the result
      Returns:
      dest
    • set

      public Matrix4x3f set(float m00, float m01, float m02, float m10, float m11, float m12, float m20, float m21, float m22, float m30, float m31, float m32)
      Set the values within this matrix to the supplied float values. The matrix will look like this:

      m00, m10, m20, m30
      m01, m11, m21, m31
      m02, m12, m22, m32
      Parameters:
      m00 - the new value of m00
      m01 - the new value of m01
      m02 - the new value of m02
      m10 - the new value of m10
      m11 - the new value of m11
      m12 - the new value of m12
      m20 - the new value of m20
      m21 - the new value of m21
      m22 - the new value of m22
      m30 - the new value of m30
      m31 - the new value of m31
      m32 - the new value of m32
      Returns:
      this
    • set

      public Matrix4x3f set(float[] m, int off)
      Set the values in the matrix using a float array that contains the matrix elements in column-major order.

      The results will look like this:

      0, 3, 6, 9
      1, 4, 7, 10
      2, 5, 8, 11

      Parameters:
      m - the array to read the matrix values from
      off - the offset into the array
      Returns:
      this
      See Also:
      set(float[])
    • set

      public Matrix4x3f set(float[] m)
      Set the values in the matrix using a float array that contains the matrix elements in column-major order.

      The results will look like this:

      0, 3, 6, 9
      1, 4, 7, 10
      2, 5, 8, 11

      Parameters:
      m - the array to read the matrix values from
      Returns:
      this
      See Also:
      set(float[], int)
    • set

      public Matrix4x3f set(FloatBuffer buffer)
      Set the values of this matrix by reading 12 float values from the given FloatBuffer in column-major order, starting at its current position.

      The FloatBuffer is expected to contain the values in column-major order.

      The position of the FloatBuffer will not be changed by this method.

      Parameters:
      buffer - the FloatBuffer to read the matrix values from in column-major order
      Returns:
      this
    • set

      public Matrix4x3f set(ByteBuffer buffer)
      Set the values of this matrix by reading 12 float values from the given ByteBuffer in column-major order, starting at its current position.

      The ByteBuffer is expected to contain the values in column-major order.

      The position of the ByteBuffer will not be changed by this method.

      Parameters:
      buffer - the ByteBuffer to read the matrix values from in column-major order
      Returns:
      this
    • set

      public Matrix4x3f set(int index, FloatBuffer buffer)
      Set the values of this matrix by reading 12 float values from the given FloatBuffer in column-major order, starting at the specified absolute buffer position/index.

      The FloatBuffer is expected to contain the values in column-major order.

      The position of the FloatBuffer will not be changed by this method.

      Parameters:
      index - the absolute position into the FloatBuffer
      buffer - the FloatBuffer to read the matrix values from in column-major order
      Returns:
      this
    • set

      public Matrix4x3f set(int index, ByteBuffer buffer)
      Set the values of this matrix by reading 12 float values from the given ByteBuffer in column-major order, starting at the specified absolute buffer position/index.

      The ByteBuffer is expected to contain the values in column-major order.

      The position of the ByteBuffer will not be changed by this method.

      Parameters:
      index - the absolute position into the ByteBuffer
      buffer - the ByteBuffer to read the matrix values from in column-major order
      Returns:
      this
    • setFromAddress

      public Matrix4x3f setFromAddress(long address)
      Set the values of this matrix by reading 12 float values from off-heap memory in column-major order, starting at the given address.

      This method will throw an UnsupportedOperationException when JOML is used with `-Djoml.nounsafe`.

      This method is unsafe as it can result in a crash of the JVM process when the specified address range does not belong to this process.

      Parameters:
      address - the off-heap memory address to read the matrix values from in column-major order
      Returns:
      this
    • determinant

      public float determinant()
      Description copied from interface: Matrix4x3fc
      Return the determinant of this matrix.
      Specified by:
      determinant in interface Matrix4x3fc
      Returns:
      the determinant
    • invert

      public Matrix4x3f invert(Matrix4x3f dest)
      Description copied from interface: Matrix4x3fc
      Invert this matrix and write the result into dest.
      Specified by:
      invert in interface Matrix4x3fc
      Parameters:
      dest - will hold the result
      Returns:
      dest
    • invert

      public Matrix4f invert(Matrix4f dest)
      Description copied from interface: Matrix4x3fc
      Invert this matrix and write the result as the top 4x3 matrix into dest and set all other values of dest to identity..
      Specified by:
      invert in interface Matrix4x3fc
      Parameters:
      dest - will hold the result
      Returns:
      dest
    • invert

      public Matrix4x3f invert()
      Invert this matrix.
      Returns:
      this
    • invertOrtho

      public Matrix4x3f invertOrtho(Matrix4x3f dest)
      Description copied from interface: Matrix4x3fc
      Invert this orthographic projection matrix and store the result into the given dest.

      This method can be used to quickly obtain the inverse of an orthographic projection matrix.

      Specified by:
      invertOrtho in interface Matrix4x3fc
      Parameters:
      dest - will hold the inverse of this
      Returns:
      dest
    • invertOrtho

      public Matrix4x3f invertOrtho()
      Invert this orthographic projection matrix.

      This method can be used to quickly obtain the inverse of an orthographic projection matrix.

      Returns:
      this
    • transpose3x3

      public Matrix4x3f transpose3x3()
      Transpose only the left 3x3 submatrix of this matrix and set the rest of the matrix elements to identity.
      Returns:
      this
    • transpose3x3

      public Matrix4x3f transpose3x3(Matrix4x3f dest)
      Description copied from interface: Matrix4x3fc
      Transpose only the left 3x3 submatrix of this matrix and store the result in dest.

      All other matrix elements are left unchanged.

      Specified by:
      transpose3x3 in interface Matrix4x3fc
      Parameters:
      dest - will hold the result
      Returns:
      dest
    • transpose3x3

      public Matrix3f transpose3x3(Matrix3f dest)
      Description copied from interface: Matrix4x3fc
      Transpose only the left 3x3 submatrix of this matrix and store the result in dest.
      Specified by:
      transpose3x3 in interface Matrix4x3fc
      Parameters:
      dest - will hold the result
      Returns:
      dest
    • translation

      public Matrix4x3f translation(float x, float y, float z)
      Set this matrix to be a simple translation matrix.

      The resulting matrix can be multiplied against another transformation matrix to obtain an additional translation.

      In order to post-multiply a translation transformation directly to a matrix, use translate() instead.

      Parameters:
      x - the offset to translate in x
      y - the offset to translate in y
      z - the offset to translate in z
      Returns:
      this
      See Also:
      translate(float, float, float)
    • translation

      public Matrix4x3f translation(Vector3fc offset)
      Set this matrix to be a simple translation matrix.

      The resulting matrix can be multiplied against another transformation matrix to obtain an additional translation.

      In order to post-multiply a translation transformation directly to a matrix, use translate() instead.

      Parameters:
      offset - the offsets in x, y and z to translate
      Returns:
      this
      See Also:
      translate(float, float, float)
    • setTranslation

      public Matrix4x3f setTranslation(float x, float y, float z)
      Set only the translation components (m30, m31, m32) of this matrix to the given values (x, y, z).

      To build a translation matrix instead, use translation(float, float, float). To apply a translation, use translate(float, float, float).

      Parameters:
      x - the offset to translate in x
      y - the offset to translate in y
      z - the offset to translate in z
      Returns:
      this
      See Also:
      translation(float, float, float), translate(float, float, float)
    • setTranslation

      public Matrix4x3f setTranslation(Vector3fc xyz)
      Set only the translation components (m30, m31, m32) of this matrix to the values (xyz.x, xyz.y, xyz.z).

      To build a translation matrix instead, use translation(Vector3fc). To apply a translation, use translate(Vector3fc).

      Parameters:
      xyz - the units to translate in (x, y, z)
      Returns:
      this
      See Also:
      translation(Vector3fc), translate(Vector3fc)
    • getTranslation

      public Vector3f getTranslation(Vector3f dest)
      Description copied from interface: Matrix4x3fc
      Get only the translation components (m30, m31, m32) of this matrix and store them in the given vector xyz.
      Specified by:
      getTranslation in interface Matrix4x3fc
      Parameters:
      dest - will hold the translation components of this matrix
      Returns:
      dest
    • getScale

      public Vector3f getScale(Vector3f dest)
      Description copied from interface: Matrix4x3fc
      Get the scaling factors of this matrix for the three base axes.
      Specified by:
      getScale in interface Matrix4x3fc
      Parameters:
      dest - will hold the scaling factors for x, y and z
      Returns:
      dest
    • toString

      public String toString()
      Return a string representation of this matrix.

      This method creates a new DecimalFormat on every invocation with the format string "0.000E0;-".

      Overrides:
      toString in class Object
      Returns:
      the string representation
    • toString

      public String toString(NumberFormat formatter)
      Return a string representation of this matrix by formatting the matrix elements with the given NumberFormat.
      Parameters:
      formatter - the NumberFormat used to format the matrix values with
      Returns:
      the string representation
    • get

      public Matrix4x3f get(Matrix4x3f dest)
      Get the current values of this matrix and store them into dest.

      This is the reverse method of set(Matrix4x3fc) and allows to obtain intermediate calculation results when chaining multiple transformations.

      Specified by:
      get in interface Matrix4x3fc
      Parameters:
      dest - the destination matrix
      Returns:
      the passed in destination
      See Also:
      set(Matrix4x3fc)
    • get

      public Matrix4x3d get(Matrix4x3d dest)
      Get the current values of this matrix and store them into dest.

      This is the reverse method of Matrix4x3d.set(Matrix4x3fc) and allows to obtain intermediate calculation results when chaining multiple transformations.

      Specified by:
      get in interface Matrix4x3fc
      Parameters:
      dest - the destination matrix
      Returns:
      the passed in destination
      See Also:
      Matrix4x3d.set(Matrix4x3fc)
    • getRotation

      public AxisAngle4f getRotation(AxisAngle4f dest)
      Description copied from interface: Matrix4x3fc
      Get the rotational component of this matrix and store the represented rotation into the given AxisAngle4f.
      Specified by:
      getRotation in interface Matrix4x3fc
      Parameters:
      dest - the destination AxisAngle4f
      Returns:
      the passed in destination
      See Also:
      AxisAngle4f.set(Matrix4x3fc)
    • getRotation

      public AxisAngle4d getRotation(AxisAngle4d dest)
      Description copied from interface: Matrix4x3fc
      Get the rotational component of this matrix and store the represented rotation into the given AxisAngle4d.
      Specified by:
      getRotation in interface Matrix4x3fc
      Parameters:
      dest - the destination AxisAngle4d
      Returns:
      the passed in destination
      See Also:
      AxisAngle4f.set(Matrix4x3fc)
    • getUnnormalizedRotation

      public Quaternionf getUnnormalizedRotation(Quaternionf dest)
      Description copied from interface: Matrix4x3fc
      Get the current values of this matrix and store the represented rotation into the given Quaternionf.

      This method assumes that the first three column vectors of the left 3x3 submatrix are not normalized and thus allows to ignore any additional scaling factor that is applied to the matrix.

      Specified by:
      getUnnormalizedRotation in interface Matrix4x3fc
      Parameters:
      dest - the destination Quaternionf
      Returns:
      the passed in destination
      See Also:
      Quaternionf.setFromUnnormalized(Matrix4x3fc)
    • getNormalizedRotation

      public Quaternionf getNormalizedRotation(Quaternionf dest)
      Description copied from interface: Matrix4x3fc
      Get the current values of this matrix and store the represented rotation into the given Quaternionf.

      This method assumes that the first three column vectors of the left 3x3 submatrix are normalized.

      Specified by:
      getNormalizedRotation in interface Matrix4x3fc
      Parameters:
      dest - the destination Quaternionf
      Returns:
      the passed in destination
      See Also:
      Quaternionf.setFromNormalized(Matrix4x3fc)
    • getUnnormalizedRotation

      public Quaterniond getUnnormalizedRotation(Quaterniond dest)
      Description copied from interface: Matrix4x3fc
      Get the current values of this matrix and store the represented rotation into the given Quaterniond.

      This method assumes that the first three column vectors of the left 3x3 submatrix are not normalized and thus allows to ignore any additional scaling factor that is applied to the matrix.

      Specified by:
      getUnnormalizedRotation in interface Matrix4x3fc
      Parameters:
      dest - the destination Quaterniond
      Returns:
      the passed in destination
      See Also:
      Quaterniond.setFromUnnormalized(Matrix4x3fc)
    • getNormalizedRotation

      public Quaterniond getNormalizedRotation(Quaterniond dest)
      Description copied from interface: Matrix4x3fc
      Get the current values of this matrix and store the represented rotation into the given Quaterniond.

      This method assumes that the first three column vectors of the left 3x3 submatrix are normalized.

      Specified by:
      getNormalizedRotation in interface Matrix4x3fc
      Parameters:
      dest - the destination Quaterniond
      Returns:
      the passed in destination
      See Also:
      Quaterniond.setFromNormalized(Matrix4x3fc)
    • get

      public FloatBuffer get(FloatBuffer buffer)
      Description copied from interface: Matrix4x3fc
      Store this matrix in column-major order into the supplied FloatBuffer at the current buffer position.

      This method will not increment the position of the given FloatBuffer.

      In order to specify the offset into the FloatBuffer at which the matrix is stored, use Matrix4x3fc.get(int, FloatBuffer), taking the absolute position as parameter.

      Specified by:
      get in interface Matrix4x3fc
      Parameters:
      buffer - will receive the values of this matrix in column-major order at its current position
      Returns:
      the passed in buffer
      See Also:
      Matrix4x3fc.get(int, FloatBuffer)
    • get

      public FloatBuffer get(int index, FloatBuffer buffer)
      Description copied from interface: Matrix4x3fc
      Store this matrix in column-major order into the supplied FloatBuffer starting at the specified absolute buffer position/index.

      This method will not increment the position of the given FloatBuffer.

      Specified by:
      get in interface Matrix4x3fc
      Parameters:
      index - the absolute position into the FloatBuffer
      buffer - will receive the values of this matrix in column-major order
      Returns:
      the passed in buffer
    • get

      public ByteBuffer get(ByteBuffer buffer)
      Description copied from interface: Matrix4x3fc
      Store this matrix in column-major order into the supplied ByteBuffer at the current buffer position.

      This method will not increment the position of the given ByteBuffer.

      In order to specify the offset into the ByteBuffer at which the matrix is stored, use Matrix4x3fc.get(int, ByteBuffer), taking the absolute position as parameter.

      Specified by:
      get in interface Matrix4x3fc
      Parameters:
      buffer - will receive the values of this matrix in column-major order at its current position
      Returns:
      the passed in buffer
      See Also:
      Matrix4x3fc.get(int, ByteBuffer)
    • get

      public ByteBuffer get(int index, ByteBuffer buffer)
      Description copied from interface: Matrix4x3fc
      Store this matrix in column-major order into the supplied ByteBuffer starting at the specified absolute buffer position/index.

      This method will not increment the position of the given ByteBuffer.

      Specified by:
      get in interface Matrix4x3fc
      Parameters:
      index - the absolute position into the ByteBuffer
      buffer - will receive the values of this matrix in column-major order
      Returns:
      the passed in buffer
    • getToAddress

      public Matrix4x3fc getToAddress(long address)
      Description copied from interface: Matrix4x3fc
      Store this matrix in column-major order at the given off-heap address.

      This method will throw an UnsupportedOperationException when JOML is used with `-Djoml.nounsafe`.

      This method is unsafe as it can result in a crash of the JVM process when the specified address range does not belong to this process.

      Specified by:
      getToAddress in interface Matrix4x3fc
      Parameters:
      address - the off-heap address where to store this matrix
      Returns:
      this
    • get

      public float[] get(float[] arr, int offset)
      Description copied from interface: Matrix4x3fc
      Store this matrix into the supplied float array in column-major order at the given offset.
      Specified by:
      get in interface Matrix4x3fc
      Parameters:
      arr - the array to write the matrix values into
      offset - the offset into the array
      Returns:
      the passed in array
    • get

      public float[] get(float[] arr)
      Description copied from interface: Matrix4x3fc
      Store this matrix into the supplied float array in column-major order.

      In order to specify an explicit offset into the array, use the method Matrix4x3fc.get(float[], int).

      Specified by:
      get in interface Matrix4x3fc
      Parameters:
      arr - the array to write the matrix values into
      Returns:
      the passed in array
      See Also:
      Matrix4x3fc.get(float[], int)
    • get4x4

      public float[] get4x4(float[] arr, int offset)
      Description copied from interface: Matrix4x3fc
      Store a 4x4 matrix in column-major order into the supplied array at the given offset, where the upper 4x3 submatrix is this and the last row is (0, 0, 0, 1).
      Specified by:
      get4x4 in interface Matrix4x3fc
      Parameters:
      arr - the array to write the matrix values into
      offset - the offset into the array
      Returns:
      the passed in array
    • get4x4

      public float[] get4x4(float[] arr)
      Description copied from interface: Matrix4x3fc
      Store a 4x4 matrix in column-major order into the supplied array, where the upper 4x3 submatrix is this and the last row is (0, 0, 0, 1).

      In order to specify an explicit offset into the array, use the method Matrix4x3fc.get4x4(float[], int).

      Specified by:
      get4x4 in interface Matrix4x3fc
      Parameters:
      arr - the array to write the matrix values into
      Returns:
      the passed in array
      See Also:
      Matrix4x3fc.get4x4(float[], int)
    • get4x4

      public FloatBuffer get4x4(FloatBuffer buffer)
      Description copied from interface: Matrix4x3fc
      Store a 4x4 matrix in column-major order into the supplied FloatBuffer at the current buffer position, where the upper 4x3 submatrix is this and the last row is (0, 0, 0, 1).

      This method will not increment the position of the given FloatBuffer.

      In order to specify the offset into the FloatBuffer at which the matrix is stored, use Matrix4x3fc.get4x4(int, FloatBuffer), taking the absolute position as parameter.

      Specified by:
      get4x4 in interface Matrix4x3fc
      Parameters:
      buffer - will receive the values of this matrix in column-major order at its current position
      Returns:
      the passed in buffer
      See Also:
      Matrix4x3fc.get4x4(int, FloatBuffer)
    • get4x4

      public FloatBuffer get4x4(int index, FloatBuffer buffer)
      Description copied from interface: Matrix4x3fc
      Store a 4x4 matrix in column-major order into the supplied FloatBuffer starting at the specified absolute buffer position/index, where the upper 4x3 submatrix is this and the last row is (0, 0, 0, 1).

      This method will not increment the position of the given FloatBuffer.

      Specified by:
      get4x4 in interface Matrix4x3fc
      Parameters:
      index - the absolute position into the FloatBuffer
      buffer - will receive the values of this matrix in column-major order
      Returns:
      the passed in buffer
    • get4x4

      public ByteBuffer get4x4(ByteBuffer buffer)
      Description copied from interface: Matrix4x3fc
      Store a 4x4 matrix in column-major order into the supplied ByteBuffer at the current buffer position, where the upper 4x3 submatrix is this and the last row is (0, 0, 0, 1).

      This method will not increment the position of the given ByteBuffer.

      In order to specify the offset into the ByteBuffer at which the matrix is stored, use Matrix4x3fc.get4x4(int, ByteBuffer), taking the absolute position as parameter.

      Specified by:
      get4x4 in interface Matrix4x3fc
      Parameters:
      buffer - will receive the values of this matrix in column-major order at its current position
      Returns:
      the passed in buffer
      See Also:
      Matrix4x3fc.get4x4(int, ByteBuffer)
    • get4x4

      public ByteBuffer get4x4(int index, ByteBuffer buffer)
      Description copied from interface: Matrix4x3fc
      Store a 4x4 matrix in column-major order into the supplied ByteBuffer starting at the specified absolute buffer position/index, where the upper 4x3 submatrix is this and the last row is (0, 0, 0, 1).

      This method will not increment the position of the given ByteBuffer.

      Specified by:
      get4x4 in interface Matrix4x3fc
      Parameters:
      index - the absolute position into the ByteBuffer
      buffer - will receive the values of this matrix in column-major order
      Returns:
      the passed in buffer
    • get3x4

      public FloatBuffer get3x4(FloatBuffer buffer)
      Description copied from interface: Matrix4x3fc
      Store the left 3x3 submatrix as 3x4 matrix in column-major order into the supplied FloatBuffer at the current buffer position, with the m03, m13 and m23 components being zero.

      This method will not increment the position of the given FloatBuffer.

      In order to specify the offset into the FloatBuffer at which the matrix is stored, use Matrix4x3fc.get3x4(int, FloatBuffer), taking the absolute position as parameter.

      Specified by:
      get3x4 in interface Matrix4x3fc
      Parameters:
      buffer - will receive the values of the left 3x3 submatrix as 3x4 matrix in column-major order at its current position
      Returns:
      the passed in buffer
      See Also:
      Matrix4x3fc.get3x4(int, FloatBuffer)
    • get3x4

      public FloatBuffer get3x4(int index, FloatBuffer buffer)
      Description copied from interface: Matrix4x3fc
      Store the left 3x3 submatrix as 3x4 matrix in column-major order into the supplied FloatBuffer starting at the specified absolute buffer position/index, with the m03, m13 and m23 components being zero.

      This method will not increment the position of the given FloatBuffer.

      Specified by:
      get3x4 in interface Matrix4x3fc
      Parameters:
      index - the absolute position into the FloatBuffer
      buffer - will receive the values of the left 3x3 submatrix as 3x4 matrix in column-major order
      Returns:
      the passed in buffer
    • get3x4

      public ByteBuffer get3x4(ByteBuffer buffer)
      Description copied from interface: Matrix4x3fc
      Store the left 3x3 submatrix as 3x4 matrix in column-major order into the supplied ByteBuffer at the current buffer position, with the m03, m13 and m23 components being zero.

      This method will not increment the position of the given ByteBuffer.

      In order to specify the offset into the ByteBuffer at which the matrix is stored, use Matrix4x3fc.get3x4(int, ByteBuffer), taking the absolute position as parameter.

      Specified by:
      get3x4 in interface Matrix4x3fc
      Parameters:
      buffer - will receive the values of the left 3x3 submatrix as 3x4 matrix in column-major order at its current position
      Returns:
      the passed in buffer
      See Also:
      Matrix4x3fc.get3x4(int, ByteBuffer)
    • get3x4

      public ByteBuffer get3x4(int index, ByteBuffer buffer)
      Description copied from interface: Matrix4x3fc
      Store the left 3x3 submatrix as 3x4 matrix in column-major order into the supplied ByteBuffer starting at the specified absolute buffer position/index, with the m03, m13 and m23 components being zero.

      This method will not increment the position of the given ByteBuffer.

      Specified by:
      get3x4 in interface Matrix4x3fc
      Parameters:
      index - the absolute position into the ByteBuffer
      buffer - will receive the values of the left 3x3 submatrix as 3x4 matrix in column-major order
      Returns:
      the passed in buffer
    • getTransposed

      public FloatBuffer getTransposed(FloatBuffer buffer)
      Description copied from interface: Matrix4x3fc
      Store this matrix in row-major order into the supplied FloatBuffer at the current buffer position.

      This method will not increment the position of the given FloatBuffer.

      In order to specify the offset into the FloatBuffer at which the matrix is stored, use Matrix4x3fc.getTransposed(int, FloatBuffer), taking the absolute position as parameter.

      Specified by:
      getTransposed in interface Matrix4x3fc
      Parameters:
      buffer - will receive the values of this matrix in row-major order at its current position
      Returns:
      the passed in buffer
      See Also:
      Matrix4x3fc.getTransposed(int, FloatBuffer)
    • getTransposed

      public FloatBuffer getTransposed(int index, FloatBuffer buffer)
      Description copied from interface: Matrix4x3fc
      Store this matrix in row-major order into the supplied FloatBuffer starting at the specified absolute buffer position/index.

      This method will not increment the position of the given FloatBuffer.

      Specified by:
      getTransposed in interface Matrix4x3fc
      Parameters:
      index - the absolute position into the FloatBuffer
      buffer - will receive the values of this matrix in row-major order
      Returns:
      the passed in buffer
    • getTransposed

      public ByteBuffer getTransposed(ByteBuffer buffer)
      Description copied from interface: Matrix4x3fc
      Store this matrix in row-major order into the supplied ByteBuffer at the current buffer position.

      This method will not increment the position of the given ByteBuffer.

      In order to specify the offset into the ByteBuffer at which the matrix is stored, use Matrix4x3fc.getTransposed(int, ByteBuffer), taking the absolute position as parameter.

      Specified by:
      getTransposed in interface Matrix4x3fc
      Parameters:
      buffer - will receive the values of this matrix in row-major order at its current position
      Returns:
      the passed in buffer
      See Also:
      Matrix4x3fc.getTransposed(int, ByteBuffer)
    • getTransposed

      public ByteBuffer getTransposed(int index, ByteBuffer buffer)
      Description copied from interface: Matrix4x3fc
      Store this matrix in row-major order into the supplied ByteBuffer starting at the specified absolute buffer position/index.

      This method will not increment the position of the given ByteBuffer.

      Specified by:
      getTransposed in interface Matrix4x3fc
      Parameters:
      index - the absolute position into the ByteBuffer
      buffer - will receive the values of this matrix in row-major order
      Returns:
      the passed in buffer
    • getTransposed

      public float[] getTransposed(float[] arr, int offset)
      Description copied from interface: Matrix4x3fc
      Store this matrix into the supplied float array in row-major order at the given offset.
      Specified by:
      getTransposed in interface Matrix4x3fc
      Parameters:
      arr - the array to write the matrix values into
      offset - the offset into the array
      Returns:
      the passed in array
    • getTransposed

      public float[] getTransposed(float[] arr)
      Description copied from interface: Matrix4x3fc
      Store this matrix into the supplied float array in row-major order.

      In order to specify an explicit offset into the array, use the method Matrix4x3fc.getTransposed(float[], int).

      Specified by:
      getTransposed in interface Matrix4x3fc
      Parameters:
      arr - the array to write the matrix values into
      Returns:
      the passed in array
      See Also:
      Matrix4x3fc.getTransposed(float[], int)
    • zero

      public Matrix4x3f zero()
      Set all the values within this matrix to 0.
      Returns:
      this
    • scaling

      public Matrix4x3f scaling(float factor)
      Set this matrix to be a simple scale matrix, which scales all axes uniformly by the given factor.

      The resulting matrix can be multiplied against another transformation matrix to obtain an additional scaling.

      In order to post-multiply a scaling transformation directly to a matrix, use scale() instead.

      Parameters:
      factor - the scale factor in x, y and z
      Returns:
      this
      See Also:
      scale(float)
    • scaling

      public Matrix4x3f scaling(float x, float y, float z)
      Set this matrix to be a simple scale matrix.

      The resulting matrix can be multiplied against another transformation matrix to obtain an additional scaling.

      In order to post-multiply a scaling transformation directly to a matrix, use scale() instead.

      Parameters:
      x - the scale in x
      y - the scale in y
      z - the scale in z
      Returns:
      this
      See Also:
      scale(float, float, float)
    • scaling

      public Matrix4x3f scaling(Vector3fc xyz)
      Set this matrix to be a simple scale matrix which scales the base axes by xyz.x, xyz.y and xyz.z respectively.

      The resulting matrix can be multiplied against another transformation matrix to obtain an additional scaling.

      In order to post-multiply a scaling transformation directly to a matrix use scale() instead.

      Parameters:
      xyz - the scale in x, y and z respectively
      Returns:
      this
      See Also:
      scale(Vector3fc)
    • rotation

      public Matrix4x3f rotation(float angle, Vector3fc axis)
      Set this matrix to a rotation matrix which rotates the given radians about a given axis.

      The axis described by the axis vector needs to be a unit vector.

      When used with a right-handed coordinate system, the produced rotation will rotate a vector counter-clockwise around the rotation axis, when viewing along the negative axis direction towards the origin. When used with a left-handed coordinate system, the rotation is clockwise.

      The resulting matrix can be multiplied against another transformation matrix to obtain an additional rotation.

      In order to post-multiply a rotation transformation directly to a matrix, use rotate() instead.

      Parameters:
      angle - the angle in radians
      axis - the axis to rotate about (needs to be normalized)
      Returns:
      this
      See Also:
      rotate(float, Vector3fc)
    • rotation

      public Matrix4x3f rotation(AxisAngle4f axisAngle)
      Set this matrix to a rotation transformation using the given AxisAngle4f.

      When used with a right-handed coordinate system, the produced rotation will rotate a vector counter-clockwise around the rotation axis, when viewing along the negative axis direction towards the origin. When used with a left-handed coordinate system, the rotation is clockwise.

      The resulting matrix can be multiplied against another transformation matrix to obtain an additional rotation.

      In order to apply the rotation transformation to an existing transformation, use rotate() instead.

      Reference: http://en.wikipedia.org

      Parameters:
      axisAngle - the AxisAngle4f (needs to be normalized)
      Returns:
      this
      See Also:
      rotate(AxisAngle4f)
    • rotation

      public Matrix4x3f rotation(float angle, float x, float y, float z)
      Set this matrix to a rotation matrix which rotates the given radians about a given axis.

      The axis described by the three components needs to be a unit vector.

      When used with a right-handed coordinate system, the produced rotation will rotate a vector counter-clockwise around the rotation axis, when viewing along the negative axis direction towards the origin. When used with a left-handed coordinate system, the rotation is clockwise.

      The resulting matrix can be multiplied against another transformation matrix to obtain an additional rotation.

      In order to apply the rotation transformation to an existing transformation, use rotate() instead.

      Reference: http://en.wikipedia.org

      Parameters:
      angle - the angle in radians
      x - the x-component of the rotation axis
      y - the y-component of the rotation axis
      z - the z-component of the rotation axis
      Returns:
      this
      See Also:
      rotate(float, float, float, float)
    • rotationX

      public Matrix4x3f rotationX(float ang)
      Set this matrix to a rotation transformation about the X axis.

      When used with a right-handed coordinate system, the produced rotation will rotate a vector counter-clockwise around the rotation axis, when viewing along the negative axis direction towards the origin. When used with a left-handed coordinate system, the rotation is clockwise.

      Reference: http://en.wikipedia.org

      Parameters:
      ang - the angle in radians
      Returns:
      this
    • rotationY

      public Matrix4x3f rotationY(float ang)
      Set this matrix to a rotation transformation about the Y axis.

      When used with a right-handed coordinate system, the produced rotation will rotate a vector counter-clockwise around the rotation axis, when viewing along the negative axis direction towards the origin. When used with a left-handed coordinate system, the rotation is clockwise.

      Reference: http://en.wikipedia.org

      Parameters:
      ang - the angle in radians
      Returns:
      this
    • rotationZ

      public Matrix4x3f rotationZ(float ang)
      Set this matrix to a rotation transformation about the Z axis.

      When used with a right-handed coordinate system, the produced rotation will rotate a vector counter-clockwise around the rotation axis, when viewing along the negative axis direction towards the origin. When used with a left-handed coordinate system, the rotation is clockwise.

      Reference: http://en.wikipedia.org

      Parameters:
      ang - the angle in radians
      Returns:
      this
    • rotationXYZ

      public Matrix4x3f rotationXYZ(float angleX, float angleY, float angleZ)
      Set this matrix to a rotation of angleX radians about the X axis, followed by a rotation of angleY radians about the Y axis and followed by a rotation of angleZ radians about the Z axis.

      When used with a right-handed coordinate system, the produced rotation will rotate a vector counter-clockwise around the rotation axis, when viewing along the negative axis direction towards the origin. When used with a left-handed coordinate system, the rotation is clockwise.

      This method is equivalent to calling: rotationX(angleX).rotateY(angleY).rotateZ(angleZ)

      Parameters:
      angleX - the angle to rotate about X
      angleY - the angle to rotate about Y
      angleZ - the angle to rotate about Z
      Returns:
      this
    • rotationZYX

      public Matrix4x3f rotationZYX(float angleZ, float angleY, float angleX)
      Set this matrix to a rotation of angleZ radians about the Z axis, followed by a rotation of angleY radians about the Y axis and followed by a rotation of angleX radians about the X axis.

      When used with a right-handed coordinate system, the produced rotation will rotate a vector counter-clockwise around the rotation axis, when viewing along the negative axis direction towards the origin. When used with a left-handed coordinate system, the rotation is clockwise.

      This method is equivalent to calling: rotationZ(angleZ).rotateY(angleY).rotateX(angleX)

      Parameters:
      angleZ - the angle to rotate about Z
      angleY - the angle to rotate about Y
      angleX - the angle to rotate about X
      Returns:
      this
    • rotationYXZ

      public Matrix4x3f rotationYXZ(float angleY, float angleX, float angleZ)
      Set this matrix to a rotation of angleY radians about the Y axis, followed by a rotation of angleX radians about the X axis and followed by a rotation of angleZ radians about the Z axis.

      When used with a right-handed coordinate system, the produced rotation will rotate a vector counter-clockwise around the rotation axis, when viewing along the negative axis direction towards the origin. When used with a left-handed coordinate system, the rotation is clockwise.

      This method is equivalent to calling: rotationY(angleY).rotateX(angleX).rotateZ(angleZ)

      Parameters:
      angleY - the angle to rotate about Y
      angleX - the angle to rotate about X
      angleZ - the angle to rotate about Z
      Returns:
      this
    • setRotationXYZ

      public Matrix4x3f setRotationXYZ(float angleX, float angleY, float angleZ)
      Set only the left 3x3 submatrix of this matrix to a rotation of angleX radians about the X axis, followed by a rotation of angleY radians about the Y axis and followed by a rotation of angleZ radians about the Z axis.

      When used with a right-handed coordinate system, the produced rotation will rotate a vector counter-clockwise around the rotation axis, when viewing along the negative axis direction towards the origin. When used with a left-handed coordinate system, the rotation is clockwise.

      Parameters:
      angleX - the angle to rotate about X
      angleY - the angle to rotate about Y
      angleZ - the angle to rotate about Z
      Returns:
      this
    • setRotationZYX

      public Matrix4x3f setRotationZYX(float angleZ, float angleY, float angleX)
      Set only the left 3x3 submatrix of this matrix to a rotation of angleZ radians about the Z axis, followed by a rotation of angleY radians about the Y axis and followed by a rotation of angleX radians about the X axis.

      When used with a right-handed coordinate system, the produced rotation will rotate a vector counter-clockwise around the rotation axis, when viewing along the negative axis direction towards the origin. When used with a left-handed coordinate system, the rotation is clockwise.

      Parameters:
      angleZ - the angle to rotate about Z
      angleY - the angle to rotate about Y
      angleX - the angle to rotate about X
      Returns:
      this
    • setRotationYXZ

      public Matrix4x3f setRotationYXZ(float angleY, float angleX, float angleZ)
      Set only the left 3x3 submatrix of this matrix to a rotation of angleY radians about the Y axis, followed by a rotation of angleX radians about the X axis and followed by a rotation of angleZ radians about the Z axis.

      When used with a right-handed coordinate system, the produced rotation will rotate a vector counter-clockwise around the rotation axis, when viewing along the negative axis direction towards the origin. When used with a left-handed coordinate system, the rotation is clockwise.

      Parameters:
      angleY - the angle to rotate about Y
      angleX - the angle to rotate about X
      angleZ - the angle to rotate about Z
      Returns:
      this
    • rotation

      public Matrix4x3f rotation(Quaternionfc quat)
      Set this matrix to the rotation - and possibly scaling - transformation of the given Quaternionfc.

      When used with a right-handed coordinate system, the produced rotation will rotate a vector counter-clockwise around the rotation axis, when viewing along the negative axis direction towards the origin. When used with a left-handed coordinate system, the rotation is clockwise.

      The resulting matrix can be multiplied against another transformation matrix to obtain an additional rotation.

      In order to apply the rotation transformation to an existing transformation, use rotate() instead.

      Reference: http://en.wikipedia.org

      Parameters:
      quat - the Quaternionfc
      Returns:
      this
      See Also:
      rotate(Quaternionfc)
    • translationRotateScale

      public Matrix4x3f translationRotateScale(float tx, float ty, float tz, float qx, float qy, float qz, float qw, float sx, float sy, float sz)
      Set this matrix to T * R * S, where T is a translation by the given (tx, ty, tz), R is a rotation transformation specified by the quaternion (qx, qy, qz, qw), and S is a scaling transformation which scales the three axes x, y and z by (sx, sy, sz).

      When transforming a vector by the resulting matrix the scaling transformation will be applied first, then the rotation and at last the translation.

      When used with a right-handed coordinate system, the produced rotation will rotate a vector counter-clockwise around the rotation axis, when viewing along the negative axis direction towards the origin. When used with a left-handed coordinate system, the rotation is clockwise.

      This method is equivalent to calling: translation(tx, ty, tz).rotate(quat).scale(sx, sy, sz)

      Parameters:
      tx - the number of units by which to translate the x-component
      ty - the number of units by which to translate the y-component
      tz - the number of units by which to translate the z-component
      qx - the x-coordinate of the vector part of the quaternion
      qy - the y-coordinate of the vector part of the quaternion
      qz - the z-coordinate of the vector part of the quaternion
      qw - the scalar part of the quaternion
      sx - the scaling factor for the x-axis
      sy - the scaling factor for the y-axis
      sz - the scaling factor for the z-axis
      Returns:
      this
      See Also:
      translation(float, float, float), rotate(Quaternionfc), scale(float, float, float)
    • translationRotateScale

      public Matrix4x3f translationRotateScale(Vector3fc translation, Quaternionfc quat, Vector3fc scale)
      Set this matrix to T * R * S, where T is the given translation, R is a rotation transformation specified by the given quaternion, and S is a scaling transformation which scales the axes by scale.

      When transforming a vector by the resulting matrix the scaling transformation will be applied first, then the rotation and at last the translation.

      When used with a right-handed coordinate system, the produced rotation will rotate a vector counter-clockwise around the rotation axis, when viewing along the negative axis direction towards the origin. When used with a left-handed coordinate system, the rotation is clockwise.

      This method is equivalent to calling: translation(translation).rotate(quat).scale(scale)

      Parameters:
      translation - the translation
      quat - the quaternion representing a rotation
      scale - the scaling factors
      Returns:
      this
      See Also:
      translation(Vector3fc), rotate(Quaternionfc)
    • translationRotateScaleMul

      public Matrix4x3f translationRotateScaleMul(float tx, float ty, float tz, float qx, float qy, float qz, float qw, float sx, float sy, float sz, Matrix4x3f m)
      Set this matrix to T * R * S * M, where T is a translation by the given (tx, ty, tz), R is a rotation transformation specified by the quaternion (qx, qy, qz, qw), S is a scaling transformation which scales the three axes x, y and z by (sx, sy, sz).

      When transforming a vector by the resulting matrix the transformation described by M will be applied first, then the scaling, then rotation and at last the translation.

      When used with a right-handed coordinate system, the produced rotation will rotate a vector counter-clockwise around the rotation axis, when viewing along the negative axis direction towards the origin. When used with a left-handed coordinate system, the rotation is clockwise.

      This method is equivalent to calling: translation(tx, ty, tz).rotate(quat).scale(sx, sy, sz).mul(m)

      Parameters:
      tx - the number of units by which to translate the x-component
      ty - the number of units by which to translate the y-component
      tz - the number of units by which to translate the z-component
      qx - the x-coordinate of the vector part of the quaternion
      qy - the y-coordinate of the vector part of the quaternion
      qz - the z-coordinate of the vector part of the quaternion
      qw - the scalar part of the quaternion
      sx - the scaling factor for the x-axis
      sy - the scaling factor for the y-axis
      sz - the scaling factor for the z-axis
      m - the matrix to multiply by
      Returns:
      this
      See Also:
      translation(float, float, float), rotate(Quaternionfc), scale(float, float, float), mul(Matrix4x3fc)
    • translationRotateScaleMul

      public Matrix4x3f translationRotateScaleMul(Vector3fc translation, Quaternionfc quat, Vector3fc scale, Matrix4x3f m)
      Set this matrix to T * R * S * M, where T is the given translation, R is a rotation transformation specified by the given quaternion, S is a scaling transformation which scales the axes by scale.

      When transforming a vector by the resulting matrix the transformation described by M will be applied first, then the scaling, then rotation and at last the translation.

      When used with a right-handed coordinate system, the produced rotation will rotate a vector counter-clockwise around the rotation axis, when viewing along the negative axis direction towards the origin. When used with a left-handed coordinate system, the rotation is clockwise.

      This method is equivalent to calling: translation(translation).rotate(quat).scale(scale).mul(m)

      Parameters:
      translation - the translation
      quat - the quaternion representing a rotation
      scale - the scaling factors
      m - the matrix to multiply by
      Returns:
      this
      See Also:
      translation(Vector3fc), rotate(Quaternionfc)
    • translationRotate

      public Matrix4x3f translationRotate(float tx, float ty, float tz, Quaternionfc quat)
      Set this matrix to T * R, where T is a translation by the given (tx, ty, tz) and R is a rotation transformation specified by the given quaternion.

      When transforming a vector by the resulting matrix the rotation transformation will be applied first and then the translation.

      When used with a right-handed coordinate system, the produced rotation will rotate a vector counter-clockwise around the rotation axis, when viewing along the negative axis direction towards the origin. When used with a left-handed coordinate system, the rotation is clockwise.

      This method is equivalent to calling: translation(tx, ty, tz).rotate(quat)

      Parameters:
      tx - the number of units by which to translate the x-component
      ty - the number of units by which to translate the y-component
      tz - the number of units by which to translate the z-component
      quat - the quaternion representing a rotation
      Returns:
      this
      See Also:
      translation(float, float, float), rotate(Quaternionfc)
    • translationRotateMul

      public Matrix4x3f translationRotateMul(float tx, float ty, float tz, Quaternionfc quat, Matrix4x3fc mat)
      Set this matrix to T * R * M, where T is a translation by the given (tx, ty, tz), R is a rotation - and possibly scaling - transformation specified by the given quaternion and M is the given matrix mat.

      When transforming a vector by the resulting matrix the transformation described by M will be applied first, then the scaling, then rotation and at last the translation.

      When used with a right-handed coordinate system, the produced rotation will rotate a vector counter-clockwise around the rotation axis, when viewing along the negative axis direction towards the origin. When used with a left-handed coordinate system, the rotation is clockwise.

      This method is equivalent to calling: translation(tx, ty, tz).rotate(quat).mul(mat)

      Parameters:
      tx - the number of units by which to translate the x-component
      ty - the number of units by which to translate the y-component
      tz - the number of units by which to translate the z-component
      quat - the quaternion representing a rotation
      mat - the matrix to multiply with
      Returns:
      this
      See Also:
      translation(float, float, float), rotate(Quaternionfc), mul(Matrix4x3fc)
    • translationRotateMul

      public Matrix4x3f translationRotateMul(float tx, float ty, float tz, float qx, float qy, float qz, float qw, Matrix4x3fc mat)
      Set this matrix to T * R * M, where T is a translation by the given (tx, ty, tz), R is a rotation - and possibly scaling - transformation specified by the quaternion (qx, qy, qz, qw) and M is the given matrix mat

      When transforming a vector by the resulting matrix the transformation described by M will be applied first, then the scaling, then rotation and at last the translation.

      When used with a right-handed coordinate system, the produced rotation will rotate a vector counter-clockwise around the rotation axis, when viewing along the negative axis direction towards the origin. When used with a left-handed coordinate system, the rotation is clockwise.

      This method is equivalent to calling: translation(tx, ty, tz).rotate(quat).mul(mat)

      Parameters:
      tx - the number of units by which to translate the x-component
      ty - the number of units by which to translate the y-component
      tz - the number of units by which to translate the z-component
      qx - the x-coordinate of the vector part of the quaternion
      qy - the y-coordinate of the vector part of the quaternion
      qz - the z-coordinate of the vector part of the quaternion
      qw - the scalar part of the quaternion
      mat - the matrix to multiply with
      Returns:
      this
      See Also:
      translation(float, float, float), rotate(Quaternionfc), mul(Matrix4x3fc)
    • set3x3

      public Matrix4x3f set3x3(Matrix3fc mat)
      Set the left 3x3 submatrix of this Matrix4x3f to the given Matrix3fc and don't change the other elements.
      Parameters:
      mat - the 3x3 matrix
      Returns:
      this
    • transform

      public Vector4f transform(Vector4f v)
      Description copied from interface: Matrix4x3fc
      Transform/multiply the given vector by this matrix and store the result in that vector.
      Specified by:
      transform in interface Matrix4x3fc
      Parameters:
      v - the vector to transform and to hold the final result
      Returns:
      v
      See Also:
      Vector4f.mul(Matrix4x3fc)
    • transform

      public Vector4f transform(Vector4fc v, Vector4f dest)
      Description copied from interface: Matrix4x3fc
      Transform/multiply the given vector by this matrix and store the result in dest.
      Specified by:
      transform in interface Matrix4x3fc
      Parameters:
      v - the vector to transform
      dest - will contain the result
      Returns:
      dest
      See Also:
      Vector4f.mul(Matrix4x3fc, Vector4f)
    • transformPosition

      public Vector3f transformPosition(Vector3f v)
      Description copied from interface: Matrix4x3fc
      Transform/multiply the given 3D-vector, as if it was a 4D-vector with w=1, by this matrix and store the result in that vector.

      The given 3D-vector is treated as a 4D-vector with its w-component being 1.0, so it will represent a position/location in 3D-space rather than a direction.

      In order to store the result in another vector, use Matrix4x3fc.transformPosition(Vector3fc, Vector3f).

      Specified by:
      transformPosition in interface Matrix4x3fc
      Parameters:
      v - the vector to transform and to hold the final result
      Returns:
      v
      See Also:
      Matrix4x3fc.transformPosition(Vector3fc, Vector3f), Matrix4x3fc.transform(Vector4f)
    • transformPosition

      public Vector3f transformPosition(Vector3fc v, Vector3f dest)
      Description copied from interface: Matrix4x3fc
      Transform/multiply the given 3D-vector, as if it was a 4D-vector with w=1, by this matrix and store the result in dest.

      The given 3D-vector is treated as a 4D-vector with its w-component being 1.0, so it will represent a position/location in 3D-space rather than a direction.

      In order to store the result in the same vector, use Matrix4x3fc.transformPosition(Vector3f).

      Specified by:
      transformPosition in interface Matrix4x3fc
      Parameters:
      v - the vector to transform
      dest - will hold the result
      Returns:
      dest
      See Also:
      Matrix4x3fc.transformPosition(Vector3f), Matrix4x3fc.transform(Vector4fc, Vector4f)
    • transformDirection

      public Vector3f transformDirection(Vector3f v)
      Description copied from interface: Matrix4x3fc
      Transform/multiply the given 3D-vector, as if it was a 4D-vector with w=0, by this matrix and store the result in that vector.

      The given 3D-vector is treated as a 4D-vector with its w-component being 0.0, so it will represent a direction in 3D-space rather than a position. This method will therefore not take the translation part of the matrix into account.

      In order to store the result in another vector, use Matrix4x3fc.transformDirection(Vector3fc, Vector3f).

      Specified by:
      transformDirection in interface Matrix4x3fc
      Parameters:
      v - the vector to transform and to hold the final result
      Returns:
      v
      See Also:
      Matrix4x3fc.transformDirection(Vector3fc, Vector3f)
    • transformDirection

      public Vector3f transformDirection(Vector3fc v, Vector3f dest)
      Description copied from interface: Matrix4x3fc
      Transform/multiply the given 3D-vector, as if it was a 4D-vector with w=0, by this matrix and store the result in dest.

      The given 3D-vector is treated as a 4D-vector with its w-component being 0.0, so it will represent a direction in 3D-space rather than a position. This method will therefore not take the translation part of the matrix into account.

      In order to store the result in the same vector, use Matrix4x3fc.transformDirection(Vector3f).

      Specified by:
      transformDirection in interface Matrix4x3fc
      Parameters:
      v - the vector to transform and to hold the final result
      dest - will hold the result
      Returns:
      dest
      See Also:
      Matrix4x3fc.transformDirection(Vector3f)
    • scale

      public Matrix4x3f scale(Vector3fc xyz, Matrix4x3f dest)
      Description copied from interface: Matrix4x3fc
      Apply scaling to this matrix by scaling the base axes by the given xyz.x, xyz.y and xyz.z factors, respectively and store the result in dest.

      If M is this matrix and S the scaling matrix, then the new matrix will be M * S. So when transforming a vector v with the new matrix by using M * S * v , the scaling will be applied first!

      Specified by:
      scale in interface Matrix4x3fc
      Parameters:
      xyz - the factors of the x, y and z component, respectively
      dest - will hold the result
      Returns:
      dest
    • scale

      public Matrix4x3f scale(Vector3fc xyz)
      Apply scaling to this matrix by scaling the base axes by the given xyz.x, xyz.y and xyz.z factors, respectively.

      If M is this matrix and S the scaling matrix, then the new matrix will be M * S. So when transforming a vector v with the new matrix by using M * S * v, the scaling will be applied first!

      Parameters:
      xyz - the factors of the x, y and z component, respectively
      Returns:
      this
    • scale

      public Matrix4x3f scale(float xyz, Matrix4x3f dest)
      Description copied from interface: Matrix4x3fc
      Apply scaling to this matrix by uniformly scaling all base axes by the given xyz factor and store the result in dest.

      If M is this matrix and S the scaling matrix, then the new matrix will be M * S. So when transforming a vector v with the new matrix by using M * S * v, the scaling will be applied first!

      Individual scaling of all three axes can be applied using Matrix4x3fc.scale(float, float, float, Matrix4x3f).

      Specified by:
      scale in interface Matrix4x3fc
      Parameters:
      xyz - the factor for all components
      dest - will hold the result
      Returns:
      dest
      See Also:
      Matrix4x3fc.scale(float, float, float, Matrix4x3f)
    • scale

      public Matrix4x3f scale(float xyz)
      Apply scaling to this matrix by uniformly scaling all base axes by the given xyz factor.

      If M is this matrix and S the scaling matrix, then the new matrix will be M * S. So when transforming a vector v with the new matrix by using M * S * v, the scaling will be applied first!

      Individual scaling of all three axes can be applied using scale(float, float, float).

      Parameters:
      xyz - the factor for all components
      Returns:
      this
      See Also:
      scale(float, float, float)
    • scaleXY

      public Matrix4x3f scaleXY(float x, float y, Matrix4x3f dest)
      Description copied from interface: Matrix4x3fc
      Apply scaling to this matrix by by scaling the X axis by x and the Y axis by y and store the result in dest.

      If M is this matrix and S the scaling matrix, then the new matrix will be M * S. So when transforming a vector v with the new matrix by using M * S * v, the scaling will be applied first!

      Specified by:
      scaleXY in interface Matrix4x3fc
      Parameters:
      x - the factor of the x component
      y - the factor of the y component
      dest - will hold the result
      Returns:
      dest
    • scaleXY

      public Matrix4x3f scaleXY(float x, float y)
      Apply scaling to this matrix by scaling the X axis by x and the Y axis by y.

      If M is this matrix and S the scaling matrix, then the new matrix will be M * S. So when transforming a vector v with the new matrix by using M * S * v, the scaling will be applied first!

      Parameters:
      x - the factor of the x component
      y - the factor of the y component
      Returns:
      this
    • scale

      public Matrix4x3f scale(float x, float y, float z, Matrix4x3f dest)
      Description copied from interface: Matrix4x3fc
      Apply scaling to this matrix by scaling the base axes by the given x, y and z factors and store the result in dest.

      If M is this matrix and S the scaling matrix, then the new matrix will be M * S. So when transforming a vector v with the new matrix by using M * S * v , the scaling will be applied first!

      Specified by:
      scale in interface Matrix4x3fc
      Parameters:
      x - the factor of the x component
      y - the factor of the y component
      z - the factor of the z component
      dest - will hold the result
      Returns:
      dest
    • scale

      public Matrix4x3f scale(float x, float y, float z)
      Apply scaling to this matrix by scaling the base axes by the given x, y and z factors.

      If M is this matrix and S the scaling matrix, then the new matrix will be M * S. So when transforming a vector v with the new matrix by using M * S * v, the scaling will be applied first!

      Parameters:
      x - the factor of the x component
      y - the factor of the y component
      z - the factor of the z component
      Returns:
      this
    • scaleLocal

      public Matrix4x3f scaleLocal(float x, float y, float z, Matrix4x3f dest)
      Description copied from interface: Matrix4x3fc
      Pre-multiply scaling to this matrix by scaling the base axes by the given x, y and z factors and store the result in dest.

      If M is this matrix and S the scaling matrix, then the new matrix will be S * M. So when transforming a vector v with the new matrix by using S * M * v , the scaling will be applied last!

      Specified by:
      scaleLocal in interface Matrix4x3fc
      Parameters:
      x - the factor of the x component
      y - the factor of the y component
      z - the factor of the z component
      dest - will hold the result
      Returns:
      dest
    • scaleAround

      public Matrix4x3f scaleAround(float sx, float sy, float sz, float ox, float oy, float oz, Matrix4x3f dest)
      Description copied from interface: Matrix4x3fc
      Apply scaling to this matrix by scaling the base axes by the given sx, sy and sz factors while using (ox, oy, oz) as the scaling origin, and store the result in dest.

      If M is this matrix and S the scaling matrix, then the new matrix will be M * S. So when transforming a vector v with the new matrix by using M * S * v , the scaling will be applied first!

      This method is equivalent to calling: translate(ox, oy, oz, dest).scale(sx, sy, sz).translate(-ox, -oy, -oz)

      Specified by:
      scaleAround in interface Matrix4x3fc
      Parameters:
      sx - the scaling factor of the x component
      sy - the scaling factor of the y component
      sz - the scaling factor of the z component
      ox - the x coordinate of the scaling origin
      oy - the y coordinate of the scaling origin
      oz - the z coordinate of the scaling origin
      dest - will hold the result
      Returns:
      dest
    • scaleAround

      public Matrix4x3f scaleAround(float sx, float sy, float sz, float ox, float oy, float oz)
      Apply scaling to this matrix by scaling the base axes by the given sx, sy and sz factors while using (ox, oy, oz) as the scaling origin.

      If M is this matrix and S the scaling matrix, then the new matrix will be M * S. So when transforming a vector v with the new matrix by using M * S * v, the scaling will be applied first!

      This method is equivalent to calling: translate(ox, oy, oz).scale(sx, sy, sz).translate(-ox, -oy, -oz)

      Parameters:
      sx - the scaling factor of the x component
      sy - the scaling factor of the y component
      sz - the scaling factor of the z component
      ox - the x coordinate of the scaling origin
      oy - the y coordinate of the scaling origin
      oz - the z coordinate of the scaling origin
      Returns:
      this
    • scaleAround

      public Matrix4x3f scaleAround(float factor, float ox, float oy, float oz)
      Apply scaling to this matrix by scaling all three base axes by the given factor while using (ox, oy, oz) as the scaling origin.

      If M is this matrix and S the scaling matrix, then the new matrix will be M * S. So when transforming a vector v with the new matrix by using M * S * v, the scaling will be applied first!

      This method is equivalent to calling: translate(ox, oy, oz).scale(factor).translate(-ox, -oy, -oz)

      Parameters:
      factor - the scaling factor for all three axes
      ox - the x coordinate of the scaling origin
      oy - the y coordinate of the scaling origin
      oz - the z coordinate of the scaling origin
      Returns:
      this
    • scaleAround

      public Matrix4x3f scaleAround(float factor, float ox, float oy, float oz, Matrix4x3f dest)
      Description copied from interface: Matrix4x3fc
      Apply scaling to this matrix by scaling all three base axes by the given factor while using (ox, oy, oz) as the scaling origin, and store the result in dest.

      If M is this matrix and S the scaling matrix, then the new matrix will be M * S. So when transforming a vector v with the new matrix by using M * S * v, the scaling will be applied first!

      This method is equivalent to calling: translate(ox, oy, oz, dest).scale(factor).translate(-ox, -oy, -oz)

      Specified by:
      scaleAround in interface Matrix4x3fc
      Parameters:
      factor - the scaling factor for all three axes
      ox - the x coordinate of the scaling origin
      oy - the y coordinate of the scaling origin
      oz - the z coordinate of the scaling origin
      dest - will hold the result
      Returns:
      this
    • scaleLocal

      public Matrix4x3f scaleLocal(float x, float y, float z)
      Pre-multiply scaling to this matrix by scaling the base axes by the given x, y and z factors.

      If M is this matrix and S the scaling matrix, then the new matrix will be S * M. So when transforming a vector v with the new matrix by using S * M * v, the scaling will be applied last!

      Parameters:
      x - the factor of the x component
      y - the factor of the y component
      z - the factor of the z component
      Returns:
      this
    • rotateX

      public Matrix4x3f rotateX(float ang, Matrix4x3f dest)
      Description copied from interface: Matrix4x3fc
      Apply rotation about the X axis to this matrix by rotating the given amount of radians and store the result in dest.

      When used with a right-handed coordinate system, the produced rotation will rotate a vector counter-clockwise around the rotation axis, when viewing along the negative axis direction towards the origin. When used with a left-handed coordinate system, the rotation is clockwise.

      If M is this matrix and R the rotation matrix, then the new matrix will be M * R. So when transforming a vector v with the new matrix by using M * R * v, the rotation will be applied first!

      Reference: http://en.wikipedia.org

      Specified by:
      rotateX in interface Matrix4x3fc
      Parameters:
      ang - the angle in radians
      dest - will hold the result
      Returns:
      dest
    • rotateX

      public Matrix4x3f rotateX(float ang)
      Apply rotation about the X axis to this matrix by rotating the given amount of radians.

      When used with a right-handed coordinate system, the produced rotation will rotate a vector counter-clockwise around the rotation axis, when viewing along the negative axis direction towards the origin. When used with a left-handed coordinate system, the rotation is clockwise.

      If M is this matrix and R the rotation matrix, then the new matrix will be M * R. So when transforming a vector v with the new matrix by using M * R * v, the rotation will be applied first!

      Reference: http://en.wikipedia.org

      Parameters:
      ang - the angle in radians
      Returns:
      this
    • rotateY

      public Matrix4x3f rotateY(float ang, Matrix4x3f dest)
      Description copied from interface: Matrix4x3fc
      Apply rotation about the Y axis to this matrix by rotating the given amount of radians and store the result in dest.

      When used with a right-handed coordinate system, the produced rotation will rotate a vector counter-clockwise around the rotation axis, when viewing along the negative axis direction towards the origin. When used with a left-handed coordinate system, the rotation is clockwise.

      If M is this matrix and R the rotation matrix, then the new matrix will be M * R. So when transforming a vector v with the new matrix by using M * R * v, the rotation will be applied first!

      Reference: http://en.wikipedia.org

      Specified by:
      rotateY in interface Matrix4x3fc
      Parameters:
      ang - the angle in radians
      dest - will hold the result
      Returns:
      dest
    • rotateY

      public Matrix4x3f rotateY(float ang)
      Apply rotation about the Y axis to this matrix by rotating the given amount of radians.

      When used with a right-handed coordinate system, the produced rotation will rotate a vector counter-clockwise around the rotation axis, when viewing along the negative axis direction towards the origin. When used with a left-handed coordinate system, the rotation is clockwise.

      If M is this matrix and R the rotation matrix, then the new matrix will be M * R. So when transforming a vector v with the new matrix by using M * R * v, the rotation will be applied first!

      Reference: http://en.wikipedia.org

      Parameters:
      ang - the angle in radians
      Returns:
      this
    • rotateZ

      public Matrix4x3f rotateZ(float ang, Matrix4x3f dest)
      Description copied from interface: Matrix4x3fc
      Apply rotation about the Z axis to this matrix by rotating the given amount of radians and store the result in dest.

      When used with a right-handed coordinate system, the produced rotation will rotate a vector counter-clockwise around the rotation axis, when viewing along the negative axis direction towards the origin. When used with a left-handed coordinate system, the rotation is clockwise.

      If M is this matrix and R the rotation matrix, then the new matrix will be M * R. So when transforming a vector v with the new matrix by using M * R * v, the rotation will be applied first!

      Reference: http://en.wikipedia.org

      Specified by:
      rotateZ in interface Matrix4x3fc
      Parameters:
      ang - the angle in radians
      dest - will hold the result
      Returns:
      dest
    • rotateZ

      public Matrix4x3f rotateZ(float ang)
      Apply rotation about the Z axis to this matrix by rotating the given amount of radians.

      When used with a right-handed coordinate system, the produced rotation will rotate a vector counter-clockwise around the rotation axis, when viewing along the negative axis direction towards the origin. When used with a left-handed coordinate system, the rotation is clockwise.

      If M is this matrix and R the rotation matrix, then the new matrix will be M * R. So when transforming a vector v with the new matrix by using M * R * v, the rotation will be applied first!

      Reference: http://en.wikipedia.org

      Parameters:
      ang - the angle in radians
      Returns:
      this
    • rotateXYZ

      public Matrix4x3f rotateXYZ(Vector3f angles)
      Apply rotation of angles.x radians about the X axis, followed by a rotation of angles.y radians about the Y axis and followed by a rotation of angles.z radians about the Z axis.

      When used with a right-handed coordinate system, the produced rotation will rotate a vector counter-clockwise around the rotation axis, when viewing along the negative axis direction towards the origin. When used with a left-handed coordinate system, the rotation is clockwise.

      If M is this matrix and R the rotation matrix, then the new matrix will be M * R. So when transforming a vector v with the new matrix by using M * R * v, the rotation will be applied first!

      This method is equivalent to calling: rotateX(angles.x).rotateY(angles.y).rotateZ(angles.z)

      Parameters:
      angles - the Euler angles
      Returns:
      this
    • rotateXYZ

      public Matrix4x3f rotateXYZ(float angleX, float angleY, float angleZ)
      Apply rotation of angleX radians about the X axis, followed by a rotation of angleY radians about the Y axis and followed by a rotation of angleZ radians about the Z axis.

      When used with a right-handed coordinate system, the produced rotation will rotate a vector counter-clockwise around the rotation axis, when viewing along the negative axis direction towards the origin. When used with a left-handed coordinate system, the rotation is clockwise.

      If M is this matrix and R the rotation matrix, then the new matrix will be M * R. So when transforming a vector v with the new matrix by using M * R * v, the rotation will be applied first!

      This method is equivalent to calling: rotateX(angleX).rotateY(angleY).rotateZ(angleZ)

      Parameters:
      angleX - the angle to rotate about X
      angleY - the angle to rotate about Y
      angleZ - the angle to rotate about Z
      Returns:
      this
    • rotateXYZ

      public Matrix4x3f rotateXYZ(float angleX, float angleY, float angleZ, Matrix4x3f dest)
      Description copied from interface: Matrix4x3fc
      Apply rotation of angleX radians about the X axis, followed by a rotation of angleY radians about the Y axis and followed by a rotation of angleZ radians about the Z axis and store the result in dest.

      When used with a right-handed coordinate system, the produced rotation will rotate a vector counter-clockwise around the rotation axis, when viewing along the negative axis direction towards the origin. When used with a left-handed coordinate system, the rotation is clockwise.

      If M is this matrix and R the rotation matrix, then the new matrix will be M * R. So when transforming a vector v with the new matrix by using M * R * v, the rotation will be applied first!

      This method is equivalent to calling: rotateX(angleX, dest).rotateY(angleY).rotateZ(angleZ)

      Specified by:
      rotateXYZ in interface Matrix4x3fc
      Parameters:
      angleX - the angle to rotate about X
      angleY - the angle to rotate about Y
      angleZ - the angle to rotate about Z
      dest - will hold the result
      Returns:
      dest
    • rotateZYX

      public Matrix4x3f rotateZYX(Vector3f angles)
      Apply rotation of angles.z radians about the Z axis, followed by a rotation of angles.y radians about the Y axis and followed by a rotation of angles.x radians about the X axis.

      When used with a right-handed coordinate system, the produced rotation will rotate a vector counter-clockwise around the rotation axis, when viewing along the negative axis direction towards the origin. When used with a left-handed coordinate system, the rotation is clockwise.

      If M is this matrix and R the rotation matrix, then the new matrix will be M * R. So when transforming a vector v with the new matrix by using M * R * v, the rotation will be applied first!

      This method is equivalent to calling: rotateZ(angles.z).rotateY(angles.y).rotateX(angles.x)

      Parameters:
      angles - the Euler angles
      Returns:
      this
    • rotateZYX

      public Matrix4x3f rotateZYX(float angleZ, float angleY, float angleX)
      Apply rotation of angleZ radians about the Z axis, followed by a rotation of angleY radians about the Y axis and followed by a rotation of angleX radians about the X axis.

      When used with a right-handed coordinate system, the produced rotation will rotate a vector counter-clockwise around the rotation axis, when viewing along the negative axis direction towards the origin. When used with a left-handed coordinate system, the rotation is clockwise.

      If M is this matrix and R the rotation matrix, then the new matrix will be M * R. So when transforming a vector v with the new matrix by using M * R * v, the rotation will be applied first!

      This method is equivalent to calling: rotateZ(angleZ).rotateY(angleY).rotateX(angleX)

      Parameters:
      angleZ - the angle to rotate about Z
      angleY - the angle to rotate about Y
      angleX - the angle to rotate about X
      Returns:
      this
    • rotateZYX

      public Matrix4x3f rotateZYX(float angleZ, float angleY, float angleX, Matrix4x3f dest)
      Description copied from interface: Matrix4x3fc
      Apply rotation of angleZ radians about the Z axis, followed by a rotation of angleY radians about the Y axis and followed by a rotation of angleX radians about the X axis and store the result in dest.

      When used with a right-handed coordinate system, the produced rotation will rotate a vector counter-clockwise around the rotation axis, when viewing along the negative axis direction towards the origin. When used with a left-handed coordinate system, the rotation is clockwise.

      If M is this matrix and R the rotation matrix, then the new matrix will be M * R. So when transforming a vector v with the new matrix by using M * R * v, the rotation will be applied first!

      This method is equivalent to calling: rotateZ(angleZ, dest).rotateY(angleY).rotateX(angleX)

      Specified by:
      rotateZYX in interface Matrix4x3fc
      Parameters:
      angleZ - the angle to rotate about Z
      angleY - the angle to rotate about Y
      angleX - the angle to rotate about X
      dest - will hold the result
      Returns:
      dest
    • rotateYXZ

      public Matrix4x3f rotateYXZ(Vector3f angles)
      Apply rotation of angles.y radians about the Y axis, followed by a rotation of angles.x radians about the X axis and followed by a rotation of angles.z radians about the Z axis.

      When used with a right-handed coordinate system, the produced rotation will rotate a vector counter-clockwise around the rotation axis, when viewing along the negative axis direction towards the origin. When used with a left-handed coordinate system, the rotation is clockwise.

      If M is this matrix and R the rotation matrix, then the new matrix will be M * R. So when transforming a vector v with the new matrix by using M * R * v, the rotation will be applied first!

      This method is equivalent to calling: rotateY(angles.y).rotateX(angles.x).rotateZ(angles.z)

      Parameters:
      angles - the Euler angles
      Returns:
      this
    • rotateYXZ

      public Matrix4x3f rotateYXZ(float angleY, float angleX, float angleZ)
      Apply rotation of angleY radians about the Y axis, followed by a rotation of angleX radians about the X axis and followed by a rotation of angleZ radians about the Z axis.

      When used with a right-handed coordinate system, the produced rotation will rotate a vector counter-clockwise around the rotation axis, when viewing along the negative axis direction towards the origin. When used with a left-handed coordinate system, the rotation is clockwise.

      If M is this matrix and R the rotation matrix, then the new matrix will be M * R. So when transforming a vector v with the new matrix by using M * R * v, the rotation will be applied first!

      This method is equivalent to calling: rotateY(angleY).rotateX(angleX).rotateZ(angleZ)

      Parameters:
      angleY - the angle to rotate about Y
      angleX - the angle to rotate about X
      angleZ - the angle to rotate about Z
      Returns:
      this
    • rotateYXZ

      public Matrix4x3f rotateYXZ(float angleY, float angleX, float angleZ, Matrix4x3f dest)
      Description copied from interface: Matrix4x3fc
      Apply rotation of angleY radians about the Y axis, followed by a rotation of angleX radians about the X axis and followed by a rotation of angleZ radians about the Z axis and store the result in dest.

      When used with a right-handed coordinate system, the produced rotation will rotate a vector counter-clockwise around the rotation axis, when viewing along the negative axis direction towards the origin. When used with a left-handed coordinate system, the rotation is clockwise.

      If M is this matrix and R the rotation matrix, then the new matrix will be M * R. So when transforming a vector v with the new matrix by using M * R * v, the rotation will be applied first!

      This method is equivalent to calling: rotateY(angleY, dest).rotateX(angleX).rotateZ(angleZ)

      Specified by:
      rotateYXZ in interface Matrix4x3fc
      Parameters:
      angleY - the angle to rotate about Y
      angleX - the angle to rotate about X
      angleZ - the angle to rotate about Z
      dest - will hold the result
      Returns:
      dest
    • rotate

      public Matrix4x3f rotate(float ang, float x, float y, float z, Matrix4x3f dest)
      Apply rotation to this matrix by rotating the given amount of radians about the specified (x, y, z) axis and store the result in dest.

      The axis described by the three components needs to be a unit vector.

      When used with a right-handed coordinate system, the produced rotation will rotate a vector counter-clockwise around the rotation axis, when viewing along the negative axis direction towards the origin. When used with a left-handed coordinate system, the rotation is clockwise.

      If M is this matrix and R the rotation matrix, then the new matrix will be M * R. So when transforming a vector v with the new matrix by using M * R * v, the rotation will be applied first!

      In order to set the matrix to a rotation matrix without post-multiplying the rotation transformation, use rotation().

      Reference: http://en.wikipedia.org

      Specified by:
      rotate in interface Matrix4x3fc
      Parameters:
      ang - the angle in radians
      x - the x component of the axis
      y - the y component of the axis
      z - the z component of the axis
      dest - will hold the result
      Returns:
      dest
      See Also:
      rotation(float, float, float, float)
    • rotate

      public Matrix4x3f rotate(float ang, float x, float y, float z)
      Apply rotation to this matrix by rotating the given amount of radians about the specified (x, y, z) axis.

      The axis described by the three components needs to be a unit vector.

      When used with a right-handed coordinate system, the produced rotation will rotate a vector counter-clockwise around the rotation axis, when viewing along the negative axis direction towards the origin. When used with a left-handed coordinate system, the rotation is clockwise.

      If M is this matrix and R the rotation matrix, then the new matrix will be M * R. So when transforming a vector v with the new matrix by using M * R * v, the rotation will be applied first!

      In order to set the matrix to a rotation matrix without post-multiplying the rotation transformation, use rotation().

      Reference: http://en.wikipedia.org

      Parameters:
      ang - the angle in radians
      x - the x component of the axis
      y - the y component of the axis
      z - the z component of the axis
      Returns:
      this
      See Also:
      rotation(float, float, float, float)
    • rotateTranslation

      public Matrix4x3f rotateTranslation(float ang, float x, float y, float z, Matrix4x3f dest)
      Apply rotation to this matrix, which is assumed to only contain a translation, by rotating the given amount of radians about the specified (x, y, z) axis and store the result in dest.

      This method assumes this to only contain a translation.

      The axis described by the three components needs to be a unit vector.

      When used with a right-handed coordinate system, the produced rotation will rotate a vector counter-clockwise around the rotation axis, when viewing along the negative axis direction towards the origin. When used with a left-handed coordinate system, the rotation is clockwise.

      If M is this matrix and R the rotation matrix, then the new matrix will be M * R. So when transforming a vector v with the new matrix by using M * R * v, the rotation will be applied first!

      In order to set the matrix to a rotation matrix without post-multiplying the rotation transformation, use rotation().

      Reference: http://en.wikipedia.org

      Specified by:
      rotateTranslation in interface Matrix4x3fc
      Parameters:
      ang - the angle in radians
      x - the x component of the axis
      y - the y component of the axis
      z - the z component of the axis
      dest - will hold the result
      Returns:
      dest
      See Also:
      rotation(float, float, float, float)
    • rotateAround

      public Matrix4x3f rotateAround(Quaternionfc quat, float ox, float oy, float oz)
      Apply the rotation transformation of the given Quaternionfc to this matrix while using (ox, oy, oz) as the rotation origin.

      When used with a right-handed coordinate system, the produced rotation will rotate a vector counter-clockwise around the rotation axis, when viewing along the negative axis direction towards the origin. When used with a left-handed coordinate system, the rotation is clockwise.

      If M is this matrix and Q the rotation matrix obtained from the given quaternion, then the new matrix will be M * Q. So when transforming a vector v with the new matrix by using M * Q * v, the quaternion rotation will be applied first!

      This method is equivalent to calling: translate(ox, oy, oz).rotate(quat).translate(-ox, -oy, -oz)

      Reference: http://en.wikipedia.org

      Parameters:
      quat - the Quaternionfc
      ox - the x coordinate of the rotation origin
      oy - the y coordinate of the rotation origin
      oz - the z coordinate of the rotation origin
      Returns:
      this
    • rotateAround

      public Matrix4x3f rotateAround(Quaternionfc quat, float ox, float oy, float oz, Matrix4x3f dest)
      Description copied from interface: Matrix4x3fc
      Apply the rotation - and possibly scaling - transformation of the given Quaternionfc to this matrix while using (ox, oy, oz) as the rotation origin, and store the result in dest.

      When used with a right-handed coordinate system, the produced rotation will rotate a vector counter-clockwise around the rotation axis, when viewing along the negative axis direction towards the origin. When used with a left-handed coordinate system, the rotation is clockwise.

      If M is this matrix and Q the rotation matrix obtained from the given quaternion, then the new matrix will be M * Q. So when transforming a vector v with the new matrix by using M * Q * v, the quaternion rotation will be applied first!

      This method is equivalent to calling: translate(ox, oy, oz, dest).rotate(quat).translate(-ox, -oy, -oz)

      Reference: http://en.wikipedia.org

      Specified by:
      rotateAround in interface Matrix4x3fc
      Parameters:
      quat - the Quaternionfc
      ox - the x coordinate of the rotation origin
      oy - the y coordinate of the rotation origin
      oz - the z coordinate of the rotation origin
      dest - will hold the result
      Returns:
      dest
    • rotationAround

      public Matrix4x3f rotationAround(Quaternionfc quat, float ox, float oy, float oz)
      Set this matrix to a transformation composed of a rotation of the specified Quaternionfc while using (ox, oy, oz) as the rotation origin.

      When used with a right-handed coordinate system, the produced rotation will rotate a vector counter-clockwise around the rotation axis, when viewing along the negative axis direction towards the origin. When used with a left-handed coordinate system, the rotation is clockwise.

      This method is equivalent to calling: translation(ox, oy, oz).rotate(quat).translate(-ox, -oy, -oz)

      Reference: http://en.wikipedia.org

      Parameters:
      quat - the Quaternionfc
      ox - the x coordinate of the rotation origin
      oy - the y coordinate of the rotation origin
      oz - the z coordinate of the rotation origin
      Returns:
      this
    • rotateLocal

      public Matrix4x3f rotateLocal(float ang, float x, float y, float z, Matrix4x3f dest)
      Pre-multiply a rotation to this matrix by rotating the given amount of radians about the specified (x, y, z) axis and store the result in dest.

      The axis described by the three components needs to be a unit vector.

      When used with a right-handed coordinate system, the produced rotation will rotate a vector counter-clockwise around the rotation axis, when viewing along the negative axis direction towards the origin. When used with a left-handed coordinate system, the rotation is clockwise.

      If M is this matrix and R the rotation matrix, then the new matrix will be R * M. So when transforming a vector v with the new matrix by using R * M * v, the rotation will be applied last!

      In order to set the matrix to a rotation matrix without pre-multiplying the rotation transformation, use rotation().

      Reference: http://en.wikipedia.org

      Specified by:
      rotateLocal in interface Matrix4x3fc
      Parameters:
      ang - the angle in radians
      x - the x component of the axis
      y - the y component of the axis
      z - the z component of the axis
      dest - will hold the result
      Returns:
      dest
      See Also:
      rotation(float, float, float, float)
    • rotateLocal

      public Matrix4x3f rotateLocal(float ang, float x, float y, float z)
      Pre-multiply a rotation to this matrix by rotating the given amount of radians about the specified (x, y, z) axis.

      The axis described by the three components needs to be a unit vector.

      When used with a right-handed coordinate system, the produced rotation will rotate a vector counter-clockwise around the rotation axis, when viewing along the negative axis direction towards the origin. When used with a left-handed coordinate system, the rotation is clockwise.

      If M is this matrix and R the rotation matrix, then the new matrix will be R * M. So when transforming a vector v with the new matrix by using R * M * v, the rotation will be applied last!

      In order to set the matrix to a rotation matrix without pre-multiplying the rotation transformation, use rotation().

      Reference: http://en.wikipedia.org

      Parameters:
      ang - the angle in radians
      x - the x component of the axis
      y - the y component of the axis
      z - the z component of the axis
      Returns:
      this
      See Also:
      rotation(float, float, float, float)
    • rotateLocalX

      public Matrix4x3f rotateLocalX(float ang, Matrix4x3f dest)
      Pre-multiply a rotation around the X axis to this matrix by rotating the given amount of radians about the X axis and store the result in dest.

      When used with a right-handed coordinate system, the produced rotation will rotate a vector counter-clockwise around the rotation axis, when viewing along the negative axis direction towards the origin. When used with a left-handed coordinate system, the rotation is clockwise.

      If M is this matrix and R the rotation matrix, then the new matrix will be R * M. So when transforming a vector v with the new matrix by using R * M * v, the rotation will be applied last!

      In order to set the matrix to a rotation matrix without pre-multiplying the rotation transformation, use rotationX().

      Reference: http://en.wikipedia.org

      Parameters:
      ang - the angle in radians to rotate about the X axis
      dest - will hold the result
      Returns:
      dest
      See Also:
      rotationX(float)
    • rotateLocalX

      public Matrix4x3f rotateLocalX(float ang)
      Pre-multiply a rotation to this matrix by rotating the given amount of radians about the X axis.

      When used with a right-handed coordinate system, the produced rotation will rotate a vector counter-clockwise around the rotation axis, when viewing along the negative axis direction towards the origin. When used with a left-handed coordinate system, the rotation is clockwise.

      If M is this matrix and R the rotation matrix, then the new matrix will be R * M. So when transforming a vector v with the new matrix by using R * M * v, the rotation will be applied last!

      In order to set the matrix to a rotation matrix without pre-multiplying the rotation transformation, use rotationX().

      Reference: http://en.wikipedia.org

      Parameters:
      ang - the angle in radians to rotate about the X axis
      Returns:
      this
      See Also:
      rotationX(float)
    • rotateLocalY

      public Matrix4x3f rotateLocalY(float ang, Matrix4x3f dest)
      Pre-multiply a rotation around the Y axis to this matrix by rotating the given amount of radians about the Y axis and store the result in dest.

      When used with a right-handed coordinate system, the produced rotation will rotate a vector counter-clockwise around the rotation axis, when viewing along the negative axis direction towards the origin. When used with a left-handed coordinate system, the rotation is clockwise.

      If M is this matrix and R the rotation matrix, then the new matrix will be R * M. So when transforming a vector v with the new matrix by using R * M * v, the rotation will be applied last!

      In order to set the matrix to a rotation matrix without pre-multiplying the rotation transformation, use rotationY().

      Reference: http://en.wikipedia.org

      Parameters:
      ang - the angle in radians to rotate about the Y axis
      dest - will hold the result
      Returns:
      dest
      See Also:
      rotationY(float)
    • rotateLocalY

      public Matrix4x3f rotateLocalY(float ang)
      Pre-multiply a rotation to this matrix by rotating the given amount of radians about the Y axis.

      When used with a right-handed coordinate system, the produced rotation will rotate a vector counter-clockwise around the rotation axis, when viewing along the negative axis direction towards the origin. When used with a left-handed coordinate system, the rotation is clockwise.

      If M is this matrix and R the rotation matrix, then the new matrix will be R * M. So when transforming a vector v with the new matrix by using R * M * v, the rotation will be applied last!

      In order to set the matrix to a rotation matrix without pre-multiplying the rotation transformation, use rotationY().

      Reference: http://en.wikipedia.org

      Parameters:
      ang - the angle in radians to rotate about the Y axis
      Returns:
      this
      See Also:
      rotationY(float)
    • rotateLocalZ

      public Matrix4x3f rotateLocalZ(float ang, Matrix4x3f dest)
      Pre-multiply a rotation around the Z axis to this matrix by rotating the given amount of radians about the Z axis and store the result in dest.

      When used with a right-handed coordinate system, the produced rotation will rotate a vector counter-clockwise around the rotation axis, when viewing along the negative axis direction towards the origin. When used with a left-handed coordinate system, the rotation is clockwise.

      If M is this matrix and R the rotation matrix, then the new matrix will be R * M. So when transforming a vector v with the new matrix by using R * M * v, the rotation will be applied last!

      In order to set the matrix to a rotation matrix without pre-multiplying the rotation transformation, use rotationZ().

      Reference: http://en.wikipedia.org

      Parameters:
      ang - the angle in radians to rotate about the Z axis
      dest - will hold the result
      Returns:
      dest
      See Also:
      rotationZ(float)
    • rotateLocalZ

      public Matrix4x3f rotateLocalZ(float ang)
      Pre-multiply a rotation to this matrix by rotating the given amount of radians about the Z axis.

      When used with a right-handed coordinate system, the produced rotation will rotate a vector counter-clockwise around the rotation axis, when viewing along the negative axis direction towards the origin. When used with a left-handed coordinate system, the rotation is clockwise.

      If M is this matrix and R the rotation matrix, then the new matrix will be R * M. So when transforming a vector v with the new matrix by using R * M * v, the rotation will be applied last!

      In order to set the matrix to a rotation matrix without pre-multiplying the rotation transformation, use rotationY().

      Reference: http://en.wikipedia.org

      Parameters:
      ang - the angle in radians to rotate about the Z axis
      Returns:
      this
      See Also:
      rotationY(float)
    • translate

      public Matrix4x3f translate(Vector3fc offset)
      Apply a translation to this matrix by translating by the given number of units in x, y and z.

      If M is this matrix and T the translation matrix, then the new matrix will be M * T. So when transforming a vector v with the new matrix by using M * T * v, the translation will be applied first!

      In order to set the matrix to a translation transformation without post-multiplying it, use translation(Vector3fc).

      Parameters:
      offset - the number of units in x, y and z by which to translate
      Returns:
      this
      See Also:
      translation(Vector3fc)
    • translate

      public Matrix4x3f translate(Vector3fc offset, Matrix4x3f dest)
      Apply a translation to this matrix by translating by the given number of units in x, y and z and store the result in dest.

      If M is this matrix and T the translation matrix, then the new matrix will be M * T. So when transforming a vector v with the new matrix by using M * T * v, the translation will be applied first!

      In order to set the matrix to a translation transformation without post-multiplying it, use translation(Vector3fc).

      Specified by:
      translate in interface Matrix4x3fc
      Parameters:
      offset - the number of units in x, y and z by which to translate
      dest - will hold the result
      Returns:
      dest
      See Also:
      translation(Vector3fc)
    • translate

      public Matrix4x3f translate(float x, float y, float z, Matrix4x3f dest)
      Apply a translation to this matrix by translating by the given number of units in x, y and z and store the result in dest.

      If M is this matrix and T the translation matrix, then the new matrix will be M * T. So when transforming a vector v with the new matrix by using M * T * v, the translation will be applied first!

      In order to set the matrix to a translation transformation without post-multiplying it, use translation(float, float, float).

      Specified by:
      translate in interface Matrix4x3fc
      Parameters:
      x - the offset to translate in x
      y - the offset to translate in y
      z - the offset to translate in z
      dest - will hold the result
      Returns:
      dest
      See Also:
      translation(float, float, float)
    • translate

      public Matrix4x3f translate(float x, float y, float z)
      Apply a translation to this matrix by translating by the given number of units in x, y and z.

      If M is this matrix and T the translation matrix, then the new matrix will be M * T. So when transforming a vector v with the new matrix by using M * T * v, the translation will be applied first!

      In order to set the matrix to a translation transformation without post-multiplying it, use translation(float, float, float).

      Parameters:
      x - the offset to translate in x
      y - the offset to translate in y
      z - the offset to translate in z
      Returns:
      this
      See Also:
      translation(float, float, float)
    • translateLocal

      public Matrix4x3f translateLocal(Vector3fc offset)
      Pre-multiply a translation to this matrix by translating by the given number of units in x, y and z.

      If M is this matrix and T the translation matrix, then the new matrix will be T * M. So when transforming a vector v with the new matrix by using T * M * v, the translation will be applied last!

      In order to set the matrix to a translation transformation without pre-multiplying it, use translation(Vector3fc).

      Parameters:
      offset - the number of units in x, y and z by which to translate
      Returns:
      this
      See Also:
      translation(Vector3fc)
    • translateLocal

      public Matrix4x3f translateLocal(Vector3fc offset, Matrix4x3f dest)
      Pre-multiply a translation to this matrix by translating by the given number of units in x, y and z and store the result in dest.

      If M is this matrix and T the translation matrix, then the new matrix will be T * M. So when transforming a vector v with the new matrix by using T * M * v, the translation will be applied last!

      In order to set the matrix to a translation transformation without pre-multiplying it, use translation(Vector3fc).

      Specified by:
      translateLocal in interface Matrix4x3fc
      Parameters:
      offset - the number of units in x, y and z by which to translate
      dest - will hold the result
      Returns:
      dest
      See Also:
      translation(Vector3fc)
    • translateLocal

      public Matrix4x3f translateLocal(float x, float y, float z, Matrix4x3f dest)
      Pre-multiply a translation to this matrix by translating by the given number of units in x, y and z and store the result in dest.

      If M is this matrix and T the translation matrix, then the new matrix will be T * M. So when transforming a vector v with the new matrix by using T * M * v, the translation will be applied last!

      In order to set the matrix to a translation transformation without pre-multiplying it, use translation(float, float, float).

      Specified by:
      translateLocal in interface Matrix4x3fc
      Parameters:
      x - the offset to translate in x
      y - the offset to translate in y
      z - the offset to translate in z
      dest - will hold the result
      Returns:
      dest
      See Also:
      translation(float, float, float)
    • translateLocal

      public Matrix4x3f translateLocal(float x, float y, float z)
      Pre-multiply a translation to this matrix by translating by the given number of units in x, y and z.

      If M is this matrix and T the translation matrix, then the new matrix will be T * M. So when transforming a vector v with the new matrix by using T * M * v, the translation will be applied last!

      In order to set the matrix to a translation transformation without pre-multiplying it, use translation(float, float, float).

      Parameters:
      x - the offset to translate in x
      y - the offset to translate in y
      z - the offset to translate in z
      Returns:
      this
      See Also:
      translation(float, float, float)
    • writeExternal

      public void writeExternal(ObjectOutput out) throws IOException
      Specified by:
      writeExternal in interface Externalizable
      Throws:
      IOException
    • readExternal

      public void readExternal(ObjectInput in) throws IOException
      Specified by:
      readExternal in interface Externalizable
      Throws:
      IOException
    • ortho

      public Matrix4x3f ortho(float left, float right, float bottom, float top, float zNear, float zFar, boolean zZeroToOne, Matrix4x3f dest)
      Apply an orthographic projection transformation for a right-handed coordinate system using the given NDC z range to this matrix and store the result in dest.

      If M is this matrix and O the orthographic projection matrix, then the new matrix will be M * O. So when transforming a vector v with the new matrix by using M * O * v, the orthographic projection transformation will be applied first!

      In order to set the matrix to an orthographic projection without post-multiplying it, use setOrtho().

      Reference: http://www.songho.ca

      Specified by:
      ortho in interface Matrix4x3fc
      Parameters:
      left - the distance from the center to the left frustum edge
      right - the distance from the center to the right frustum edge
      bottom - the distance from the center to the bottom frustum edge
      top - the distance from the center to the top frustum edge
      zNear - near clipping plane distance
      zFar - far clipping plane distance
      zZeroToOne - whether to use Vulkan's and Direct3D's NDC z range of [0..+1] when true or whether to use OpenGL's NDC z range of [-1..+1] when false
      dest - will hold the result
      Returns:
      dest
      See Also:
      setOrtho(float, float, float, float, float, float, boolean)
    • ortho

      public Matrix4x3f ortho(float left, float right, float bottom, float top, float zNear, float zFar, Matrix4x3f dest)
      Apply an orthographic projection transformation for a right-handed coordinate system using OpenGL's NDC z range of [-1..+1] to this matrix and store the result in dest.

      If M is this matrix and O the orthographic projection matrix, then the new matrix will be M * O. So when transforming a vector v with the new matrix by using M * O * v, the orthographic projection transformation will be applied first!

      In order to set the matrix to an orthographic projection without post-multiplying it, use setOrtho().

      Reference: http://www.songho.ca

      Specified by:
      ortho in interface Matrix4x3fc
      Parameters:
      left - the distance from the center to the left frustum edge
      right - the distance from the center to the right frustum edge
      bottom - the distance from the center to the bottom frustum edge
      top - the distance from the center to the top frustum edge
      zNear - near clipping plane distance
      zFar - far clipping plane distance
      dest - will hold the result
      Returns:
      dest
      See Also:
      setOrtho(float, float, float, float, float, float)
    • ortho

      public Matrix4x3f ortho(float left, float right, float bottom, float top, float zNear, float zFar, boolean zZeroToOne)
      Apply an orthographic projection transformation for a right-handed coordinate system using the given NDC z range to this matrix.

      If M is this matrix and O the orthographic projection matrix, then the new matrix will be M * O. So when transforming a vector v with the new matrix by using M * O * v, the orthographic projection transformation will be applied first!

      In order to set the matrix to an orthographic projection without post-multiplying it, use setOrtho().

      Reference: http://www.songho.ca

      Parameters:
      left - the distance from the center to the left frustum edge
      right - the distance from the center to the right frustum edge
      bottom - the distance from the center to the bottom frustum edge
      top - the distance from the center to the top frustum edge
      zNear - near clipping plane distance
      zFar - far clipping plane distance
      zZeroToOne - whether to use Vulkan's and Direct3D's NDC z range of [0..+1] when true or whether to use OpenGL's NDC z range of [-1..+1] when false
      Returns:
      this
      See Also:
      setOrtho(float, float, float, float, float, float, boolean)
    • ortho

      public Matrix4x3f ortho(float left, float right, float bottom, float top, float zNear, float zFar)
      Apply an orthographic projection transformation for a right-handed coordinate system using OpenGL's NDC z range of [-1..+1] to this matrix.

      If M is this matrix and O the orthographic projection matrix, then the new matrix will be M * O. So when transforming a vector v with the new matrix by using M * O * v, the orthographic projection transformation will be applied first!

      In order to set the matrix to an orthographic projection without post-multiplying it, use setOrtho().

      Reference: http://www.songho.ca

      Parameters:
      left - the distance from the center to the left frustum edge
      right - the distance from the center to the right frustum edge
      bottom - the distance from the center to the bottom frustum edge
      top - the distance from the center to the top frustum edge
      zNear - near clipping plane distance
      zFar - far clipping plane distance
      Returns:
      this
      See Also:
      setOrtho(float, float, float, float, float, float)
    • orthoLH

      public Matrix4x3f orthoLH(float left, float right, float bottom, float top, float zNear, float zFar, boolean zZeroToOne, Matrix4x3f dest)
      Apply an orthographic projection transformation for a left-handed coordiante system using the given NDC z range to this matrix and store the result in dest.

      If M is this matrix and O the orthographic projection matrix, then the new matrix will be M * O. So when transforming a vector v with the new matrix by using M * O * v, the orthographic projection transformation will be applied first!

      In order to set the matrix to an orthographic projection without post-multiplying it, use setOrthoLH().

      Reference: http://www.songho.ca

      Specified by:
      orthoLH in interface Matrix4x3fc
      Parameters:
      left - the distance from the center to the left frustum edge
      right - the distance from the center to the right frustum edge
      bottom - the distance from the center to the bottom frustum edge
      top - the distance from the center to the top frustum edge
      zNear - near clipping plane distance
      zFar - far clipping plane distance
      zZeroToOne - whether to use Vulkan's and Direct3D's NDC z range of [0..+1] when true or whether to use OpenGL's NDC z range of [-1..+1] when false
      dest - will hold the result
      Returns:
      dest
      See Also:
      setOrthoLH(float, float, float, float, float, float, boolean)
    • orthoLH

      public Matrix4x3f orthoLH(float left, float right, float bottom, float top, float zNear, float zFar, Matrix4x3f dest)
      Apply an orthographic projection transformation for a left-handed coordiante system using OpenGL's NDC z range of [-1..+1] to this matrix and store the result in dest.

      If M is this matrix and O the orthographic projection matrix, then the new matrix will be M * O. So when transforming a vector v with the new matrix by using M * O * v, the orthographic projection transformation will be applied first!

      In order to set the matrix to an orthographic projection without post-multiplying it, use setOrthoLH().

      Reference: http://www.songho.ca

      Specified by:
      orthoLH in interface Matrix4x3fc
      Parameters:
      left - the distance from the center to the left frustum edge
      right - the distance from the center to the right frustum edge
      bottom - the distance from the center to the bottom frustum edge
      top - the distance from the center to the top frustum edge
      zNear - near clipping plane distance
      zFar - far clipping plane distance
      dest - will hold the result
      Returns:
      dest
      See Also:
      setOrthoLH(float, float, float, float, float, float)
    • orthoLH

      public Matrix4x3f orthoLH(float left, float right, float bottom, float top, float zNear, float zFar, boolean zZeroToOne)
      Apply an orthographic projection transformation for a left-handed coordiante system using the given NDC z range to this matrix.

      If M is this matrix and O the orthographic projection matrix, then the new matrix will be M * O. So when transforming a vector v with the new matrix by using M * O * v, the orthographic projection transformation will be applied first!

      In order to set the matrix to an orthographic projection without post-multiplying it, use setOrthoLH().

      Reference: http://www.songho.ca

      Parameters:
      left - the distance from the center to the left frustum edge
      right - the distance from the center to the right frustum edge
      bottom - the distance from the center to the bottom frustum edge
      top - the distance from the center to the top frustum edge
      zNear - near clipping plane distance
      zFar - far clipping plane distance
      zZeroToOne - whether to use Vulkan's and Direct3D's NDC z range of [0..+1] when true or whether to use OpenGL's NDC z range of [-1..+1] when false
      Returns:
      this
      See Also:
      setOrthoLH(float, float, float, float, float, float, boolean)
    • orthoLH

      public Matrix4x3f orthoLH(float left, float right, float bottom, float top, float zNear, float zFar)
      Apply an orthographic projection transformation for a left-handed coordiante system using OpenGL's NDC z range of [-1..+1] to this matrix.

      If M is this matrix and O the orthographic projection matrix, then the new matrix will be M * O. So when transforming a vector v with the new matrix by using M * O * v, the orthographic projection transformation will be applied first!

      In order to set the matrix to an orthographic projection without post-multiplying it, use setOrthoLH().

      Reference: http://www.songho.ca

      Parameters:
      left - the distance from the center to the left frustum edge
      right - the distance from the center to the right frustum edge
      bottom - the distance from the center to the bottom frustum edge
      top - the distance from the center to the top frustum edge
      zNear - near clipping plane distance
      zFar - far clipping plane distance
      Returns:
      this
      See Also:
      setOrthoLH(float, float, float, float, float, float)
    • setOrtho

      public Matrix4x3f setOrtho(float left, float right, float bottom, float top, float zNear, float zFar, boolean zZeroToOne)
      Set this matrix to be an orthographic projection transformation for a right-handed coordinate system using the given NDC z range.

      In order to apply the orthographic projection to an already existing transformation, use ortho().

      Reference: http://www.songho.ca

      Parameters:
      left - the distance from the center to the left frustum edge
      right - the distance from the center to the right frustum edge
      bottom - the distance from the center to the bottom frustum edge
      top - the distance from the center to the top frustum edge
      zNear - near clipping plane distance
      zFar - far clipping plane distance
      zZeroToOne - whether to use Vulkan's and Direct3D's NDC z range of [0..+1] when true or whether to use OpenGL's NDC z range of [-1..+1] when false
      Returns:
      this
      See Also:
      ortho(float, float, float, float, float, float, boolean)
    • setOrtho

      public Matrix4x3f setOrtho(float left, float right, float bottom, float top, float zNear, float zFar)
      Set this matrix to be an orthographic projection transformation for a right-handed coordinate system using OpenGL's NDC z range of [-1..+1].

      In order to apply the orthographic projection to an already existing transformation, use ortho().

      Reference: http://www.songho.ca

      Parameters:
      left - the distance from the center to the left frustum edge
      right - the distance from the center to the right frustum edge
      bottom - the distance from the center to the bottom frustum edge
      top - the distance from the center to the top frustum edge
      zNear - near clipping plane distance
      zFar - far clipping plane distance
      Returns:
      this
      See Also:
      ortho(float, float, float, float, float, float)
    • setOrthoLH

      public Matrix4x3f setOrthoLH(float left, float right, float bottom, float top, float zNear, float zFar, boolean zZeroToOne)
      Set this matrix to be an orthographic projection transformation for a left-handed coordinate system using the given NDC z range.

      In order to apply the orthographic projection to an already existing transformation, use orthoLH().

      Reference: http://www.songho.ca

      Parameters:
      left - the distance from the center to the left frustum edge
      right - the distance from the center to the right frustum edge
      bottom - the distance from the center to the bottom frustum edge
      top - the distance from the center to the top frustum edge
      zNear - near clipping plane distance
      zFar - far clipping plane distance
      zZeroToOne - whether to use Vulkan's and Direct3D's NDC z range of [0..+1] when true or whether to use OpenGL's NDC z range of [-1..+1] when false
      Returns:
      this
      See Also:
      orthoLH(float, float, float, float, float, float, boolean)
    • setOrthoLH

      public Matrix4x3f setOrthoLH(float left, float right, float bottom, float top, float zNear, float zFar)
      Set this matrix to be an orthographic projection transformation for a left-handed coordinate system using OpenGL's NDC z range of [-1..+1].

      In order to apply the orthographic projection to an already existing transformation, use orthoLH().

      Reference: http://www.songho.ca

      Parameters:
      left - the distance from the center to the left frustum edge
      right - the distance from the center to the right frustum edge
      bottom - the distance from the center to the bottom frustum edge
      top - the distance from the center to the top frustum edge
      zNear - near clipping plane distance
      zFar - far clipping plane distance
      Returns:
      this
      See Also:
      orthoLH(float, float, float, float, float, float)
    • orthoSymmetric

      public Matrix4x3f orthoSymmetric(float width, float height, float zNear, float zFar, boolean zZeroToOne, Matrix4x3f dest)
      Apply a symmetric orthographic projection transformation for a right-handed coordinate system using the given NDC z range to this matrix and store the result in dest.

      This method is equivalent to calling ortho() with left=-width/2, right=+width/2, bottom=-height/2 and top=+height/2.

      If M is this matrix and O the orthographic projection matrix, then the new matrix will be M * O. So when transforming a vector v with the new matrix by using M * O * v, the orthographic projection transformation will be applied first!

      In order to set the matrix to a symmetric orthographic projection without post-multiplying it, use setOrthoSymmetric().

      Reference: http://www.songho.ca

      Specified by:
      orthoSymmetric in interface Matrix4x3fc
      Parameters:
      width - the distance between the right and left frustum edges
      height - the distance between the top and bottom frustum edges
      zNear - near clipping plane distance
      zFar - far clipping plane distance
      dest - will hold the result
      zZeroToOne - whether to use Vulkan's and Direct3D's NDC z range of [0..+1] when true or whether to use OpenGL's NDC z range of [-1..+1] when false
      Returns:
      dest
      See Also:
      setOrthoSymmetric(float, float, float, float, boolean)
    • orthoSymmetric

      public Matrix4x3f orthoSymmetric(float width, float height, float zNear, float zFar, Matrix4x3f dest)
      Apply a symmetric orthographic projection transformation for a right-handed coordinate system using OpenGL's NDC z range of [-1..+1] to this matrix and store the result in dest.

      This method is equivalent to calling ortho() with left=-width/2, right=+width/2, bottom=-height/2 and top=+height/2.

      If M is this matrix and O the orthographic projection matrix, then the new matrix will be M * O. So when transforming a vector v with the new matrix by using M * O * v, the orthographic projection transformation will be applied first!

      In order to set the matrix to a symmetric orthographic projection without post-multiplying it, use setOrthoSymmetric().

      Reference: http://www.songho.ca

      Specified by:
      orthoSymmetric in interface Matrix4x3fc
      Parameters:
      width - the distance between the right and left frustum edges
      height - the distance between the top and bottom frustum edges
      zNear - near clipping plane distance
      zFar - far clipping plane distance
      dest - will hold the result
      Returns:
      dest
      See Also:
      setOrthoSymmetric(float, float, float, float)
    • orthoSymmetric

      public Matrix4x3f orthoSymmetric(float width, float height, float zNear, float zFar, boolean zZeroToOne)
      Apply a symmetric orthographic projection transformation for a right-handed coordinate system using the given NDC z range to this matrix.

      This method is equivalent to calling ortho() with left=-width/2, right=+width/2, bottom=-height/2 and top=+height/2.

      If M is this matrix and O the orthographic projection matrix, then the new matrix will be M * O. So when transforming a vector v with the new matrix by using M * O * v, the orthographic projection transformation will be applied first!

      In order to set the matrix to a symmetric orthographic projection without post-multiplying it, use setOrthoSymmetric().

      Reference: http://www.songho.ca

      Parameters:
      width - the distance between the right and left frustum edges
      height - the distance between the top and bottom frustum edges
      zNear - near clipping plane distance
      zFar - far clipping plane distance
      zZeroToOne - whether to use Vulkan's and Direct3D's NDC z range of [0..+1] when true or whether to use OpenGL's NDC z range of [-1..+1] when false
      Returns:
      this
      See Also:
      setOrthoSymmetric(float, float, float, float, boolean)
    • orthoSymmetric

      public Matrix4x3f orthoSymmetric(float width, float height, float zNear, float zFar)
      Apply a symmetric orthographic projection transformation for a right-handed coordinate system using OpenGL's NDC z range of [-1..+1] to this matrix.

      This method is equivalent to calling ortho() with left=-width/2, right=+width/2, bottom=-height/2 and top=+height/2.

      If M is this matrix and O the orthographic projection matrix, then the new matrix will be M * O. So when transforming a vector v with the new matrix by using M * O * v, the orthographic projection transformation will be applied first!

      In order to set the matrix to a symmetric orthographic projection without post-multiplying it, use setOrthoSymmetric().

      Reference: http://www.songho.ca

      Parameters:
      width - the distance between the right and left frustum edges
      height - the distance between the top and bottom frustum edges
      zNear - near clipping plane distance
      zFar - far clipping plane distance
      Returns:
      this
      See Also:
      setOrthoSymmetric(float, float, float, float)
    • orthoSymmetricLH

      public Matrix4x3f orthoSymmetricLH(float width, float height, float zNear, float zFar, boolean zZeroToOne, Matrix4x3f dest)
      Apply a symmetric orthographic projection transformation for a left-handed coordinate system using the given NDC z range to this matrix and store the result in dest.

      This method is equivalent to calling orthoLH() with left=-width/2, right=+width/2, bottom=-height/2 and top=+height/2.

      If M is this matrix and O the orthographic projection matrix, then the new matrix will be M * O. So when transforming a vector v with the new matrix by using M * O * v, the orthographic projection transformation will be applied first!

      In order to set the matrix to a symmetric orthographic projection without post-multiplying it, use setOrthoSymmetricLH().

      Reference: http://www.songho.ca

      Specified by:
      orthoSymmetricLH in interface Matrix4x3fc
      Parameters:
      width - the distance between the right and left frustum edges
      height - the distance between the top and bottom frustum edges
      zNear - near clipping plane distance
      zFar - far clipping plane distance
      dest - will hold the result
      zZeroToOne - whether to use Vulkan's and Direct3D's NDC z range of [0..+1] when true or whether to use OpenGL's NDC z range of [-1..+1] when false
      Returns:
      dest
      See Also:
      setOrthoSymmetricLH(float, float, float, float, boolean)
    • orthoSymmetricLH

      public Matrix4x3f orthoSymmetricLH(float width, float height, float zNear, float zFar, Matrix4x3f dest)
      Apply a symmetric orthographic projection transformation for a left-handed coordinate system using OpenGL's NDC z range of [-1..+1] to this matrix and store the result in dest.

      This method is equivalent to calling orthoLH() with left=-width/2, right=+width/2, bottom=-height/2 and top=+height/2.

      If M is this matrix and O the orthographic projection matrix, then the new matrix will be M * O. So when transforming a vector v with the new matrix by using M * O * v, the orthographic projection transformation will be applied first!

      In order to set the matrix to a symmetric orthographic projection without post-multiplying it, use setOrthoSymmetricLH().

      Reference: http://www.songho.ca

      Specified by:
      orthoSymmetricLH in interface Matrix4x3fc
      Parameters:
      width - the distance between the right and left frustum edges
      height - the distance between the top and bottom frustum edges
      zNear - near clipping plane distance
      zFar - far clipping plane distance
      dest - will hold the result
      Returns:
      dest
      See Also:
      setOrthoSymmetricLH(float, float, float, float)
    • orthoSymmetricLH

      public Matrix4x3f orthoSymmetricLH(float width, float height, float zNear, float zFar, boolean zZeroToOne)
      Apply a symmetric orthographic projection transformation for a left-handed coordinate system using the given NDC z range to this matrix.

      This method is equivalent to calling orthoLH() with left=-width/2, right=+width/2, bottom=-height/2 and top=+height/2.

      If M is this matrix and O the orthographic projection matrix, then the new matrix will be M * O. So when transforming a vector v with the new matrix by using M * O * v, the orthographic projection transformation will be applied first!

      In order to set the matrix to a symmetric orthographic projection without post-multiplying it, use setOrthoSymmetricLH().

      Reference: http://www.songho.ca

      Parameters:
      width - the distance between the right and left frustum edges
      height - the distance between the top and bottom frustum edges
      zNear - near clipping plane distance
      zFar - far clipping plane distance
      zZeroToOne - whether to use Vulkan's and Direct3D's NDC z range of [0..+1] when true or whether to use OpenGL's NDC z range of [-1..+1] when false
      Returns:
      this
      See Also:
      setOrthoSymmetricLH(float, float, float, float, boolean)
    • orthoSymmetricLH

      public Matrix4x3f orthoSymmetricLH(float width, float height, float zNear, float zFar)
      Apply a symmetric orthographic projection transformation for a left-handed coordinate system using OpenGL's NDC z range of [-1..+1] to this matrix.

      This method is equivalent to calling orthoLH() with left=-width/2, right=+width/2, bottom=-height/2 and top=+height/2.

      If M is this matrix and O the orthographic projection matrix, then the new matrix will be M * O. So when transforming a vector v with the new matrix by using M * O * v, the orthographic projection transformation will be applied first!

      In order to set the matrix to a symmetric orthographic projection without post-multiplying it, use setOrthoSymmetricLH().

      Reference: http://www.songho.ca

      Parameters:
      width - the distance between the right and left frustum edges
      height - the distance between the top and bottom frustum edges
      zNear - near clipping plane distance
      zFar - far clipping plane distance
      Returns:
      this
      See Also:
      setOrthoSymmetricLH(float, float, float, float)
    • setOrthoSymmetric

      public Matrix4x3f setOrthoSymmetric(float width, float height, float zNear, float zFar, boolean zZeroToOne)
      Set this matrix to be a symmetric orthographic projection transformation for a right-handed coordinate system using the given NDC z range.

      This method is equivalent to calling setOrtho() with left=-width/2, right=+width/2, bottom=-height/2 and top=+height/2.

      In order to apply the symmetric orthographic projection to an already existing transformation, use orthoSymmetric().

      Reference: http://www.songho.ca

      Parameters:
      width - the distance between the right and left frustum edges
      height - the distance between the top and bottom frustum edges
      zNear - near clipping plane distance
      zFar - far clipping plane distance
      zZeroToOne - whether to use Vulkan's and Direct3D's NDC z range of [0..+1] when true or whether to use OpenGL's NDC z range of [-1..+1] when false
      Returns:
      this
      See Also:
      orthoSymmetric(float, float, float, float, boolean)
    • setOrthoSymmetric

      public Matrix4x3f setOrthoSymmetric(float width, float height, float zNear, float zFar)
      Set this matrix to be a symmetric orthographic projection transformation for a right-handed coordinate system using OpenGL's NDC z range of [-1..+1].

      This method is equivalent to calling setOrtho() with left=-width/2, right=+width/2, bottom=-height/2 and top=+height/2.

      In order to apply the symmetric orthographic projection to an already existing transformation, use orthoSymmetric().

      Reference: http://www.songho.ca

      Parameters:
      width - the distance between the right and left frustum edges
      height - the distance between the top and bottom frustum edges
      zNear - near clipping plane distance
      zFar - far clipping plane distance
      Returns:
      this
      See Also:
      orthoSymmetric(float, float, float, float)
    • setOrthoSymmetricLH

      public Matrix4x3f setOrthoSymmetricLH(float width, float height, float zNear, float zFar, boolean zZeroToOne)
      Set this matrix to be a symmetric orthographic projection transformation for a left-handed coordinate system using the given NDC z range.

      This method is equivalent to calling setOrtho() with left=-width/2, right=+width/2, bottom=-height/2 and top=+height/2.

      In order to apply the symmetric orthographic projection to an already existing transformation, use orthoSymmetricLH().

      Reference: http://www.songho.ca

      Parameters:
      width - the distance between the right and left frustum edges
      height - the distance between the top and bottom frustum edges
      zNear - near clipping plane distance
      zFar - far clipping plane distance
      zZeroToOne - whether to use Vulkan's and Direct3D's NDC z range of [0..+1] when true or whether to use OpenGL's NDC z range of [-1..+1] when false
      Returns:
      this
      See Also:
      orthoSymmetricLH(float, float, float, float, boolean)
    • setOrthoSymmetricLH

      public Matrix4x3f setOrthoSymmetricLH(float width, float height, float zNear, float zFar)
      Set this matrix to be a symmetric orthographic projection transformation for a left-handed coordinate system using OpenGL's NDC z range of [-1..+1].

      This method is equivalent to calling setOrthoLH() with left=-width/2, right=+width/2, bottom=-height/2 and top=+height/2.

      In order to apply the symmetric orthographic projection to an already existing transformation, use orthoSymmetricLH().

      Reference: http://www.songho.ca

      Parameters:
      width - the distance between the right and left frustum edges
      height - the distance between the top and bottom frustum edges
      zNear - near clipping plane distance
      zFar - far clipping plane distance
      Returns:
      this
      See Also:
      orthoSymmetricLH(float, float, float, float)
    • ortho2D

      public Matrix4x3f ortho2D(float left, float right, float bottom, float top, Matrix4x3f dest)
      Apply an orthographic projection transformation for a right-handed coordinate system to this matrix and store the result in dest.

      This method is equivalent to calling ortho() with zNear=-1 and zFar=+1.

      If M is this matrix and O the orthographic projection matrix, then the new matrix will be M * O. So when transforming a vector v with the new matrix by using M * O * v, the orthographic projection transformation will be applied first!

      In order to set the matrix to an orthographic projection without post-multiplying it, use setOrtho().

      Reference: http://www.songho.ca

      Specified by:
      ortho2D in interface Matrix4x3fc
      Parameters:
      left - the distance from the center to the left frustum edge
      right - the distance from the center to the right frustum edge
      bottom - the distance from the center to the bottom frustum edge
      top - the distance from the center to the top frustum edge
      dest - will hold the result
      Returns:
      dest
      See Also:
      ortho(float, float, float, float, float, float, Matrix4x3f), setOrtho2D(float, float, float, float)
    • ortho2D

      public Matrix4x3f ortho2D(float left, float right, float bottom, float top)
      Apply an orthographic projection transformation for a right-handed coordinate system to this matrix.

      This method is equivalent to calling ortho() with zNear=-1 and zFar=+1.

      If M is this matrix and O the orthographic projection matrix, then the new matrix will be M * O. So when transforming a vector v with the new matrix by using M * O * v, the orthographic projection transformation will be applied first!

      In order to set the matrix to an orthographic projection without post-multiplying it, use setOrtho2D().

      Reference: http://www.songho.ca

      Parameters:
      left - the distance from the center to the left frustum edge
      right - the distance from the center to the right frustum edge
      bottom - the distance from the center to the bottom frustum edge
      top - the distance from the center to the top frustum edge
      Returns:
      this
      See Also:
      ortho(float, float, float, float, float, float), setOrtho2D(float, float, float, float)
    • ortho2DLH

      public Matrix4x3f ortho2DLH(float left, float right, float bottom, float top, Matrix4x3f dest)
      Apply an orthographic projection transformation for a left-handed coordinate system to this matrix and store the result in dest.

      This method is equivalent to calling orthoLH() with zNear=-1 and zFar=+1.

      If M is this matrix and O the orthographic projection matrix, then the new matrix will be M * O. So when transforming a vector v with the new matrix by using M * O * v, the orthographic projection transformation will be applied first!

      In order to set the matrix to an orthographic projection without post-multiplying it, use setOrthoLH().

      Reference: http://www.songho.ca

      Specified by:
      ortho2DLH in interface Matrix4x3fc
      Parameters:
      left - the distance from the center to the left frustum edge
      right - the distance from the center to the right frustum edge
      bottom - the distance from the center to the bottom frustum edge
      top - the distance from the center to the top frustum edge
      dest - will hold the result
      Returns:
      dest
      See Also:
      orthoLH(float, float, float, float, float, float, Matrix4x3f), setOrtho2DLH(float, float, float, float)
    • ortho2DLH

      public Matrix4x3f ortho2DLH(float left, float right, float bottom, float top)
      Apply an orthographic projection transformation for a left-handed coordinate system to this matrix.

      This method is equivalent to calling orthoLH() with zNear=-1 and zFar=+1.

      If M is this matrix and O the orthographic projection matrix, then the new matrix will be M * O. So when transforming a vector v with the new matrix by using M * O * v, the orthographic projection transformation will be applied first!

      In order to set the matrix to an orthographic projection without post-multiplying it, use setOrtho2DLH().

      Reference: http://www.songho.ca

      Parameters:
      left - the distance from the center to the left frustum edge
      right - the distance from the center to the right frustum edge
      bottom - the distance from the center to the bottom frustum edge
      top - the distance from the center to the top frustum edge
      Returns:
      this
      See Also:
      orthoLH(float, float, float, float, float, float), setOrtho2DLH(float, float, float, float)
    • setOrtho2D

      public Matrix4x3f setOrtho2D(float left, float right, float bottom, float top)
      Set this matrix to be an orthographic projection transformation for a right-handed coordinate system.

      This method is equivalent to calling setOrtho() with zNear=-1 and zFar=+1.

      In order to apply the orthographic projection to an already existing transformation, use ortho2D().

      Reference: http://www.songho.ca

      Parameters:
      left - the distance from the center to the left frustum edge
      right - the distance from the center to the right frustum edge
      bottom - the distance from the center to the bottom frustum edge
      top - the distance from the center to the top frustum edge
      Returns:
      this
      See Also:
      setOrtho(float, float, float, float, float, float), ortho2D(float, float, float, float)
    • setOrtho2DLH

      public Matrix4x3f setOrtho2DLH(float left, float right, float bottom, float top)
      Set this matrix to be an orthographic projection transformation for a left-handed coordinate system.

      This method is equivalent to calling setOrthoLH() with zNear=-1 and zFar=+1.

      In order to apply the orthographic projection to an already existing transformation, use ortho2DLH().

      Reference: http://www.songho.ca

      Parameters:
      left - the distance from the center to the left frustum edge
      right - the distance from the center to the right frustum edge
      bottom - the distance from the center to the bottom frustum edge
      top - the distance from the center to the top frustum edge
      Returns:
      this
      See Also:
      setOrthoLH(float, float, float, float, float, float), ortho2DLH(float, float, float, float)
    • lookAlong

      public Matrix4x3f lookAlong(Vector3fc dir, Vector3fc up)
      Apply a rotation transformation to this matrix to make -z point along dir.

      If M is this matrix and L the lookalong rotation matrix, then the new matrix will be M * L. So when transforming a vector v with the new matrix by using M * L * v, the lookalong rotation transformation will be applied first!

      This is equivalent to calling lookAt with eye = (0, 0, 0) and center = dir.

      In order to set the matrix to a lookalong transformation without post-multiplying it, use setLookAlong().

      Parameters:
      dir - the direction in space to look along
      up - the direction of 'up'
      Returns:
      this
      See Also:
      lookAlong(float, float, float, float, float, float), lookAt(Vector3fc, Vector3fc, Vector3fc), setLookAlong(Vector3fc, Vector3fc)
    • lookAlong

      public Matrix4x3f lookAlong(Vector3fc dir, Vector3fc up, Matrix4x3f dest)
      Apply a rotation transformation to this matrix to make -z point along dir and store the result in dest.

      If M is this matrix and L the lookalong rotation matrix, then the new matrix will be M * L. So when transforming a vector v with the new matrix by using M * L * v, the lookalong rotation transformation will be applied first!

      This is equivalent to calling lookAt with eye = (0, 0, 0) and center = dir.

      In order to set the matrix to a lookalong transformation without post-multiplying it, use setLookAlong().

      Specified by:
      lookAlong in interface Matrix4x3fc
      Parameters:
      dir - the direction in space to look along
      up - the direction of 'up'
      dest - will hold the result
      Returns:
      dest
      See Also:
      lookAlong(float, float, float, float, float, float), lookAt(Vector3fc, Vector3fc, Vector3fc), setLookAlong(Vector3fc, Vector3fc)
    • lookAlong

      public Matrix4x3f lookAlong(float dirX, float dirY, float dirZ, float upX, float upY, float upZ, Matrix4x3f dest)
      Apply a rotation transformation to this matrix to make -z point along dir and store the result in dest.

      If M is this matrix and L the lookalong rotation matrix, then the new matrix will be M * L. So when transforming a vector v with the new matrix by using M * L * v, the lookalong rotation transformation will be applied first!

      This is equivalent to calling lookAt() with eye = (0, 0, 0) and center = dir.

      In order to set the matrix to a lookalong transformation without post-multiplying it, use setLookAlong()

      Specified by:
      lookAlong in interface Matrix4x3fc
      Parameters:
      dirX - the x-coordinate of the direction to look along
      dirY - the y-coordinate of the direction to look along
      dirZ - the z-coordinate of the direction to look along
      upX - the x-coordinate of the up vector
      upY - the y-coordinate of the up vector
      upZ - the z-coordinate of the up vector
      dest - will hold the result
      Returns:
      dest
      See Also:
      lookAt(float, float, float, float, float, float, float, float, float), setLookAlong(float, float, float, float, float, float)
    • lookAlong

      public Matrix4x3f lookAlong(float dirX, float dirY, float dirZ, float upX, float upY, float upZ)
      Apply a rotation transformation to this matrix to make -z point along dir.

      If M is this matrix and L the lookalong rotation matrix, then the new matrix will be M * L. So when transforming a vector v with the new matrix by using M * L * v, the lookalong rotation transformation will be applied first!

      This is equivalent to calling lookAt() with eye = (0, 0, 0) and center = dir.

      In order to set the matrix to a lookalong transformation without post-multiplying it, use setLookAlong()

      Parameters:
      dirX - the x-coordinate of the direction to look along
      dirY - the y-coordinate of the direction to look along
      dirZ - the z-coordinate of the direction to look along
      upX - the x-coordinate of the up vector
      upY - the y-coordinate of the up vector
      upZ - the z-coordinate of the up vector
      Returns:
      this
      See Also:
      lookAt(float, float, float, float, float, float, float, float, float), setLookAlong(float, float, float, float, float, float)
    • setLookAlong

      public Matrix4x3f setLookAlong(Vector3fc dir, Vector3fc up)
      Set this matrix to a rotation transformation to make -z point along dir.

      This is equivalent to calling setLookAt() with eye = (0, 0, 0) and center = dir.

      In order to apply the lookalong transformation to any previous existing transformation, use lookAlong(Vector3fc, Vector3fc).

      Parameters:
      dir - the direction in space to look along
      up - the direction of 'up'
      Returns:
      this
      See Also:
      setLookAlong(Vector3fc, Vector3fc), lookAlong(Vector3fc, Vector3fc)
    • setLookAlong

      public Matrix4x3f setLookAlong(float dirX, float dirY, float dirZ, float upX, float upY, float upZ)
      Set this matrix to a rotation transformation to make -z point along dir.

      This is equivalent to calling setLookAt() with eye = (0, 0, 0) and center = dir.

      In order to apply the lookalong transformation to any previous existing transformation, use lookAlong()

      Parameters:
      dirX - the x-coordinate of the direction to look along
      dirY - the y-coordinate of the direction to look along
      dirZ - the z-coordinate of the direction to look along
      upX - the x-coordinate of the up vector
      upY - the y-coordinate of the up vector
      upZ - the z-coordinate of the up vector
      Returns:
      this
      See Also:
      setLookAlong(float, float, float, float, float, float), lookAlong(float, float, float, float, float, float)
    • setLookAt

      public Matrix4x3f setLookAt(Vector3fc eye, Vector3fc center, Vector3fc up)
      Set this matrix to be a "lookat" transformation for a right-handed coordinate system, that aligns -z with center - eye.

      In order to not make use of vectors to specify eye, center and up but use primitives, like in the GLU function, use setLookAt() instead.

      In order to apply the lookat transformation to a previous existing transformation, use lookAt().

      Parameters:
      eye - the position of the camera
      center - the point in space to look at
      up - the direction of 'up'
      Returns:
      this
      See Also:
      setLookAt(float, float, float, float, float, float, float, float, float), lookAt(Vector3fc, Vector3fc, Vector3fc)
    • setLookAt

      public Matrix4x3f setLookAt(float eyeX, float eyeY, float eyeZ, float centerX, float centerY, float centerZ, float upX, float upY, float upZ)
      Set this matrix to be a "lookat" transformation for a right-handed coordinate system, that aligns -z with center - eye.

      In order to apply the lookat transformation to a previous existing transformation, use lookAt.

      Parameters:
      eyeX - the x-coordinate of the eye/camera location
      eyeY - the y-coordinate of the eye/camera location
      eyeZ - the z-coordinate of the eye/camera location
      centerX - the x-coordinate of the point to look at
      centerY - the y-coordinate of the point to look at
      centerZ - the z-coordinate of the point to look at
      upX - the x-coordinate of the up vector
      upY - the y-coordinate of the up vector
      upZ - the z-coordinate of the up vector
      Returns:
      this
      See Also:
      setLookAt(Vector3fc, Vector3fc, Vector3fc), lookAt(float, float, float, float, float, float, float, float, float)
    • lookAt

      public Matrix4x3f lookAt(Vector3fc eye, Vector3fc center, Vector3fc up, Matrix4x3f dest)
      Apply a "lookat" transformation to this matrix for a right-handed coordinate system, that aligns -z with center - eye and store the result in dest.

      If M is this matrix and L the lookat matrix, then the new matrix will be M * L. So when transforming a vector v with the new matrix by using M * L * v, the lookat transformation will be applied first!

      In order to set the matrix to a lookat transformation without post-multiplying it, use setLookAt(Vector3fc, Vector3fc, Vector3fc).

      Specified by:
      lookAt in interface Matrix4x3fc
      Parameters:
      eye - the position of the camera
      center - the point in space to look at
      up - the direction of 'up'
      dest - will hold the result
      Returns:
      dest
      See Also:
      lookAt(float, float, float, float, float, float, float, float, float), setLookAlong(Vector3fc, Vector3fc)
    • lookAt

      public Matrix4x3f lookAt(Vector3fc eye, Vector3fc center, Vector3fc up)
      Apply a "lookat" transformation to this matrix for a right-handed coordinate system, that aligns -z with center - eye.

      If M is this matrix and L the lookat matrix, then the new matrix will be M * L. So when transforming a vector v with the new matrix by using M * L * v, the lookat transformation will be applied first!

      In order to set the matrix to a lookat transformation without post-multiplying it, use setLookAt(Vector3fc, Vector3fc, Vector3fc).

      Parameters:
      eye - the position of the camera
      center - the point in space to look at
      up - the direction of 'up'
      Returns:
      this
      See Also:
      lookAt(float, float, float, float, float, float, float, float, float), setLookAlong(Vector3fc, Vector3fc)
    • lookAt

      public Matrix4x3f lookAt(float eyeX, float eyeY, float eyeZ, float centerX, float centerY, float centerZ, float upX, float upY, float upZ, Matrix4x3f dest)
      Apply a "lookat" transformation to this matrix for a right-handed coordinate system, that aligns -z with center - eye and store the result in dest.

      If M is this matrix and L the lookat matrix, then the new matrix will be M * L. So when transforming a vector v with the new matrix by using M * L * v, the lookat transformation will be applied first!

      In order to set the matrix to a lookat transformation without post-multiplying it, use setLookAt().

      Specified by:
      lookAt in interface Matrix4x3fc
      Parameters:
      eyeX - the x-coordinate of the eye/camera location
      eyeY - the y-coordinate of the eye/camera location
      eyeZ - the z-coordinate of the eye/camera location
      centerX - the x-coordinate of the point to look at
      centerY - the y-coordinate of the point to look at
      centerZ - the z-coordinate of the point to look at
      upX - the x-coordinate of the up vector
      upY - the y-coordinate of the up vector
      upZ - the z-coordinate of the up vector
      dest - will hold the result
      Returns:
      dest
      See Also:
      lookAt(Vector3fc, Vector3fc, Vector3fc), setLookAt(float, float, float, float, float, float, float, float, float)
    • lookAt

      public Matrix4x3f lookAt(float eyeX, float eyeY, float eyeZ, float centerX, float centerY, float centerZ, float upX, float upY, float upZ)
      Apply a "lookat" transformation to this matrix for a right-handed coordinate system, that aligns -z with center - eye.

      If M is this matrix and L the lookat matrix, then the new matrix will be M * L. So when transforming a vector v with the new matrix by using M * L * v, the lookat transformation will be applied first!

      In order to set the matrix to a lookat transformation without post-multiplying it, use setLookAt().

      Parameters:
      eyeX - the x-coordinate of the eye/camera location
      eyeY - the y-coordinate of the eye/camera location
      eyeZ - the z-coordinate of the eye/camera location
      centerX - the x-coordinate of the point to look at
      centerY - the y-coordinate of the point to look at
      centerZ - the z-coordinate of the point to look at
      upX - the x-coordinate of the up vector
      upY - the y-coordinate of the up vector
      upZ - the z-coordinate of the up vector
      Returns:
      this
      See Also:
      lookAt(Vector3fc, Vector3fc, Vector3fc), setLookAt(float, float, float, float, float, float, float, float, float)
    • setLookAtLH

      public Matrix4x3f setLookAtLH(Vector3fc eye, Vector3fc center, Vector3fc up)
      Set this matrix to be a "lookat" transformation for a left-handed coordinate system, that aligns +z with center - eye.

      In order to not make use of vectors to specify eye, center and up but use primitives, like in the GLU function, use setLookAtLH() instead.

      In order to apply the lookat transformation to a previous existing transformation, use lookAt().

      Parameters:
      eye - the position of the camera
      center - the point in space to look at
      up - the direction of 'up'
      Returns:
      this
      See Also:
      setLookAtLH(float, float, float, float, float, float, float, float, float), lookAtLH(Vector3fc, Vector3fc, Vector3fc)
    • setLookAtLH

      public Matrix4x3f setLookAtLH(float eyeX, float eyeY, float eyeZ, float centerX, float centerY, float centerZ, float upX, float upY, float upZ)
      Set this matrix to be a "lookat" transformation for a left-handed coordinate system, that aligns +z with center - eye.

      In order to apply the lookat transformation to a previous existing transformation, use lookAtLH.

      Parameters:
      eyeX - the x-coordinate of the eye/camera location
      eyeY - the y-coordinate of the eye/camera location
      eyeZ - the z-coordinate of the eye/camera location
      centerX - the x-coordinate of the point to look at
      centerY - the y-coordinate of the point to look at
      centerZ - the z-coordinate of the point to look at
      upX - the x-coordinate of the up vector
      upY - the y-coordinate of the up vector
      upZ - the z-coordinate of the up vector
      Returns:
      this
      See Also:
      setLookAtLH(Vector3fc, Vector3fc, Vector3fc), lookAtLH(float, float, float, float, float, float, float, float, float)
    • lookAtLH

      public Matrix4x3f lookAtLH(Vector3fc eye, Vector3fc center, Vector3fc up, Matrix4x3f dest)
      Apply a "lookat" transformation to this matrix for a left-handed coordinate system, that aligns +z with center - eye and store the result in dest.

      If M is this matrix and L the lookat matrix, then the new matrix will be M * L. So when transforming a vector v with the new matrix by using M * L * v, the lookat transformation will be applied first!

      In order to set the matrix to a lookat transformation without post-multiplying it, use setLookAtLH(Vector3fc, Vector3fc, Vector3fc).

      Specified by:
      lookAtLH in interface Matrix4x3fc
      Parameters:
      eye - the position of the camera
      center - the point in space to look at
      up - the direction of 'up'
      dest - will hold the result
      Returns:
      dest
      See Also:
      lookAtLH(float, float, float, float, float, float, float, float, float)
    • lookAtLH

      public Matrix4x3f lookAtLH(Vector3fc eye, Vector3fc center, Vector3fc up)
      Apply a "lookat" transformation to this matrix for a left-handed coordinate system, that aligns +z with center - eye.

      If M is this matrix and L the lookat matrix, then the new matrix will be M * L. So when transforming a vector v with the new matrix by using M * L * v, the lookat transformation will be applied first!

      In order to set the matrix to a lookat transformation without post-multiplying it, use setLookAtLH(Vector3fc, Vector3fc, Vector3fc).

      Parameters:
      eye - the position of the camera
      center - the point in space to look at
      up - the direction of 'up'
      Returns:
      this
      See Also:
      lookAtLH(float, float, float, float, float, float, float, float, float)
    • lookAtLH

      public Matrix4x3f lookAtLH(float eyeX, float eyeY, float eyeZ, float centerX, float centerY, float centerZ, float upX, float upY, float upZ, Matrix4x3f dest)
      Apply a "lookat" transformation to this matrix for a left-handed coordinate system, that aligns +z with center - eye and store the result in dest.

      If M is this matrix and L the lookat matrix, then the new matrix will be M * L. So when transforming a vector v with the new matrix by using M * L * v, the lookat transformation will be applied first!

      In order to set the matrix to a lookat transformation without post-multiplying it, use setLookAtLH().

      Specified by:
      lookAtLH in interface Matrix4x3fc
      Parameters:
      eyeX - the x-coordinate of the eye/camera location
      eyeY - the y-coordinate of the eye/camera location
      eyeZ - the z-coordinate of the eye/camera location
      centerX - the x-coordinate of the point to look at
      centerY - the y-coordinate of the point to look at
      centerZ - the z-coordinate of the point to look at
      upX - the x-coordinate of the up vector
      upY - the y-coordinate of the up vector
      upZ - the z-coordinate of the up vector
      dest - will hold the result
      Returns:
      dest
      See Also:
      lookAtLH(Vector3fc, Vector3fc, Vector3fc), setLookAtLH(float, float, float, float, float, float, float, float, float)
    • lookAtLH

      public Matrix4x3f lookAtLH(float eyeX, float eyeY, float eyeZ, float centerX, float centerY, float centerZ, float upX, float upY, float upZ)
      Apply a "lookat" transformation to this matrix for a left-handed coordinate system, that aligns +z with center - eye.

      If M is this matrix and L the lookat matrix, then the new matrix will be M * L. So when transforming a vector v with the new matrix by using M * L * v, the lookat transformation will be applied first!

      In order to set the matrix to a lookat transformation without post-multiplying it, use setLookAtLH().

      Parameters:
      eyeX - the x-coordinate of the eye/camera location
      eyeY - the y-coordinate of the eye/camera location
      eyeZ - the z-coordinate of the eye/camera location
      centerX - the x-coordinate of the point to look at
      centerY - the y-coordinate of the point to look at
      centerZ - the z-coordinate of the point to look at
      upX - the x-coordinate of the up vector
      upY - the y-coordinate of the up vector
      upZ - the z-coordinate of the up vector
      Returns:
      this
      See Also:
      lookAtLH(Vector3fc, Vector3fc, Vector3fc), setLookAtLH(float, float, float, float, float, float, float, float, float)
    • rotate

      public Matrix4x3f rotate(Quaternionfc quat, Matrix4x3f dest)
      Apply the rotation - and possibly scaling - transformation of the given Quaternionfc to this matrix and store the result in dest.

      When used with a right-handed coordinate system, the produced rotation will rotate a vector counter-clockwise around the rotation axis, when viewing along the negative axis direction towards the origin. When used with a left-handed coordinate system, the rotation is clockwise.

      If M is this matrix and Q the rotation matrix obtained from the given quaternion, then the new matrix will be M * Q. So when transforming a vector v with the new matrix by using M * Q * v, the quaternion rotation will be applied first!

      In order to set the matrix to a rotation transformation without post-multiplying, use rotation(Quaternionfc).

      Reference: http://en.wikipedia.org

      Specified by:
      rotate in interface Matrix4x3fc
      Parameters:
      quat - the Quaternionfc
      dest - will hold the result
      Returns:
      dest
      See Also:
      rotation(Quaternionfc)
    • rotate

      public Matrix4x3f rotate(Quaternionfc quat)
      Apply the rotation - and possibly scaling - transformation of the given Quaternionfc to this matrix.

      When used with a right-handed coordinate system, the produced rotation will rotate a vector counter-clockwise around the rotation axis, when viewing along the negative axis direction towards the origin. When used with a left-handed coordinate system, the rotation is clockwise.

      If M is this matrix and Q the rotation matrix obtained from the given quaternion, then the new matrix will be M * Q. So when transforming a vector v with the new matrix by using M * Q * v, the quaternion rotation will be applied first!

      In order to set the matrix to a rotation transformation without post-multiplying, use rotation(Quaternionfc).

      Reference: http://en.wikipedia.org

      Parameters:
      quat - the Quaternionfc
      Returns:
      this
      See Also:
      rotation(Quaternionfc)
    • rotateTranslation

      public Matrix4x3f rotateTranslation(Quaternionfc quat, Matrix4x3f dest)
      Apply the rotation - and possibly scaling - transformation of the given Quaternionfc to this matrix, which is assumed to only contain a translation, and store the result in dest.

      This method assumes this to only contain a translation.

      When used with a right-handed coordinate system, the produced rotation will rotate a vector counter-clockwise around the rotation axis, when viewing along the negative axis direction towards the origin. When used with a left-handed coordinate system, the rotation is clockwise.

      If M is this matrix and Q the rotation matrix obtained from the given quaternion, then the new matrix will be M * Q. So when transforming a vector v with the new matrix by using M * Q * v, the quaternion rotation will be applied first!

      In order to set the matrix to a rotation transformation without post-multiplying, use rotation(Quaternionfc).

      Reference: http://en.wikipedia.org

      Specified by:
      rotateTranslation in interface Matrix4x3fc
      Parameters:
      quat - the Quaternionfc
      dest - will hold the result
      Returns:
      dest
      See Also:
      rotation(Quaternionfc)
    • rotateLocal

      public Matrix4x3f rotateLocal(Quaternionfc quat, Matrix4x3f dest)
      Pre-multiply the rotation - and possibly scaling - transformation of the given Quaternionfc to this matrix and store the result in dest.

      When used with a right-handed coordinate system, the produced rotation will rotate a vector counter-clockwise around the rotation axis, when viewing along the negative axis direction towards the origin. When used with a left-handed coordinate system, the rotation is clockwise.

      If M is this matrix and Q the rotation matrix obtained from the given quaternion, then the new matrix will be Q * M. So when transforming a vector v with the new matrix by using Q * M * v, the quaternion rotation will be applied last!

      In order to set the matrix to a rotation transformation without pre-multiplying, use rotation(Quaternionfc).

      Reference: http://en.wikipedia.org

      Specified by:
      rotateLocal in interface Matrix4x3fc
      Parameters:
      quat - the Quaternionfc
      dest - will hold the result
      Returns:
      dest
      See Also:
      rotation(Quaternionfc)
    • rotateLocal

      public Matrix4x3f rotateLocal(Quaternionfc quat)
      Pre-multiply the rotation - and possibly scaling - transformation of the given Quaternionfc to this matrix.

      When used with a right-handed coordinate system, the produced rotation will rotate a vector counter-clockwise around the rotation axis, when viewing along the negative axis direction towards the origin. When used with a left-handed coordinate system, the rotation is clockwise.

      If M is this matrix and Q the rotation matrix obtained from the given quaternion, then the new matrix will be Q * M. So when transforming a vector v with the new matrix by using Q * M * v, the quaternion rotation will be applied last!

      In order to set the matrix to a rotation transformation without pre-multiplying, use rotation(Quaternionfc).

      Reference: http://en.wikipedia.org

      Parameters:
      quat - the Quaternionfc
      Returns:
      this
      See Also:
      rotation(Quaternionfc)
    • rotate

      public Matrix4x3f rotate(AxisAngle4f axisAngle)
      Apply a rotation transformation, rotating about the given AxisAngle4f, to this matrix.

      When used with a right-handed coordinate system, the produced rotation will rotate a vector counter-clockwise around the rotation axis, when viewing along the negative axis direction towards the origin. When used with a left-handed coordinate system, the rotation is clockwise.

      If M is this matrix and A the rotation matrix obtained from the given AxisAngle4f, then the new matrix will be M * A. So when transforming a vector v with the new matrix by using M * A * v, the AxisAngle4f rotation will be applied first!

      In order to set the matrix to a rotation transformation without post-multiplying, use rotation(AxisAngle4f).

      Reference: http://en.wikipedia.org

      Parameters:
      axisAngle - the AxisAngle4f (needs to be normalized)
      Returns:
      this
      See Also:
      rotate(float, float, float, float), rotation(AxisAngle4f)
    • rotate

      public Matrix4x3f rotate(AxisAngle4f axisAngle, Matrix4x3f dest)
      Apply a rotation transformation, rotating about the given AxisAngle4f and store the result in dest.

      When used with a right-handed coordinate system, the produced rotation will rotate a vector counter-clockwise around the rotation axis, when viewing along the negative axis direction towards the origin. When used with a left-handed coordinate system, the rotation is clockwise.

      If M is this matrix and A the rotation matrix obtained from the given AxisAngle4f, then the new matrix will be M * A. So when transforming a vector v with the new matrix by using M * A * v, the AxisAngle4f rotation will be applied first!

      In order to set the matrix to a rotation transformation without post-multiplying, use rotation(AxisAngle4f).

      Reference: http://en.wikipedia.org

      Specified by:
      rotate in interface Matrix4x3fc
      Parameters:
      axisAngle - the AxisAngle4f (needs to be normalized)
      dest - will hold the result
      Returns:
      dest
      See Also:
      rotate(float, float, float, float), rotation(AxisAngle4f)
    • rotate

      public Matrix4x3f rotate(float angle, Vector3fc axis)
      Apply a rotation transformation, rotating the given radians about the specified axis, to this matrix.

      The axis described by the axis vector needs to be a unit vector.

      When used with a right-handed coordinate system, the produced rotation will rotate a vector counter-clockwise around the rotation axis, when viewing along the negative axis direction towards the origin. When used with a left-handed coordinate system, the rotation is clockwise.

      If M is this matrix and A the rotation matrix obtained from the given axis-angle, then the new matrix will be M * A. So when transforming a vector v with the new matrix by using M * A * v, the axis-angle rotation will be applied first!

      In order to set the matrix to a rotation transformation without post-multiplying, use rotation(float, Vector3fc).

      Reference: http://en.wikipedia.org

      Parameters:
      angle - the angle in radians
      axis - the rotation axis (needs to be normalized)
      Returns:
      this
      See Also:
      rotate(float, float, float, float), rotation(float, Vector3fc)
    • rotate

      public Matrix4x3f rotate(float angle, Vector3fc axis, Matrix4x3f dest)
      Apply a rotation transformation, rotating the given radians about the specified axis and store the result in dest.

      The axis described by the axis vector needs to be a unit vector.

      When used with a right-handed coordinate system, the produced rotation will rotate a vector counter-clockwise around the rotation axis, when viewing along the negative axis direction towards the origin. When used with a left-handed coordinate system, the rotation is clockwise.

      If M is this matrix and A the rotation matrix obtained from the given axis-angle, then the new matrix will be M * A. So when transforming a vector v with the new matrix by using M * A * v, the axis-angle rotation will be applied first!

      In order to set the matrix to a rotation transformation without post-multiplying, use rotation(float, Vector3fc).

      Reference: http://en.wikipedia.org

      Specified by:
      rotate in interface Matrix4x3fc
      Parameters:
      angle - the angle in radians
      axis - the rotation axis (needs to be normalized)
      dest - will hold the result
      Returns:
      dest
      See Also:
      rotate(float, float, float, float), rotation(float, Vector3fc)
    • reflect

      public Matrix4x3f reflect(float a, float b, float c, float d, Matrix4x3f dest)
      Description copied from interface: Matrix4x3fc
      Apply a mirror/reflection transformation to this matrix that reflects about the given plane specified via the equation x*a + y*b + z*c + d = 0 and store the result in dest.

      The vector (a, b, c) must be a unit vector.

      If M is this matrix and R the reflection matrix, then the new matrix will be M * R. So when transforming a vector v with the new matrix by using M * R * v, the reflection will be applied first!

      Reference: msdn.microsoft.com

      Specified by:
      reflect in interface Matrix4x3fc
      Parameters:
      a - the x factor in the plane equation
      b - the y factor in the plane equation
      c - the z factor in the plane equation
      d - the constant in the plane equation
      dest - will hold the result
      Returns:
      dest
    • reflect

      public Matrix4x3f reflect(float a, float b, float c, float d)
      Apply a mirror/reflection transformation to this matrix that reflects about the given plane specified via the equation x*a + y*b + z*c + d = 0.

      The vector (a, b, c) must be a unit vector.

      If M is this matrix and R the reflection matrix, then the new matrix will be M * R. So when transforming a vector v with the new matrix by using M * R * v, the reflection will be applied first!

      Reference: msdn.microsoft.com

      Parameters:
      a - the x factor in the plane equation
      b - the y factor in the plane equation
      c - the z factor in the plane equation
      d - the constant in the plane equation
      Returns:
      this
    • reflect

      public Matrix4x3f reflect(float nx, float ny, float nz, float px, float py, float pz)
      Apply a mirror/reflection transformation to this matrix that reflects about the given plane specified via the plane normal and a point on the plane.

      If M is this matrix and R the reflection matrix, then the new matrix will be M * R. So when transforming a vector v with the new matrix by using M * R * v, the reflection will be applied first!

      Parameters:
      nx - the x-coordinate of the plane normal
      ny - the y-coordinate of the plane normal
      nz - the z-coordinate of the plane normal
      px - the x-coordinate of a point on the plane
      py - the y-coordinate of a point on the plane
      pz - the z-coordinate of a point on the plane
      Returns:
      this
    • reflect

      public Matrix4x3f reflect(float nx, float ny, float nz, float px, float py, float pz, Matrix4x3f dest)
      Description copied from interface: Matrix4x3fc
      Apply a mirror/reflection transformation to this matrix that reflects about the given plane specified via the plane normal and a point on the plane, and store the result in dest.

      If M is this matrix and R the reflection matrix, then the new matrix will be M * R. So when transforming a vector v with the new matrix by using M * R * v, the reflection will be applied first!

      Specified by:
      reflect in interface Matrix4x3fc
      Parameters:
      nx - the x-coordinate of the plane normal
      ny - the y-coordinate of the plane normal
      nz - the z-coordinate of the plane normal
      px - the x-coordinate of a point on the plane
      py - the y-coordinate of a point on the plane
      pz - the z-coordinate of a point on the plane
      dest - will hold the result
      Returns:
      dest
    • reflect

      public Matrix4x3f reflect(Vector3fc normal, Vector3fc point)
      Apply a mirror/reflection transformation to this matrix that reflects about the given plane specified via the plane normal and a point on the plane.

      If M is this matrix and R the reflection matrix, then the new matrix will be M * R. So when transforming a vector v with the new matrix by using M * R * v, the reflection will be applied first!

      Parameters:
      normal - the plane normal
      point - a point on the plane
      Returns:
      this
    • reflect

      public Matrix4x3f reflect(Quaternionfc orientation, Vector3fc point)
      Apply a mirror/reflection transformation to this matrix that reflects about a plane specified via the plane orientation and a point on the plane.

      This method can be used to build a reflection transformation based on the orientation of a mirror object in the scene. It is assumed that the default mirror plane's normal is (0, 0, 1). So, if the given Quaternionfc is the identity (does not apply any additional rotation), the reflection plane will be z=0, offset by the given point.

      If M is this matrix and R the reflection matrix, then the new matrix will be M * R. So when transforming a vector v with the new matrix by using M * R * v, the reflection will be applied first!

      Parameters:
      orientation - the plane orientation
      point - a point on the plane
      Returns:
      this
    • reflect

      public Matrix4x3f reflect(Quaternionfc orientation, Vector3fc point, Matrix4x3f dest)
      Description copied from interface: Matrix4x3fc
      Apply a mirror/reflection transformation to this matrix that reflects about a plane specified via the plane orientation and a point on the plane, and store the result in dest.

      This method can be used to build a reflection transformation based on the orientation of a mirror object in the scene. It is assumed that the default mirror plane's normal is (0, 0, 1). So, if the given Quaternionfc is the identity (does not apply any additional rotation), the reflection plane will be z=0, offset by the given point.

      If M is this matrix and R the reflection matrix, then the new matrix will be M * R. So when transforming a vector v with the new matrix by using M * R * v, the reflection will be applied first!

      Specified by:
      reflect in interface Matrix4x3fc
      Parameters:
      orientation - the plane orientation relative to an implied normal vector of (0, 0, 1)
      point - a point on the plane
      dest - will hold the result
      Returns:
      dest
    • reflect

      public Matrix4x3f reflect(Vector3fc normal, Vector3fc point, Matrix4x3f dest)
      Description copied from interface: Matrix4x3fc
      Apply a mirror/reflection transformation to this matrix that reflects about the given plane specified via the plane normal and a point on the plane, and store the result in dest.

      If M is this matrix and R the reflection matrix, then the new matrix will be M * R. So when transforming a vector v with the new matrix by using M * R * v, the reflection will be applied first!

      Specified by:
      reflect in interface Matrix4x3fc
      Parameters:
      normal - the plane normal
      point - a point on the plane
      dest - will hold the result
      Returns:
      dest
    • reflection

      public Matrix4x3f reflection(float a, float b, float c, float d)
      Set this matrix to a mirror/reflection transformation that reflects about the given plane specified via the equation x*a + y*b + z*c + d = 0.

      The vector (a, b, c) must be a unit vector.

      Reference: msdn.microsoft.com

      Parameters:
      a - the x factor in the plane equation
      b - the y factor in the plane equation
      c - the z factor in the plane equation
      d - the constant in the plane equation
      Returns:
      this
    • reflection

      public Matrix4x3f reflection(float nx, float ny, float nz, float px, float py, float pz)
      Set this matrix to a mirror/reflection transformation that reflects about the given plane specified via the plane normal and a point on the plane.
      Parameters:
      nx - the x-coordinate of the plane normal
      ny - the y-coordinate of the plane normal
      nz - the z-coordinate of the plane normal
      px - the x-coordinate of a point on the plane
      py - the y-coordinate of a point on the plane
      pz - the z-coordinate of a point on the plane
      Returns:
      this
    • reflection

      public Matrix4x3f reflection(Vector3fc normal, Vector3fc point)
      Set this matrix to a mirror/reflection transformation that reflects about the given plane specified via the plane normal and a point on the plane.
      Parameters:
      normal - the plane normal
      point - a point on the plane
      Returns:
      this
    • reflection

      public Matrix4x3f reflection(Quaternionfc orientation, Vector3fc point)
      Set this matrix to a mirror/reflection transformation that reflects about a plane specified via the plane orientation and a point on the plane.

      This method can be used to build a reflection transformation based on the orientation of a mirror object in the scene. It is assumed that the default mirror plane's normal is (0, 0, 1). So, if the given Quaternionfc is the identity (does not apply any additional rotation), the reflection plane will be z=0, offset by the given point.

      Parameters:
      orientation - the plane orientation
      point - a point on the plane
      Returns:
      this
    • getRow

      public Vector4f getRow(int row, Vector4f dest) throws IndexOutOfBoundsException
      Description copied from interface: Matrix4x3fc
      Get the row at the given row index, starting with 0.
      Specified by:
      getRow in interface Matrix4x3fc
      Parameters:
      row - the row index in [0..2]
      dest - will hold the row components
      Returns:
      the passed in destination
      Throws:
      IndexOutOfBoundsException - if row is not in [0..2]
    • setRow

      public Matrix4x3f setRow(int row, Vector4fc src) throws IndexOutOfBoundsException
      Set the row at the given row index, starting with 0.
      Parameters:
      row - the row index in [0..2]
      src - the row components to set
      Returns:
      this
      Throws:
      IndexOutOfBoundsException - if row is not in [0..2]
    • getColumn

      public Vector3f getColumn(int column, Vector3f dest) throws IndexOutOfBoundsException
      Description copied from interface: Matrix4x3fc
      Get the column at the given column index, starting with 0.
      Specified by:
      getColumn in interface Matrix4x3fc
      Parameters:
      column - the column index in [0..2]
      dest - will hold the column components
      Returns:
      the passed in destination
      Throws:
      IndexOutOfBoundsException - if column is not in [0..2]
    • setColumn

      public Matrix4x3f setColumn(int column, Vector3fc src) throws IndexOutOfBoundsException
      Set the column at the given column index, starting with 0.
      Parameters:
      column - the column index in [0..3]
      src - the column components to set
      Returns:
      this
      Throws:
      IndexOutOfBoundsException - if column is not in [0..3]
    • normal

      public Matrix4x3f normal()
      Compute a normal matrix from the left 3x3 submatrix of this and store it into the left 3x3 submatrix of this. All other values of this will be set to identity.

      The normal matrix of m is the transpose of the inverse of m.

      Please note that, if this is an orthogonal matrix or a matrix whose columns are orthogonal vectors, then this method need not be invoked, since in that case this itself is its normal matrix. In that case, use set3x3(Matrix4x3fc) to set a given Matrix4x3f to only the left 3x3 submatrix of this matrix.

      Returns:
      this
      See Also:
      set3x3(Matrix4x3fc)
    • normal

      public Matrix4x3f normal(Matrix4x3f dest)
      Compute a normal matrix from the left 3x3 submatrix of this and store it into the left 3x3 submatrix of dest. All other values of dest will be set to identity.

      The normal matrix of m is the transpose of the inverse of m.

      Please note that, if this is an orthogonal matrix or a matrix whose columns are orthogonal vectors, then this method need not be invoked, since in that case this itself is its normal matrix. In that case, use set3x3(Matrix4x3fc) to set a given Matrix4x3f to only the left 3x3 submatrix of this matrix.

      Specified by:
      normal in interface Matrix4x3fc
      Parameters:
      dest - will hold the result
      Returns:
      dest
      See Also:
      set3x3(Matrix4x3fc)
    • normal

      public Matrix3f normal(Matrix3f dest)
      Description copied from interface: Matrix4x3fc
      Compute a normal matrix from the left 3x3 submatrix of this and store it into dest.

      The normal matrix of m is the transpose of the inverse of m.

      Specified by:
      normal in interface Matrix4x3fc
      Parameters:
      dest - will hold the result
      Returns:
      dest
    • cofactor3x3

      public Matrix4x3f cofactor3x3()
      Compute the cofactor matrix of the left 3x3 submatrix of this.

      The cofactor matrix can be used instead of normal() to transform normals when the orientation of the normals with respect to the surface should be preserved.

      Returns:
      this
    • cofactor3x3

      public Matrix3f cofactor3x3(Matrix3f dest)
      Compute the cofactor matrix of the left 3x3 submatrix of this and store it into dest.

      The cofactor matrix can be used instead of normal(Matrix3f) to transform normals when the orientation of the normals with respect to the surface should be preserved.

      Specified by:
      cofactor3x3 in interface Matrix4x3fc
      Parameters:
      dest - will hold the result
      Returns:
      dest
    • cofactor3x3

      public Matrix4x3f cofactor3x3(Matrix4x3f dest)
      Compute the cofactor matrix of the left 3x3 submatrix of this and store it into dest. All other values of dest will be set to identity.

      The cofactor matrix can be used instead of normal(Matrix4x3f) to transform normals when the orientation of the normals with respect to the surface should be preserved.

      Specified by:
      cofactor3x3 in interface Matrix4x3fc
      Parameters:
      dest - will hold the result
      Returns:
      dest
    • normalize3x3

      public Matrix4x3f normalize3x3()
      Normalize the left 3x3 submatrix of this matrix.

      The resulting matrix will map unit vectors to unit vectors, though a pair of orthogonal input unit vectors need not be mapped to a pair of orthogonal output vectors if the original matrix was not orthogonal itself (i.e. had skewing).

      Returns:
      this
    • normalize3x3

      public Matrix4x3f normalize3x3(Matrix4x3f dest)
      Description copied from interface: Matrix4x3fc
      Normalize the left 3x3 submatrix of this matrix and store the result in dest.

      The resulting matrix will map unit vectors to unit vectors, though a pair of orthogonal input unit vectors need not be mapped to a pair of orthogonal output vectors if the original matrix was not orthogonal itself (i.e. had skewing).

      Specified by:
      normalize3x3 in interface Matrix4x3fc
      Parameters:
      dest - will hold the result
      Returns:
      dest
    • normalize3x3

      public Matrix3f normalize3x3(Matrix3f dest)
      Description copied from interface: Matrix4x3fc
      Normalize the left 3x3 submatrix of this matrix and store the result in dest.

      The resulting matrix will map unit vectors to unit vectors, though a pair of orthogonal input unit vectors need not be mapped to a pair of orthogonal output vectors if the original matrix was not orthogonal itself (i.e. had skewing).

      Specified by:
      normalize3x3 in interface Matrix4x3fc
      Parameters:
      dest - will hold the result
      Returns:
      dest
    • frustumPlane

      public Vector4f frustumPlane(int which, Vector4f dest)
      Description copied from interface: Matrix4x3fc
      Calculate a frustum plane of this matrix, which can be a projection matrix or a combined modelview-projection matrix, and store the result in the given dest.

      Generally, this method computes the frustum plane in the local frame of any coordinate system that existed before this transformation was applied to it in order to yield homogeneous clipping space.

      The plane normal, which is (a, b, c), is directed "inwards" of the frustum. Any plane/point test using a*x + b*y + c*z + d therefore will yield a result greater than zero if the point is within the frustum (i.e. at the positive side of the frustum plane).

      Reference: Fast Extraction of Viewing Frustum Planes from the World-View-Projection Matrix

      Specified by:
      frustumPlane in interface Matrix4x3fc
      Parameters:
      which - one of the six possible planes, given as numeric constants Matrix4x3fc.PLANE_NX, Matrix4x3fc.PLANE_PX, Matrix4x3fc.PLANE_NY, Matrix4x3fc.PLANE_PY, Matrix4x3fc.PLANE_NZ and Matrix4x3fc.PLANE_PZ
      dest - will hold the computed plane equation. The plane equation will be normalized, meaning that (a, b, c) will be a unit vector
      Returns:
      dest
    • positiveZ

      public Vector3f positiveZ(Vector3f dir)
      Description copied from interface: Matrix4x3fc
      Obtain the direction of +Z before the transformation represented by this matrix is applied.

      This method uses the rotation component of the left 3x3 submatrix to obtain the direction that is transformed to +Z by this matrix.

      This method is equivalent to the following code:

       Matrix4x3f inv = new Matrix4x3f(this).invert();
       inv.transformDirection(dir.set(0, 0, 1)).normalize();
       
      If this is already an orthogonal matrix, then consider using Matrix4x3fc.normalizedPositiveZ(Vector3f) instead.

      Reference: http://www.euclideanspace.com

      Specified by:
      positiveZ in interface Matrix4x3fc
      Parameters:
      dir - will hold the direction of +Z
      Returns:
      dir
    • normalizedPositiveZ

      public Vector3f normalizedPositiveZ(Vector3f dir)
      Description copied from interface: Matrix4x3fc
      Obtain the direction of +Z before the transformation represented by this orthogonal matrix is applied. This method only produces correct results if this is an orthogonal matrix.

      This method uses the rotation component of the left 3x3 submatrix to obtain the direction that is transformed to +Z by this matrix.

      This method is equivalent to the following code:

       Matrix4x3f inv = new Matrix4x3f(this).transpose();
       inv.transformDirection(dir.set(0, 0, 1)).normalize();
       

      Reference: http://www.euclideanspace.com

      Specified by:
      normalizedPositiveZ in interface Matrix4x3fc
      Parameters:
      dir - will hold the direction of +Z
      Returns:
      dir
    • positiveX

      public Vector3f positiveX(Vector3f dir)
      Description copied from interface: Matrix4x3fc
      Obtain the direction of +X before the transformation represented by this matrix is applied.

      This method uses the rotation component of the left 3x3 submatrix to obtain the direction that is transformed to +X by this matrix.

      This method is equivalent to the following code:

       Matrix4x3f inv = new Matrix4x3f(this).invert();
       inv.transformDirection(dir.set(1, 0, 0)).normalize();
       
      If this is already an orthogonal matrix, then consider using Matrix4x3fc.normalizedPositiveX(Vector3f) instead.

      Reference: http://www.euclideanspace.com

      Specified by:
      positiveX in interface Matrix4x3fc
      Parameters:
      dir - will hold the direction of +X
      Returns:
      dir
    • normalizedPositiveX

      public Vector3f normalizedPositiveX(Vector3f dir)
      Description copied from interface: Matrix4x3fc
      Obtain the direction of +X before the transformation represented by this orthogonal matrix is applied. This method only produces correct results if this is an orthogonal matrix.

      This method uses the rotation component of the left 3x3 submatrix to obtain the direction that is transformed to +X by this matrix.

      This method is equivalent to the following code:

       Matrix4x3f inv = new Matrix4x3f(this).transpose();
       inv.transformDirection(dir.set(1, 0, 0)).normalize();
       

      Reference: http://www.euclideanspace.com

      Specified by:
      normalizedPositiveX in interface Matrix4x3fc
      Parameters:
      dir - will hold the direction of +X
      Returns:
      dir
    • positiveY

      public Vector3f positiveY(Vector3f dir)
      Description copied from interface: Matrix4x3fc
      Obtain the direction of +Y before the transformation represented by this matrix is applied.

      This method uses the rotation component of the left 3x3 submatrix to obtain the direction that is transformed to +Y by this matrix.

      This method is equivalent to the following code:

       Matrix4x3f inv = new Matrix4x3f(this).invert();
       inv.transformDirection(dir.set(0, 1, 0)).normalize();
       
      If this is already an orthogonal matrix, then consider using Matrix4x3fc.normalizedPositiveY(Vector3f) instead.

      Reference: http://www.euclideanspace.com

      Specified by:
      positiveY in interface Matrix4x3fc
      Parameters:
      dir - will hold the direction of +Y
      Returns:
      dir
    • normalizedPositiveY

      public Vector3f normalizedPositiveY(Vector3f dir)
      Description copied from interface: Matrix4x3fc
      Obtain the direction of +Y before the transformation represented by this orthogonal matrix is applied. This method only produces correct results if this is an orthogonal matrix.

      This method uses the rotation component of the left 3x3 submatrix to obtain the direction that is transformed to +Y by this matrix.

      This method is equivalent to the following code:

       Matrix4x3f inv = new Matrix4x3f(this).transpose();
       inv.transformDirection(dir.set(0, 1, 0)).normalize();
       

      Reference: http://www.euclideanspace.com

      Specified by:
      normalizedPositiveY in interface Matrix4x3fc
      Parameters:
      dir - will hold the direction of +Y
      Returns:
      dir
    • origin

      public Vector3f origin(Vector3f origin)
      Description copied from interface: Matrix4x3fc
      Obtain the position that gets transformed to the origin by this matrix. This can be used to get the position of the "camera" from a given view transformation matrix.

      This method is equivalent to the following code:

       Matrix4x3f inv = new Matrix4x3f(this).invert();
       inv.transformPosition(origin.set(0, 0, 0));
       
      Specified by:
      origin in interface Matrix4x3fc
      Parameters:
      origin - will hold the position transformed to the origin
      Returns:
      origin
    • shadow

      public Matrix4x3f shadow(Vector4fc light, float a, float b, float c, float d)
      Apply a projection transformation to this matrix that projects onto the plane specified via the general plane equation x*a + y*b + z*c + d = 0 as if casting a shadow from a given light position/direction light.

      If light.w is 0.0 the light is being treated as a directional light; if it is 1.0 it is a point light.

      If M is this matrix and S the shadow matrix, then the new matrix will be M * S. So when transforming a vector v with the new matrix by using M * S * v, the reflection will be applied first!

      Reference: ftp.sgi.com

      Parameters:
      light - the light's vector
      a - the x factor in the plane equation
      b - the y factor in the plane equation
      c - the z factor in the plane equation
      d - the constant in the plane equation
      Returns:
      this
    • shadow

      public Matrix4x3f shadow(Vector4fc light, float a, float b, float c, float d, Matrix4x3f dest)
      Description copied from interface: Matrix4x3fc
      Apply a projection transformation to this matrix that projects onto the plane specified via the general plane equation x*a + y*b + z*c + d = 0 as if casting a shadow from a given light position/direction light and store the result in dest.

      If light.w is 0.0 the light is being treated as a directional light; if it is 1.0 it is a point light.

      If M is this matrix and S the shadow matrix, then the new matrix will be M * S. So when transforming a vector v with the new matrix by using M * S * v, the reflection will be applied first!

      Reference: ftp.sgi.com

      Specified by:
      shadow in interface Matrix4x3fc
      Parameters:
      light - the light's vector
      a - the x factor in the plane equation
      b - the y factor in the plane equation
      c - the z factor in the plane equation
      d - the constant in the plane equation
      dest - will hold the result
      Returns:
      dest
    • shadow

      public Matrix4x3f shadow(float lightX, float lightY, float lightZ, float lightW, float a, float b, float c, float d)
      Apply a projection transformation to this matrix that projects onto the plane specified via the general plane equation x*a + y*b + z*c + d = 0 as if casting a shadow from a given light position/direction (lightX, lightY, lightZ, lightW).

      If lightW is 0.0 the light is being treated as a directional light; if it is 1.0 it is a point light.

      If M is this matrix and S the shadow matrix, then the new matrix will be M * S. So when transforming a vector v with the new matrix by using M * S * v, the reflection will be applied first!

      Reference: ftp.sgi.com

      Parameters:
      lightX - the x-component of the light's vector
      lightY - the y-component of the light's vector
      lightZ - the z-component of the light's vector
      lightW - the w-component of the light's vector
      a - the x factor in the plane equation
      b - the y factor in the plane equation
      c - the z factor in the plane equation
      d - the constant in the plane equation
      Returns:
      this
    • shadow

      public Matrix4x3f shadow(float lightX, float lightY, float lightZ, float lightW, float a, float b, float c, float d, Matrix4x3f dest)
      Description copied from interface: Matrix4x3fc
      Apply a projection transformation to this matrix that projects onto the plane specified via the general plane equation x*a + y*b + z*c + d = 0 as if casting a shadow from a given light position/direction (lightX, lightY, lightZ, lightW) and store the result in dest.

      If lightW is 0.0 the light is being treated as a directional light; if it is 1.0 it is a point light.

      If M is this matrix and S the shadow matrix, then the new matrix will be M * S. So when transforming a vector v with the new matrix by using M * S * v, the reflection will be applied first!

      Reference: ftp.sgi.com

      Specified by:
      shadow in interface Matrix4x3fc
      Parameters:
      lightX - the x-component of the light's vector
      lightY - the y-component of the light's vector
      lightZ - the z-component of the light's vector
      lightW - the w-component of the light's vector
      a - the x factor in the plane equation
      b - the y factor in the plane equation
      c - the z factor in the plane equation
      d - the constant in the plane equation
      dest - will hold the result
      Returns:
      dest
    • shadow

      public Matrix4x3f shadow(Vector4fc light, Matrix4x3fc planeTransform, Matrix4x3f dest)
      Description copied from interface: Matrix4x3fc
      Apply a projection transformation to this matrix that projects onto the plane with the general plane equation y = 0 as if casting a shadow from a given light position/direction light and store the result in dest.

      Before the shadow projection is applied, the plane is transformed via the specified planeTransformation.

      If light.w is 0.0 the light is being treated as a directional light; if it is 1.0 it is a point light.

      If M is this matrix and S the shadow matrix, then the new matrix will be M * S. So when transforming a vector v with the new matrix by using M * S * v, the reflection will be applied first!

      Specified by:
      shadow in interface Matrix4x3fc
      Parameters:
      light - the light's vector
      planeTransform - the transformation to transform the implied plane y = 0 before applying the projection
      dest - will hold the result
      Returns:
      dest
    • shadow

      public Matrix4x3f shadow(Vector4fc light, Matrix4x3fc planeTransform)
      Apply a projection transformation to this matrix that projects onto the plane with the general plane equation y = 0 as if casting a shadow from a given light position/direction light.

      Before the shadow projection is applied, the plane is transformed via the specified planeTransformation.

      If light.w is 0.0 the light is being treated as a directional light; if it is 1.0 it is a point light.

      If M is this matrix and S the shadow matrix, then the new matrix will be M * S. So when transforming a vector v with the new matrix by using M * S * v, the reflection will be applied first!

      Parameters:
      light - the light's vector
      planeTransform - the transformation to transform the implied plane y = 0 before applying the projection
      Returns:
      this
    • shadow

      public Matrix4x3f shadow(float lightX, float lightY, float lightZ, float lightW, Matrix4x3fc planeTransform, Matrix4x3f dest)
      Description copied from interface: Matrix4x3fc
      Apply a projection transformation to this matrix that projects onto the plane with the general plane equation y = 0 as if casting a shadow from a given light position/direction (lightX, lightY, lightZ, lightW) and store the result in dest.

      Before the shadow projection is applied, the plane is transformed via the specified planeTransformation.

      If lightW is 0.0 the light is being treated as a directional light; if it is 1.0 it is a point light.

      If M is this matrix and S the shadow matrix, then the new matrix will be M * S. So when transforming a vector v with the new matrix by using M * S * v, the reflection will be applied first!

      Specified by:
      shadow in interface Matrix4x3fc
      Parameters:
      lightX - the x-component of the light vector
      lightY - the y-component of the light vector
      lightZ - the z-component of the light vector
      lightW - the w-component of the light vector
      planeTransform - the transformation to transform the implied plane y = 0 before applying the projection
      dest - will hold the result
      Returns:
      dest
    • shadow

      public Matrix4x3f shadow(float lightX, float lightY, float lightZ, float lightW, Matrix4x3f planeTransform)
      Apply a projection transformation to this matrix that projects onto the plane with the general plane equation y = 0 as if casting a shadow from a given light position/direction (lightX, lightY, lightZ, lightW).

      Before the shadow projection is applied, the plane is transformed via the specified planeTransformation.

      If lightW is 0.0 the light is being treated as a directional light; if it is 1.0 it is a point light.

      If M is this matrix and S the shadow matrix, then the new matrix will be M * S. So when transforming a vector v with the new matrix by using M * S * v, the reflection will be applied first!

      Parameters:
      lightX - the x-component of the light vector
      lightY - the y-component of the light vector
      lightZ - the z-component of the light vector
      lightW - the w-component of the light vector
      planeTransform - the transformation to transform the implied plane y = 0 before applying the projection
      Returns:
      this
    • billboardCylindrical

      public Matrix4x3f billboardCylindrical(Vector3fc objPos, Vector3fc targetPos, Vector3fc up)
      Set this matrix to a cylindrical billboard transformation that rotates the local +Z axis of a given object with position objPos towards a target position at targetPos while constraining a cylindrical rotation around the given up vector.

      This method can be used to create the complete model transformation for a given object, including the translation of the object to its position objPos.

      Parameters:
      objPos - the position of the object to rotate towards targetPos
      targetPos - the position of the target (for example the camera) towards which to rotate the object
      up - the rotation axis (must be normalized)
      Returns:
      this
    • billboardSpherical

      public Matrix4x3f billboardSpherical(Vector3fc objPos, Vector3fc targetPos, Vector3fc up)
      Set this matrix to a spherical billboard transformation that rotates the local +Z axis of a given object with position objPos towards a target position at targetPos.

      This method can be used to create the complete model transformation for a given object, including the translation of the object to its position objPos.

      If preserving an up vector is not necessary when rotating the +Z axis, then a shortest arc rotation can be obtained using billboardSpherical(Vector3fc, Vector3fc).

      Parameters:
      objPos - the position of the object to rotate towards targetPos
      targetPos - the position of the target (for example the camera) towards which to rotate the object
      up - the up axis used to orient the object
      Returns:
      this
      See Also:
      billboardSpherical(Vector3fc, Vector3fc)
    • billboardSpherical

      public Matrix4x3f billboardSpherical(Vector3fc objPos, Vector3fc targetPos)
      Set this matrix to a spherical billboard transformation that rotates the local +Z axis of a given object with position objPos towards a target position at targetPos using a shortest arc rotation by not preserving any up vector of the object.

      This method can be used to create the complete model transformation for a given object, including the translation of the object to its position objPos.

      In order to specify an up vector which needs to be maintained when rotating the +Z axis of the object, use billboardSpherical(Vector3fc, Vector3fc, Vector3fc).

      Parameters:
      objPos - the position of the object to rotate towards targetPos
      targetPos - the position of the target (for example the camera) towards which to rotate the object
      Returns:
      this
      See Also:
      billboardSpherical(Vector3fc, Vector3fc, Vector3fc)
    • hashCode

      public int hashCode()
      Overrides:
      hashCode in class Object
    • equals

      public boolean equals(Object obj)
      Overrides:
      equals in class Object
    • equals

      public boolean equals(Matrix4x3fc m, float delta)
      Description copied from interface: Matrix4x3fc
      Compare the matrix elements of this matrix with the given matrix using the given delta and return whether all of them are equal within a maximum difference of delta.

      Please note that this method is not used by any data structure such as ArrayList HashSet or HashMap and their operations, such as ArrayList.contains(Object) or HashSet.remove(Object), since those data structures only use the Object.equals(Object) and Object.hashCode() methods.

      Specified by:
      equals in interface Matrix4x3fc
      Parameters:
      m - the other matrix
      delta - the allowed maximum difference
      Returns:
      true whether all of the matrix elements are equal; false otherwise
    • pick

      public Matrix4x3f pick(float x, float y, float width, float height, int[] viewport, Matrix4x3f dest)
      Description copied from interface: Matrix4x3fc
      Apply a picking transformation to this matrix using the given window coordinates (x, y) as the pick center and the given (width, height) as the size of the picking region in window coordinates, and store the result in dest.
      Specified by:
      pick in interface Matrix4x3fc
      Parameters:
      x - the x coordinate of the picking region center in window coordinates
      y - the y coordinate of the picking region center in window coordinates
      width - the width of the picking region in window coordinates
      height - the height of the picking region in window coordinates
      viewport - the viewport described by [x, y, width, height]
      dest - the destination matrix, which will hold the result
      Returns:
      dest
    • pick

      public Matrix4x3f pick(float x, float y, float width, float height, int[] viewport)
      Apply a picking transformation to this matrix using the given window coordinates (x, y) as the pick center and the given (width, height) as the size of the picking region in window coordinates.
      Parameters:
      x - the x coordinate of the picking region center in window coordinates
      y - the y coordinate of the picking region center in window coordinates
      width - the width of the picking region in window coordinates
      height - the height of the picking region in window coordinates
      viewport - the viewport described by [x, y, width, height]
      Returns:
      this
    • swap

      public Matrix4x3f swap(Matrix4x3f other)
      Exchange the values of this matrix with the given other matrix.
      Parameters:
      other - the other matrix to exchange the values with
      Returns:
      this
    • arcball

      public Matrix4x3f arcball(float radius, float centerX, float centerY, float centerZ, float angleX, float angleY, Matrix4x3f dest)
      Description copied from interface: Matrix4x3fc
      Apply an arcball view transformation to this matrix with the given radius and center (centerX, centerY, centerZ) position of the arcball and the specified X and Y rotation angles, and store the result in dest.

      This method is equivalent to calling: translate(0, 0, -radius, dest).rotateX(angleX).rotateY(angleY).translate(-centerX, -centerY, -centerZ)

      Specified by:
      arcball in interface Matrix4x3fc
      Parameters:
      radius - the arcball radius
      centerX - the x coordinate of the center position of the arcball
      centerY - the y coordinate of the center position of the arcball
      centerZ - the z coordinate of the center position of the arcball
      angleX - the rotation angle around the X axis in radians
      angleY - the rotation angle around the Y axis in radians
      dest - will hold the result
      Returns:
      dest
    • arcball

      public Matrix4x3f arcball(float radius, Vector3fc center, float angleX, float angleY, Matrix4x3f dest)
      Description copied from interface: Matrix4x3fc
      Apply an arcball view transformation to this matrix with the given radius and center position of the arcball and the specified X and Y rotation angles, and store the result in dest.

      This method is equivalent to calling: translate(0, 0, -radius).rotateX(angleX).rotateY(angleY).translate(-center.x, -center.y, -center.z)

      Specified by:
      arcball in interface Matrix4x3fc
      Parameters:
      radius - the arcball radius
      center - the center position of the arcball
      angleX - the rotation angle around the X axis in radians
      angleY - the rotation angle around the Y axis in radians
      dest - will hold the result
      Returns:
      dest
    • arcball

      public Matrix4x3f arcball(float radius, float centerX, float centerY, float centerZ, float angleX, float angleY)
      Apply an arcball view transformation to this matrix with the given radius and center (centerX, centerY, centerZ) position of the arcball and the specified X and Y rotation angles.

      This method is equivalent to calling: translate(0, 0, -radius).rotateX(angleX).rotateY(angleY).translate(-centerX, -centerY, -centerZ)

      Parameters:
      radius - the arcball radius
      centerX - the x coordinate of the center position of the arcball
      centerY - the y coordinate of the center position of the arcball
      centerZ - the z coordinate of the center position of the arcball
      angleX - the rotation angle around the X axis in radians
      angleY - the rotation angle around the Y axis in radians
      Returns:
      this
    • arcball

      public Matrix4x3f arcball(float radius, Vector3fc center, float angleX, float angleY)
      Apply an arcball view transformation to this matrix with the given radius and center position of the arcball and the specified X and Y rotation angles.

      This method is equivalent to calling: translate(0, 0, -radius).rotateX(angleX).rotateY(angleY).translate(-center.x, -center.y, -center.z)

      Parameters:
      radius - the arcball radius
      center - the center position of the arcball
      angleX - the rotation angle around the X axis in radians
      angleY - the rotation angle around the Y axis in radians
      Returns:
      this
    • transformAab

      public Matrix4x3f transformAab(float minX, float minY, float minZ, float maxX, float maxY, float maxZ, Vector3f outMin, Vector3f outMax)
      Description copied from interface: Matrix4x3fc
      Transform the axis-aligned box given as the minimum corner (minX, minY, minZ) and maximum corner (maxX, maxY, maxZ) by this matrix and compute the axis-aligned box of the result whose minimum corner is stored in outMin and maximum corner stored in outMax.

      Reference: http://dev.theomader.com

      Specified by:
      transformAab in interface Matrix4x3fc
      Parameters:
      minX - the x coordinate of the minimum corner of the axis-aligned box
      minY - the y coordinate of the minimum corner of the axis-aligned box
      minZ - the z coordinate of the minimum corner of the axis-aligned box
      maxX - the x coordinate of the maximum corner of the axis-aligned box
      maxY - the y coordinate of the maximum corner of the axis-aligned box
      maxZ - the y coordinate of the maximum corner of the axis-aligned box
      outMin - will hold the minimum corner of the resulting axis-aligned box
      outMax - will hold the maximum corner of the resulting axis-aligned box
      Returns:
      this
    • transformAab

      public Matrix4x3f transformAab(Vector3fc min, Vector3fc max, Vector3f outMin, Vector3f outMax)
      Description copied from interface: Matrix4x3fc
      Transform the axis-aligned box given as the minimum corner min and maximum corner max by this matrix and compute the axis-aligned box of the result whose minimum corner is stored in outMin and maximum corner stored in outMax.
      Specified by:
      transformAab in interface Matrix4x3fc
      Parameters:
      min - the minimum corner of the axis-aligned box
      max - the maximum corner of the axis-aligned box
      outMin - will hold the minimum corner of the resulting axis-aligned box
      outMax - will hold the maximum corner of the resulting axis-aligned box
      Returns:
      this
    • lerp

      public Matrix4x3f lerp(Matrix4x3fc other, float t)
      Linearly interpolate this and other using the given interpolation factor t and store the result in this.

      If t is 0.0 then the result is this. If the interpolation factor is 1.0 then the result is other.

      Parameters:
      other - the other matrix
      t - the interpolation factor between 0.0 and 1.0
      Returns:
      this
    • lerp

      public Matrix4x3f lerp(Matrix4x3fc other, float t, Matrix4x3f dest)
      Description copied from interface: Matrix4x3fc
      Linearly interpolate this and other using the given interpolation factor t and store the result in dest.

      If t is 0.0 then the result is this. If the interpolation factor is 1.0 then the result is other.

      Specified by:
      lerp in interface Matrix4x3fc
      Parameters:
      other - the other matrix
      t - the interpolation factor between 0.0 and 1.0
      dest - will hold the result
      Returns:
      dest
    • rotateTowards

      public Matrix4x3f rotateTowards(Vector3fc dir, Vector3fc up, Matrix4x3f dest)
      Apply a model transformation to this matrix for a right-handed coordinate system, that aligns the local +Z axis with dir and store the result in dest.

      If M is this matrix and L the lookat matrix, then the new matrix will be M * L. So when transforming a vector v with the new matrix by using M * L * v, the lookat transformation will be applied first!

      In order to set the matrix to a rotation transformation without post-multiplying it, use rotationTowards().

      This method is equivalent to calling: mul(new Matrix4x3f().lookAt(new Vector3f(), new Vector3f(dir).negate(), up).invert(), dest)

      Specified by:
      rotateTowards in interface Matrix4x3fc
      Parameters:
      dir - the direction to rotate towards
      up - the up vector
      dest - will hold the result
      Returns:
      dest
      See Also:
      rotateTowards(float, float, float, float, float, float, Matrix4x3f), rotationTowards(Vector3fc, Vector3fc)
    • rotateTowards

      public Matrix4x3f rotateTowards(Vector3fc dir, Vector3fc up)
      Apply a model transformation to this matrix for a right-handed coordinate system, that aligns the local +Z axis with dir.

      If M is this matrix and L the lookat matrix, then the new matrix will be M * L. So when transforming a vector v with the new matrix by using M * L * v, the lookat transformation will be applied first!

      In order to set the matrix to a rotation transformation without post-multiplying it, use rotationTowards().

      This method is equivalent to calling: mul(new Matrix4x3f().lookAt(new Vector3f(), new Vector3f(dir).negate(), up).invert())

      Parameters:
      dir - the direction to orient towards
      up - the up vector
      Returns:
      this
      See Also:
      rotateTowards(float, float, float, float, float, float), rotationTowards(Vector3fc, Vector3fc)
    • rotateTowards

      public Matrix4x3f rotateTowards(float dirX, float dirY, float dirZ, float upX, float upY, float upZ)
      Apply a model transformation to this matrix for a right-handed coordinate system, that aligns the local +Z axis with (dirX, dirY, dirZ).

      If M is this matrix and L the lookat matrix, then the new matrix will be M * L. So when transforming a vector v with the new matrix by using M * L * v, the lookat transformation will be applied first!

      In order to set the matrix to a rotation transformation without post-multiplying it, use rotationTowards().

      This method is equivalent to calling: mul(new Matrix4x3f().lookAt(0, 0, 0, -dirX, -dirY, -dirZ, upX, upY, upZ).invert())

      Parameters:
      dirX - the x-coordinate of the direction to rotate towards
      dirY - the y-coordinate of the direction to rotate towards
      dirZ - the z-coordinate of the direction to rotate towards
      upX - the x-coordinate of the up vector
      upY - the y-coordinate of the up vector
      upZ - the z-coordinate of the up vector
      Returns:
      this
      See Also:
      rotateTowards(Vector3fc, Vector3fc), rotationTowards(float, float, float, float, float, float)
    • rotateTowards

      public Matrix4x3f rotateTowards(float dirX, float dirY, float dirZ, float upX, float upY, float upZ, Matrix4x3f dest)
      Apply a model transformation to this matrix for a right-handed coordinate system, that aligns the local +Z axis with (dirX, dirY, dirZ) and store the result in dest.

      If M is this matrix and L the lookat matrix, then the new matrix will be M * L. So when transforming a vector v with the new matrix by using M * L * v, the lookat transformation will be applied first!

      In order to set the matrix to a rotation transformation without post-multiplying it, use rotationTowards().

      This method is equivalent to calling: mul(new Matrix4x3f().lookAt(0, 0, 0, -dirX, -dirY, -dirZ, upX, upY, upZ).invert(), dest)

      Specified by:
      rotateTowards in interface Matrix4x3fc
      Parameters:
      dirX - the x-coordinate of the direction to rotate towards
      dirY - the y-coordinate of the direction to rotate towards
      dirZ - the z-coordinate of the direction to rotate towards
      upX - the x-coordinate of the up vector
      upY - the y-coordinate of the up vector
      upZ - the z-coordinate of the up vector
      dest - will hold the result
      Returns:
      dest
      See Also:
      rotateTowards(Vector3fc, Vector3fc), rotationTowards(float, float, float, float, float, float)
    • rotationTowards

      public Matrix4x3f rotationTowards(Vector3fc dir, Vector3fc up)
      Set this matrix to a model transformation for a right-handed coordinate system, that aligns the local -z axis with dir.

      In order to apply the rotation transformation to a previous existing transformation, use rotateTowards.

      This method is equivalent to calling: setLookAt(new Vector3f(), new Vector3f(dir).negate(), up).invert()

      Parameters:
      dir - the direction to orient the local -z axis towards
      up - the up vector
      Returns:
      this
      See Also:
      rotationTowards(Vector3fc, Vector3fc), rotateTowards(float, float, float, float, float, float)
    • rotationTowards

      public Matrix4x3f rotationTowards(float dirX, float dirY, float dirZ, float upX, float upY, float upZ)
      Set this matrix to a model transformation for a right-handed coordinate system, that aligns the local -z axis with (dirX, dirY, dirZ).

      In order to apply the rotation transformation to a previous existing transformation, use rotateTowards.

      This method is equivalent to calling: setLookAt(0, 0, 0, -dirX, -dirY, -dirZ, upX, upY, upZ).invert()

      Parameters:
      dirX - the x-coordinate of the direction to rotate towards
      dirY - the y-coordinate of the direction to rotate towards
      dirZ - the z-coordinate of the direction to rotate towards
      upX - the x-coordinate of the up vector
      upY - the y-coordinate of the up vector
      upZ - the z-coordinate of the up vector
      Returns:
      this
      See Also:
      rotateTowards(Vector3fc, Vector3fc), rotationTowards(float, float, float, float, float, float)
    • translationRotateTowards

      public Matrix4x3f translationRotateTowards(Vector3fc pos, Vector3fc dir, Vector3fc up)
      Set this matrix to a model transformation for a right-handed coordinate system, that translates to the given pos and aligns the local -z axis with dir.

      This method is equivalent to calling: translation(pos).rotateTowards(dir, up)

      Parameters:
      pos - the position to translate to
      dir - the direction to rotate towards
      up - the up vector
      Returns:
      this
      See Also:
      translation(Vector3fc), rotateTowards(Vector3fc, Vector3fc)
    • translationRotateTowards

      public Matrix4x3f translationRotateTowards(float posX, float posY, float posZ, float dirX, float dirY, float dirZ, float upX, float upY, float upZ)
      Set this matrix to a model transformation for a right-handed coordinate system, that translates to the given (posX, posY, posZ) and aligns the local -z axis with (dirX, dirY, dirZ).

      This method is equivalent to calling: translation(posX, posY, posZ).rotateTowards(dirX, dirY, dirZ, upX, upY, upZ)

      Parameters:
      posX - the x-coordinate of the position to translate to
      posY - the y-coordinate of the position to translate to
      posZ - the z-coordinate of the position to translate to
      dirX - the x-coordinate of the direction to rotate towards
      dirY - the y-coordinate of the direction to rotate towards
      dirZ - the z-coordinate of the direction to rotate towards
      upX - the x-coordinate of the up vector
      upY - the y-coordinate of the up vector
      upZ - the z-coordinate of the up vector
      Returns:
      this
      See Also:
      translation(float, float, float), rotateTowards(float, float, float, float, float, float)
    • getEulerAnglesZYX

      public Vector3f getEulerAnglesZYX(Vector3f dest)
      Description copied from interface: Matrix4x3fc
      Extract the Euler angles from the rotation represented by the left 3x3 submatrix of this and store the extracted Euler angles in dest.

      This method assumes that the left 3x3 submatrix of this only represents a rotation without scaling.

      Note that the returned Euler angles must be applied in the order Z * Y * X to obtain the identical matrix. This means that calling Matrix4x3fc.rotateZYX(float, float, float, Matrix4x3f) using the obtained Euler angles will yield the same rotation as the original matrix from which the Euler angles were obtained, so in the below code the matrix m2 should be identical to m (disregarding possible floating-point inaccuracies).

       Matrix4x3f m = ...; // <- matrix only representing rotation
       Matrix4x3f n = new Matrix4x3f();
       n.rotateZYX(m.getEulerAnglesZYX(new Vector3f()));
       

      Reference: http://nghiaho.com/

      Specified by:
      getEulerAnglesZYX in interface Matrix4x3fc
      Parameters:
      dest - will hold the extracted Euler angles
      Returns:
      dest
    • obliqueZ

      public Matrix4x3f obliqueZ(float a, float b)
      Apply an oblique projection transformation to this matrix with the given values for a and b.

      If M is this matrix and O the oblique transformation matrix, then the new matrix will be M * O. So when transforming a vector v with the new matrix by using M * O * v, the oblique transformation will be applied first!

      The oblique transformation is defined as:

       x' = x + a*z
       y' = y + a*z
       z' = z
       
      or in matrix form:
       1 0 a 0
       0 1 b 0
       0 0 1 0
       
      Parameters:
      a - the value for the z factor that applies to x
      b - the value for the z factor that applies to y
      Returns:
      this
    • obliqueZ

      public Matrix4x3f obliqueZ(float a, float b, Matrix4x3f dest)
      Apply an oblique projection transformation to this matrix with the given values for a and b and store the result in dest.

      If M is this matrix and O the oblique transformation matrix, then the new matrix will be M * O. So when transforming a vector v with the new matrix by using M * O * v, the oblique transformation will be applied first!

      The oblique transformation is defined as:

       x' = x + a*z
       y' = y + a*z
       z' = z
       
      or in matrix form:
       1 0 a 0
       0 1 b 0
       0 0 1 0
       
      Specified by:
      obliqueZ in interface Matrix4x3fc
      Parameters:
      a - the value for the z factor that applies to x
      b - the value for the z factor that applies to y
      dest - will hold the result
      Returns:
      dest
    • withLookAtUp

      public Matrix4x3f withLookAtUp(Vector3fc up)
      Apply a transformation to this matrix to ensure that the local Y axis (as obtained by positiveY(Vector3f)) will be coplanar to the plane spanned by the local Z axis (as obtained by positiveZ(Vector3f)) and the given vector up.

      This effectively ensures that the resulting matrix will be equal to the one obtained from setLookAt(Vector3fc, Vector3fc, Vector3fc) called with the current local origin of this matrix (as obtained by origin(Vector3f)), the sum of this position and the negated local Z axis as well as the given vector up.

      Parameters:
      up - the up vector
      Returns:
      this
    • withLookAtUp

      public Matrix4x3f withLookAtUp(Vector3fc up, Matrix4x3f dest)
      Description copied from interface: Matrix4x3fc
      Apply a transformation to this matrix to ensure that the local Y axis (as obtained by Matrix4x3fc.positiveY(Vector3f)) will be coplanar to the plane spanned by the local Z axis (as obtained by Matrix4x3fc.positiveZ(Vector3f)) and the given vector up, and store the result in dest.

      This effectively ensures that the resulting matrix will be equal to the one obtained from calling Matrix4f.setLookAt(Vector3fc, Vector3fc, Vector3fc) with the current local origin of this matrix (as obtained by Matrix4x3fc.origin(Vector3f)), the sum of this position and the negated local Z axis as well as the given vector up.

      Specified by:
      withLookAtUp in interface Matrix4x3fc
      Parameters:
      up - the up vector
      dest - will hold the result
      Returns:
      this
    • withLookAtUp

      public Matrix4x3f withLookAtUp(float upX, float upY, float upZ)
      Apply a transformation to this matrix to ensure that the local Y axis (as obtained by positiveY(Vector3f)) will be coplanar to the plane spanned by the local Z axis (as obtained by positiveZ(Vector3f)) and the given vector (upX, upY, upZ).

      This effectively ensures that the resulting matrix will be equal to the one obtained from setLookAt(float, float, float, float, float, float, float, float, float) called with the current local origin of this matrix (as obtained by origin(Vector3f)), the sum of this position and the negated local Z axis as well as the given vector (upX, upY, upZ).

      Parameters:
      upX - the x coordinate of the up vector
      upY - the y coordinate of the up vector
      upZ - the z coordinate of the up vector
      Returns:
      this
    • withLookAtUp

      public Matrix4x3f withLookAtUp(float upX, float upY, float upZ, Matrix4x3f dest)
      Description copied from interface: Matrix4x3fc
      Apply a transformation to this matrix to ensure that the local Y axis (as obtained by Matrix4x3fc.positiveY(Vector3f)) will be coplanar to the plane spanned by the local Z axis (as obtained by Matrix4x3fc.positiveZ(Vector3f)) and the given vector (upX, upY, upZ), and store the result in dest.

      This effectively ensures that the resulting matrix will be equal to the one obtained from calling Matrix4f.setLookAt(float, float, float, float, float, float, float, float, float) called with the current local origin of this matrix (as obtained by Matrix4x3fc.origin(Vector3f)), the sum of this position and the negated local Z axis as well as the given vector (upX, upY, upZ).

      Specified by:
      withLookAtUp in interface Matrix4x3fc
      Parameters:
      upX - the x coordinate of the up vector
      upY - the y coordinate of the up vector
      upZ - the z coordinate of the up vector
      dest - will hold the result
      Returns:
      this
    • isFinite

      public boolean isFinite()
      Description copied from interface: Matrix4x3fc
      Determine whether all matrix elements are finite floating-point values, that is, they are not NaN and not infinity.
      Specified by:
      isFinite in interface Matrix4x3fc
      Returns:
      true if all components are finite floating-point values; false otherwise
    • clone

      public Object clone() throws CloneNotSupportedException
      Overrides:
      clone in class Object
      Throws:
      CloneNotSupportedException